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In this supplement, we investigate the finite sample performance of the bandwidth
selection rule from Section 4.3 by means of a simulation study. Moreover, we
provide the proofs and technical details that are omitted in the paper.

1 Additional Simulations

We now investigate the performance of the bandwidth selection procedure proposed in

Section 4.3 of the paper. To do so, we pick one of the clusters from our simulation setup

of Section 5 and simulate data from this cluster. In particular, we consider the cluster

G5 with n5 = |G5| = 10 and g5(x) = 1.75 arctan(5(x− 0.6)) + 0.75 and draw data from

the model equation

Yit = g5(Xit) + εit (1 ≤ i ≤ n5, 1 ≤ t ≤ T ), (S.1)

where the model variables Xit and εit are generated in exactly the same way as in the

simulations.

As discussed in Section 4.3 of the paper, our bandwidth selection procedure is based

on minimizing the residual sum of squares criterion RSS
(j)
i (h) for different pairs of

indices (i, j). More precisely, we define our bandwidth selector by

ĥ =
1

L

∑
1≤`≤L

ĥ
(i2`)
i2`−1

,

where L = n5/2 and ĥ
(j)
i = argminhRSS

(j)
i (h). As already discussed in Section 4.3, ĥ

can be regarded as an approximation to the optimal bandwidth h∗ in a mean integrated

squared error sense, which is defined as h∗ = arg minh MISEi(h). Note that under the

conditions of Section 4.3, MISEi(h) is the same for all 1 ≤ i ≤ n5 and thus h∗ is a

group-wide optimal bandwidth independent of i.
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To examine the finite sample behaviour of the bandwidth estimator ĥ, we draw N =

1000 samples from the setting (S.1) for each time series length T ∈ {100, 150, 200, 500}
and compute the bandwidth ĥ for each simulated sample. To do so, we define an

equidistant grid G of step length 0.01 which spans the interval [0.025, 0.5] and minimize

the criterion functions RSS
(j)
i (h) over all bandwidth values h ∈ G. The optimal band-

width h∗ can be calculated to be approximately 0.225, 0.205, 0.195, 0.165 for the time

series lengths T = 100, 150, 200, 500, respectively.

Figure 1 summarizes the simulation results. Each panel shows the distribution of the

differences h∗− ĥ for a specific time series length T . In particular, the bars in the plots

give the number of simulations (out of total of 1000) in which the difference h∗− ĥ takes

a certain value. The plots of Figure 1 suggest that ĥ approximates the optimal value h∗

reasonably well. They also make visible that the precision of the estimator ĥ improves

quite slowly as the sample size grows. This is not surprising as the convergence rate of

standard bandwidth selectors (based on cross-validation or penalization techniques) is

known to be very slow; see e.g. Härdle et al. (1988).
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Figure 1: Simulation results for the bandwidth selection procedure from Section 4.3. Each
panel depicts the distribution of the differences h∗− ĥ for a specific time series length T . The
optimal bandwidth h∗ is approximately 0.225, 0.205, 0.195, 0.165 for T = 100, 150, 200, 500,
respectively.
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2 Technical Details

In this section, we provide the proofs and technical details omitted in the paper.

Throughout the section, the symbol C denotes a universal real constant which may

take a different value on each occurrence.

Proof of Lemma A.1

To prove the lemma, we modify standard arguments to derive uniform convergence

rates for kernel estimators, which can be found e.g. in Masry (1996), Bosq (1998) or

Hansen (2008). These arguments are designed to derive the rate of supx |m̂i(x)−mi(x)|
for a fixed individual i. They thus yield the rate which is uniform over x but pointwise

in i. In contrast to this, we aim to derive the rate which is uniform both over x and i.

To do so, we write

m̂i(x)−mi(x) =
[
Qi,V (x) +Qi,B(x)−Qi,γ(x)

]/
f̂i(x)−Qi +Qi,

where

Qi,V (x) =
1

T

T∑
t=1

Wh(Xit − x)εit

Qi,B(x) =
1

T

T∑
t=1

Wh(Xit − x)
[
mi(Xit)−mi(x)

]
Qi,γ(x) =

1

T

T∑
t=1

Wh(Xit − x)
( 1

n− 1

n∑
j=1
j 6=i

[
mj(Xjt) + εjt

])

Qi =
1

T

T∑
t=1

[
mi(Xit) + εit

]
Qi =

1

(n− 1)T

n∑
j=1
j 6=i

T∑
t=1

[
mj(Xjt) + εjt

]

and f̂i(x) = T−1
∑T

t=1Wh(Xit − x). In what follows, we show that

max
1≤i≤n

sup
x∈[0,1]

