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1 Introduction

Recently, Kuang et al. (2011) have studied age-period-cohort forecasting of outstanding

liabilities in non-life insurance (also called claims reserving). Three different forecasters

were defined and named as I(0) (zero-times), I(1) (one-time) and I(2) (two-times) in-

tegrators. The authors argued that it is up to the analyst to decide which forecasting

approach is most appropriate for the application at hand. In this document, we describe

three new parametrizations of the three forecasting models considered by Kuang et al.

(2011). Through these new parametrizations, we show that the main difference between

the three forecasting models lies in the amount of data eventually used to estimate the

slope of the calendar effect which is employed for extrapolation. The I(2) approach uses

the shortest possible past to estimate and forecast the slope of the calendar effect, whereas

the I(0) and I(1) approaches use the longest possible past. In other words, the three mod-

els considered in Kuang et al. (2011) represent two extremes when selecting a forecasting

strategy. In the following sections, we work under the discrete framework of Kuang et al.

(2011), which can be seen as a discretization of the continuous framework considered in
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the paper.

2 A discrete model with piecewise constant functions

In claims reserving, the data are traditionally provided as run-off triangles. These show

the observed numbers of claims according to the origin (accident period) and the delay

(development period) of the claim. Similarly, in mortality studies, the available informa-

tion consists of an array of numbers of deaths according to the age and the period of

death. The traditional approach to work with this kind of aggregated data uses chain

ladder-type models (see Kuang et al. (2008a,b, 2011), Mart́ınez-Miranda et al. (2013) and

Mammen et al. (2015)). Here, we briefly review these models and the related forecasting

methods, and show how they relate to the continuous model and the methods described

in the paper. To simplify the exposition, we restrict ourselves to the case of observations

given in a run-off triangle, which is the case of the claims reserving problem considered by

Kuang et al. (2011).

2.1 Chain ladder-type models

Suppose we have aggregated data in the form of a run-off triangle (see the case study in

Section 6.1 of the paper for an example). The triangle can be written as ℵm = {Nij :

(i, j) ∈ Im} with Im = {(i, j) : i = 1, . . . ,m; j = 1, . . . ,m; i + j − 1 ≤ m}. Here, Nij is

the total number of claims incurred in period (week, month, quarter, year) i and reported

in period i + j − 1, i.e., with j − 1 periods delay. The index i thus denotes the accident

period (i.e., the period when the accident happened) and j denotes the development

period (i.e., the delay of j− 1 periods from the accident time i). Moreover, m is the latest

observed accident period. The aim is to predict the numbers of claims in the upper triangle

Jm = {(i, j) : i = 2, . . . ,m; j = 1, . . . ,m; i+ j − 1 > m}, which represent the outstanding

liabilities in claims reserving. The traditional chain ladder model (see Kuang et al. (2009))

assumes that the entries Nij in the triangle are Poisson distributed independent random

variables with mean

E[Nij ] = αiβjδ, (i, j) ∈ Im, (1)

where αi (i = 1, . . . ,m) are accident parameters, βj (j = 1, . . . ,m) are development

parameters, and δ gives the overall level. An extended chain-ladder model (see Kuang

et al. (2008a,b, 2011)) considers an additional effect related to the calendar time, which is
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defined as i+ j − 1. Under this model, the mean parametrization is

E[Nij ] = αiβjγi+j−1δ, (2)

where γi+j−1 denotes the calendar parameter. In mortality studies, this model is the well-

known age-period-cohort model, where accident time corresponds to cohort, development

time to age and calendar time to period. Taking logarithms, the model can be written as

a log-additive model:

µij = ai + bj + gi+j−1 + d (3)

with µij = log(ENij), ai = log(αi), bj = log(βj), gi+j−1 = log(γi+j−1) and d = log(δ).

One problem of this model is that it is not identified since the parametrization in (3) is

not unique. As discussed in Kuang et al. (2008a,b), linear trends can be added to and

subtracted from the parameters ai, bj , gi+j−1 and d such that the sum does not change.

Thus, µij is invariant to the group of transformations

Ψ̃ :


ai

bj

gi+j−1

d

 7→


ai + c1 + (i− 1)c4

bj + c2 + (j − 1)c4

gi+j−1 + c3 − (i+ j − 2)c4

d− c1 − c2 − c3


(4)

for arbitrary constants c1, c2, c3 and c4, that is, µ(θ) = µ{Ψ̃(θ)} with θ = (ai, bj , gi+j−1,

d) and µ(θ) = ai + bj +gi+j−1 +d. A common way to deal with this identification problem

is to impose identification constraints.

Once the identification problem is solved, the parameters in model (3) can be easily es-

timated by maximum likelihood. However, the calendar parameters will be estimated only

up to the last observed calendar period, that is, i+ j − 1 = m. Therefore, forecasting the

upper triangle requires to extrapolate these parameters. Kuang et al. (2008b) character-

ized forecasts of µij that are invariant to arbitrary identifications of the parameters. The

authors described three such forecasts which are inspired by robust forecasting techniques

for non-stationary time series. These are the I(0) (zero-times integrator) model, which is

suited for the situation where the time series evolves in a stable way both in-sample and

out-of-sample; the I(1) (one-time integrator) model which fits the situation where there is

a level shift in the forecast period; and the I(2) (two-times integrator) model for the more

extreme situation where there is a slope shift of the linear trend in the forecast period.