∣∣Qi,V (x)
∣∣ = Op(an,T ) (S.2)

max
1≤i≤n

sup
x∈[0,1]

∣∣Qi,B(x)− E[Qi,B(x)]
∣∣ = Op(an,T ) (S.3)

max
1≤i≤n

sup
x∈[0,1]

∣∣Qi,γ(x)
∣∣ = Op(an,T ) (S.4)

max
1≤i≤n

sup
x∈[0,1]

∣∣f̂i(x)− E[f̂i(x)]
∣∣ = Op

(√ log T

Th

)
. (S.5)
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Moreover, standard bias calculations yield that max1≤i≤n supx∈Ih |E[Qi,B(x)]| = O(h2)

along with max1≤i≤n supx∈[0,1]\Ih |E[Qi,B(x)]| = O(h). Analogously, max1≤i≤n supx∈Ih
|E[f̂i(x)]| = O(h2) and max1≤i≤n supx∈[0,1]\Ih |E[f̂i(x)]| = O(h). Finally, a simplified

version of the arguments for (S.2) shows that max1≤i≤n |Qi| = Op(an,T ) as well as

max1≤i≤n |Qi| = Op(an,T ). Lemma A.1 immediately follows upon combining (S.2)–(S.5)

with these statements.

Proof of (S.2). Set ψn,T = (nT )1/(θ−δ), where θ is introduced in (C3) and δ > 0 is a

small positive number. Moreover, define

ε≤it = εit1
(
|εit| ≤ ψn,T

)
ε>it = εit1

(
|εit| > ψn,T

)
.

With this notation at hand, we can rewrite the term Qi,V (x) as

Qi,V (x) =
T∑
t=1

Z≤it,T (x) +
T∑
t=1

Z>
it,T (x),

where

Z≤it,T (x) =
(
Wh(Xit − x)ε≤it − E

[
Wh(Xit − x)ε≤it

])/
T

Z>
it,T (x) =

(
Wh(Xit − x)ε>it − E

[
Wh(Xit − x)ε>it

])/
T.

We thus split Qi,V (x) into the “interior part”
∑T

t=1 Z
≤
it,T (x) and the “tail part”∑T

t=1 Z
>
it,T (x). This parallels the standard arguments for deriving the convergence rate

of supx∈[0,1] |Qi,V (x)| for a fixed individual i. As we maximize over i, we however choose

the truncation sequence ψn,T to go to infinity much faster than in the standard case

with a fixed i.

We now proceed in several steps. To start with, we show that

max
1≤i≤n

sup
x∈[0,1]

∣∣∣ T∑
t=1

Z>
it,T (x)

∣∣∣ = Op(an,T ). (S.6)

This can be achieved as follows:

P
(

max
1≤i≤n

sup
x∈[0,1]

∣∣∣ T∑
t=1

Z>
it,T (x)

∣∣∣ > an,T

)
≤

n∑
i=1

P
(

sup
x∈[0,1]

∣∣∣ 1

T

T∑
t=1

Wh(Xit − x)ε>it

∣∣∣ > an,T
2

)
+

n∑
i=1

P
(

sup
x∈[0,1]

∣∣∣ 1

T

T∑
t=1

E
[
Wh(Xit − x)ε>it

]∣∣∣ > an,T
2

)
.
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With the help of assumption (C3), we obtain that

n∑
i=1

P
(

sup
x∈[0,1]

∣∣∣ 1

T

T∑
t=1

Wh(Xit − x)ε>it

∣∣∣ > an,T
2

)
≤

n∑
i=1

P
(
|εit| > ψn,T for some 1 ≤ t ≤ T

)
≤ C(nT )1−

θ
θ−δ = o(1).

Once more applying (C3), it can be seen that

∣∣E[Wh(Xit − x)ε>it
]∣∣ ≤ E

[
Wh(Xit − x)E

[ |εit|θ
ψθ−1n,T

1(|εit| > ψn,T )
∣∣∣Xit

]]
≤ C(nT )−

θ−1
θ−δ

with some constant C independent of x. Since C(nT )−
θ−1
θ−δ < an,T/2 as the sample size

grows large, we arrive at

n∑
i=1

P
(

sup
x∈[0,1]

∣∣∣ 1

T

T∑
t=1

E
[
Wh(Xit − x)ε>it

]∣∣∣ > an,T
2

)
= 0

for sufficiently large sample sizes. This yields (S.6).

We next have a closer look at the expression
∑T

t=1 Z
≤
it,T (x). Let 0 = x0 < x1 < . . . <

xL = 1 be an equidistant grid of points covering the unit interval and set L = Ln,T =

ψn,T/(an,Th
2). Exploiting the Lipschitz continuity of the kernel W , straightforward

calculations yield that

max
1≤i≤n

sup
x∈[0,1]

∣∣∣ T∑
t=1

Z≤it,T (x)
∣∣∣ ≤ max

1≤i≤n
max
1≤`≤L

∣∣∣ T∑
t=1

Z≤it,T (x`)
∣∣∣+ Can,T . (S.7)

We can thus replace the supremum over x by a maximum over the grid points x`.

Moreover, it holds that

P
(

max
1≤i≤n

max
1≤`≤L

∣∣∣ T∑
t=1

Z≤it,T (x`)
∣∣∣ > C0an,T

)
≤

n∑
i=1

L∑
`=1

P
(∣∣∣ T∑

t=1

Z≤it,T (x`)
∣∣∣ > C0an,T

)
, (S.8)

where C0 is a sufficiently large constant to be specified later on. In what follows, we

show that for each fixed x`,

P
(∣∣∣ T∑

t=1

Z≤it,T (x`)
∣∣∣ > C0an,T

)
≤ CT−r, (S.9)
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where the constants C and r are independent of x` and r > 0 can be chosen arbitrar-

ily large provided that C0 is picked sufficiently large. Plugging (S.9) into (S.8) and

combining the result with (S.7), we arrive at

max
1≤i≤n

sup
x∈[0,1]

∣∣∣ T∑
t=1

Z≤it,T (x)
∣∣∣ = Op(an,T ), (S.10)

which completes the proof.

It thus remains to prove (S.9). To do so, we split the term
∑T

t=1 Z
≤
it,T (x`) into blocks

as follows:
T∑
t=1

Z≤it,T (x`) =

qn,T∑
s=1

B2s−1 +

qn,T∑
s=1

B2s

with Bs =
∑srn,T

t=(s−1)rn,T+1 Z
≤
it,T (x`), where 2qn,T is the number of blocks and rn,T =

T/(2qn,T ) is the block length. In particular, we choose the block length such that

rn,T = O(T η) for some small η > 0. With this notation at hand, we get

P
(∣∣∣ T∑

t=1

Z≤it,T (x`)
∣∣∣ > C0an,T

)
≤ P

(∣∣∣ qn,T∑
s=1

B2s−1

∣∣∣ > C0

2
an,T

)
+ P

(∣∣∣ qn,T∑
s=1

B2s

∣∣∣ > C0

2
an,T

)
.

As the two terms on the right-hand side can be treated analogously, we focus attention

to the first one. By Bradley’s lemma (see Lemma 1.2 in Bosq (1998)), we can construct

a sequence of random variables B∗1 , B
∗
3 , . . . such that (a) B∗1 , B

∗
3 , . . . are independent, (b)

B2s−1 and B∗2s−1 have the same distribution for each s, and (c) for 0 < µ ≤ ‖B2s−1‖∞,

P(|B∗2s−1 − B2s−1| > µ) ≤ 18(‖B2s−1‖∞/µ)1/2α(rn,T ). With these variables, we obtain

the bound

P
(∣∣∣ qn,T∑

s=1

B2s−1

∣∣∣ > C0

2
an,T

)
≤ P1 + P2,

where

P1 = P
(∣∣∣ qn,T∑

s=1

B∗2s−1

∣∣∣ > C0

4
an,T

)
P2 = P

(∣∣∣ qn,T∑
s=1

(
B2s−1 −B∗2s−1

)∣∣∣ > C0

4
an,T

)
.

Using (c) together with the fact that the mixing coefficients α(·) decay to zero expo-

nentially fast, it is not difficult to see that P2 converges to zero at an arbitrarily fast

polynomial rate. To deal with P1, we make use of the following three facts:
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(i) For a random variable B and λ > 0, Markov’s inequality yields that

P
(
±B > δ

)
≤ E exp(±λB)

exp(λδ)
.

(ii) We have that |B2s−1| ≤ CBrn,Tψn,T/(Th) for some constant CB > 0. Define λn,T =

Th/(2CBrn,Tψn,T ), which implies that λn,T |B2s−1| ≤ 1/2. As exp(x) ≤ 1 + x+ x2

for |x| ≤ 1/2, we get that

E
[

exp
(
± λn,TB2s−1

)]
≤ 1 + λ2n,TE

[
(B2s−1)

2
]
≤ exp

(
λ2n,TE

[
(B2s−1)

2
])

along with

E
[

exp
(
± λn,TB∗2s−1

)]
≤ exp

(
λ2n,TE

[
(B∗2s−1)

2
])
.