The rather conservative I(0) forecast estimates the trend by the simple linear model

gt = η + νt and extrapolates it into the future. If we denote by ĝ1, . . . , ĝm the estimated
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calendar parameters from the data, the I(0) forecast at calendar m+ h (h = 1, . . . ,m) is

g̃m+h = η̂ + (m+ h)ν̂, (5)

where ν̂ = {
∑m

t=1(ĝt − g)(t − t)}/{
∑m

t=1(t − t)2} and η̂ = g − ν̂t with t = m−1
∑m

t=1 t

and g = m−1
∑m

t=1 ĝt. The I(1) model extrapolates the differences of the time series,

∆ĝt = ĝt − ĝt−1, using a random walk model of the type ∆gt = η + εt. Thus, the the I(1)

forecast at calendar m+ h (h = 1, . . . ,m) is

g̃m+h = ĝm + hη̂, (6)

where η̂ = (m−1)−1
∑m

t=2 ∆ĝt = (m−1)−1(ĝm−ĝ1). Finally, the I(2) forecast proceeds by

extrapolating the double differences, ∆2ĝt = ∆ĝt−∆ĝt−1, as ∆2ĝt = εt. The h-step-ahead

point forecast is then

g̃m+h = ĝm + h∆ĝm = ĝm + h(ĝm − ĝm−1). (7)

Kuang et al. (2008b, 2011) showed that either of these forecast approaches is invariant to

the transformation in (4). Hence, any identification produces the same I(0), I(1) and I(2)

forecast.

2.2 Forecasting methods and identification constraints

We now show that the I(0), I(1) and I(2) forecasts can be reproduced by imposing particu-

lar identification constraints on the log-additive model (3) and by setting the extrapolated

calendar parameters to zero. This result is closely related to and has inspired the new

flexible forecasting method for the continuous chain ladder model in the paper.

The first two identification constraints, which are common to the three forecasting

models, arise from the interpretation of the forecasting problem as the estimation of a

multiplicatively structured density. Following the discussion in Mart́ınez-Miranda et al.

(2013), the parameters αi = exp(ai) and βj = exp(bj) can be seen as the values of two

histograms (with bin size equal to one) estimating the accident and the development den-

sity, respectively. This interpretation immediately yields the following two identification

constraints:

m∑
i=1

exp(ai) =

m∑
j=1

exp(bj) = 1. (8)
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The choice of the last two constraints defines how the extrapolation is performed. Let

us start with the I(1) model where the calendar parameters are extrapolated using the

expression (6). Since we set the extrapolated calendar values to zero, the I(1) forecast

can be reproduced by imposing the two statements in (8) plus the constraint that

0 = g̃m+h = gm + h(m− 1)−1(gm − g1), h = 1, . . . ,m− 1,

which is satisfied for instance if

g1 = gm = 0, (9)

or equivalently, γ1 = γm = 1. Thus, the identification scheme defined by (8) and (9) leads

to the I(1) forecast. Similarly, the I(2) method can be reproduced by imposing that

0 = g̃m+h = gm + h(gm − gm−1), h = 1, . . . ,m− 1,

which is satisfied for instance if

gm−1 = gm = 0, (10)

or equivalently, γm−1 = γm = 1. The identification scheme defined by (8) and (10) thus

leads to the I(2) forecast. Finally, in order to reproduce the I(0) method, we impose that

0 = g̃m+h = η̂ + (m+ h)ν̂, (11)

where ν̂ and η̂ are respectively the slope and the intercept of the linear regression of the

calendar parameters {g1, . . . , gm} in (5). Note that (11) is satisfied if both slope and

intercept vanish, which means that

m∑
t=1

gt = 0 and

m∑
t=1

tgt = 0, (12)

or equivalently,
∑m

t=1 log(γt) =
∑m

t=1 t log(γt) = 0. Thus, we can reproduce the I(0)

forecast by using the identification scheme in (8) and (12).

Explicit expressions for the parameters that satisfy the conditions (8), (9), (10) and

(12) can be derived from any given vector of identified parameters (a†1, . . . , a
†
m, b†1, . . . , b

†
m,

g†1, . . . , g
†
m, d†), using the transformation Ψ in (4) for suitable numbers c1, c2, c3 and c4.

Simple calculations yield the following equations for each identification scheme reproducing

I(0), I(1) and I(2): The two first constraints (8) are common for each case and yield the
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equations

c1 = − log

{
m∑
i=1

exp(a†i + (i− 1)c4

}
(13)

c2 = − log


m∑
j=1

exp(b†j + (j − 1)c4

 . (14)

The last two equations are what defines the forecasting strategy. For the I(1) case, we

have that

c3 = −g†1 (15)

c4 = (g†m + c3)/(m− 1). (16)

For the I(2) case,

c3 = (m− 1)(g†m − g
†
m−1)− g

†
m (17)

c4 = (g†m + c3)/(m− 1), (18)

and for the I(0) case,

c3 = c4(m− 1)/2−
m∑
t=1

g†t/m (19)

c4 = [12/(m(m− 1)(m+ 1))]
m∑
t=1

tg†t − [6/(m(m− 1))]
m∑
t=1

g†t . (20)

The above derivations show that the so-called I(0) and I(1) methods of Kuang et al.

(2011) use identification constraints on the entire past when modelling and estimating

the slope of the calendar effect, while the identification constraint of the I(2) method

only concerns the most recent past. As a consequence, the slope produced by the I(0)

and I(1) methods might be too biased and that of the I(2) method too volatile. It seems

appropriate to develop a methodology in the discrete setting which allows the identification

to be based on some optimal amount of the past. However, the concrete full derivation of

such a methodology in the discrete case is beyond the scope of this paper on continuous

in-sample forecasting.
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