(iii) Standard calculations for kernel estimators yield that

qn,T∑
s=1

E
[
(B∗2s−1)

2
]
≤ C

Th
.

Using (i)–(iii), we arrive at

P
(∣∣∣ qn,T∑

s=1

B∗2s−1

∣∣∣ > C0

4
an,T

)
≤ P

( qn,T∑
s=1

B∗2s−1 >
C0

4
an,T

)
+ P

(
−

qn,T∑
s=1

B∗2s−1 >
C0

4
an,T

)
≤ exp

(
− C0

4
λn,Tan,T

){
E
[

exp
(
λn,T

qn,T∑
s=1

B∗2s−1

)]
+ E

[
exp

(
− λn,T

qn,T∑
s=1

B∗2s−1

)]}

≤ exp
(
− C0

4
λn,Tan,T

){qn,T∏
s=1

E
[

exp
(
λn,TB

∗
2s−1

)]
+

qn,T∏
s=1

E
[

exp
(
− λn,TB∗2s−1

)]}

≤ 2 exp
(
− C0

4
λn,Tan,T

) qn,T∏
s=1

exp
(
λ2n,TE

[
(B∗2s−1)

2
])

= 2 exp
(
− C0

4
λn,Tan,T

)
exp

(
λ2n,T

qn,T∑
s=1

E
[
(B∗2s−1)

2
])

≤ 2 exp
(
− C0

4
λn,Tan,T + λ2n,T

C

Th

)
.

Recalling that n/T ≤ C and T 2/5h → ∞ by assumption, setting θ to a value slightly

larger than 4 and supposing that an,T = T−1/10, it follows that

exp
(
− C0

4
λn,Tan,T + λ2n,T

C

Th

)
≤ T−r, (S.11)
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where the constant r > 0 can be made arbitrarily large by picking C0 large enough. If

we strengthen (C3) to be satisfied for some θ > 20/3 and choose the block length to be

rn,T =
√

(Th)/(ψ2
n,T log T ), (S.11) even holds for an,T =

√
log T/(Th). From (S.11), it

immediately follows that P1 ≤ CT−r, which in turn completes the proof of (S.9).

Proof of (S.3). The statement follows essentially by the same arguments as those for

the proof of (S.2).

Proof of (S.4). Define Zit = (n− 1)−1
∑n

j=1,j 6=i(mj(Xjt) + εjt) and write

Qi,γ(x) =
1

T

T∑
t=1

Wh(Xit − x)Zit. (S.12)

By construction, the time series processes {Xit : 1 ≤ t ≤ T} and {Zit : 1 ≤ t ≤ T} are

independent of each other. Moreover, by Theorem 5.2 in Bradley (2005), the process

{Zit : 1 ≤ t ≤ T} is strongly mixing with mixing coefficients that are bounded by

nα(k). (S.4) can thus be shown by applying the arguments from the proof of (S.2) to

(S.12).

Proof of (S.5). The overall strategy is the same as that for the proof of (S.2). There

is however one important difference: In the proof of (S.2), we have examined a kernel

average of the form T−1
∑T

t=1Wh(Xit − x)Zit with Zit = εit. As the variables εit have

unbounded support in general, we have introduced the truncation sequence ψn,T and

have split εit into the two parts ε≤it and ε>it . Here in contrast, we are concerned with the

case Zit ≡ 1. Importantly, the random variables Zit ≡ 1 are bounded, implying that

we do not have to truncate them at all. Keeping this in mind and going step by step

along the proof of (S.2), we arrive at (S.5).

Proof of Lemma A.2

Under the conditions of the lemma, it holds that for any pair of indices i, j ∈ Gk,

∆̂ij =

∫ (Qi,V (x) +Qi,B(x)

f̂i(x)
− Qj,V (x) +Qj,B(x)

f̂j(x)

)2
π(x)dx

with Qi,V (x), Qi,B(x) and f̂i(x) defined as in the proof of Lemma A.1. Using the

arguments from Lemma A.1, one can show that

max
i∈Gk

sup
x∈[0,1]

∣∣Qi,V (x)
∣∣ = Op

(√ log T

Th

)
max
i∈Gk

sup
x∈[0,1]

∣∣Qi,B(x)− E[Qi,B(x)]
∣∣ = Op

(
h

√
log T

Th

)
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max
i∈Gk

sup
x∈Ih

∣∣f̂i(x)− fi(x)
∣∣ = Op

(√ log T

Th
+ h2

)
and

E[Qi,B(x)] = h2
(∫

W (ϕ)ϕ2dϕ
)(
m′i(x)f ′i(x) +

m′′i (x)fi(x)

2

)
+O(h3)

uniformly for i ∈ Gk and x ∈ Ih. Applying these uniform convergence results and

noting that maxi,j∈Gk ∆̂ij = maxi,j∈Gk,i<j ∆̂ij, it is not difficult to see that

max
i,j∈Gk

∆̂ij = max
i,j∈Gk
i<j

∫ (Qi,V (x)

fi(x)
− Qj,V (x)

fj(x)

)2
π(x)dx+ op

( 1

Th1/2

)
.

Next define

Ui,T =
T∑

s,t=1

a
(i)
st εisεit,

where a
(i)
st = T−2

∫
Wh(Xis − x)Wh(Xit − x)π(x)/f 2

i (x)dx for s 6= t and a
(i)
st = 0 for

s = t. Similarly, for i 6= j, let

Uij,T =
T∑

s,t=1

a
(ij)
st εisεjt

with a
(ij)
st = T−2

∫
Wh(Xis − x)Wh(Xjt − x)π(x)/(fi(x)fj(x))dx and define

Bi,T =

∫
1

T 2

T∑
t=1

W 2
h (Xit − x)ε2it

π(x)

f 2
i (x)

dx.

With these definitions at hand, we can write

max
i,j∈Gk
i<j

∫ (Qi,V (x)

fi(x)
− Qj,V (x)

fj(x)

)2
π(x)dx = max

i,j∈Gk
i<j

{
Ui,T − 2Uij,T + Uj,T +Bi,T +Bj,T

}
.

Below we show that

max
1≤i≤n

∣∣Ui,T ∣∣ = Op

( log T

Th1/2

)
(S.13)

max
1≤i<j≤n

∣∣Uij,T ∣∣ = Op

( log T

Th1/2

)
. (S.14)

Moreover, similar arguments as those for the proof of Lemma A.1 yield that

max
1≤i≤n

∣∣Bi,T − E[Bi,T ]
∣∣ = op

( 1

Th1/2

)
(S.15)

E[Bi,T ] =
1

Th

(∫
W 2(ϕ)dϕ

) ∫ σ2
i (x)π(x)

fi(x)
dx+O

( 1

T

)
(S.16)
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uniformly in i. Combining (S.13)–(S.16) and noting that E[Bi,T ] + E[Bj,T ] = Bij/(Th)

+O(T−1) uniformly in i and j, we arrive at

max
i,j∈Gk

∆̂ij = max
i,j∈Gk
i<j

∫ (Qi,V (x)

fi(x)
− Qj,V (x)

fj(x)

)2
π(x)dx+ op

( 1

Th1/2

)
= max

i,j∈Gk
i<j

Bij
Th

+Op

( log T

Th1/2

)
.

To complete the proof, it thus remains to verify (S.13) and (S.14).

Proof of (S.13). Define the matrix A
(i)
T = (|a(i)st |)Ts,t=1 and Λ

(i)
T =

∑T
s,t=1(a

(i)
st )2. We

first show that

max
1≤i≤n

‖A(i)
T ‖ = Op

( 1

T

)
(S.17)

max
1≤i≤n

Λ
(i)
T = Op

( 1

T 2h

)
, (S.18)

where ‖A(i)
T ‖ denotes the spectral norm of A

(i)
T . By definition, ‖A(i)

T ‖ is the largest abso-

lute eigenvalue of A
(i)
T . As the diagonal elements |a(i)tt | of A

(i)
T are all zero, Gerschgorin’s

theorem says that the largest absolute eigenvalue of A
(i)
T is bounded by

λ
(i)

= max
1≤s≤T

T∑
t=1

|a(i)st |.

Standard calculations yield that

λ
(i) ≤ C

T
max
1≤s≤T

1

T

T∑
t=1

Wh(Xis −Xit),

where Wh(x) = h−1W(x/h) and W(x) =
∫ C1

−C1
W (x + ϕ)dϕ. One can easily show that

(a) |W(x)| ≤ C, (b) W(x) = 0 for all |x| > 2C1, and (c) |W(x) −W(x′)| ≤ L|x − x′|
for some constant L. Hence, similar arguments as those from Lemma A.1 yield that

λ
(i) ≤ C

T
sup
x∈[0,1]

1

T

T∑
t=1

Wh(x−Xit)

≤ C

T
sup
x∈[0,1]

∣∣∣ 1

T

T∑
t=1

E
[
Wh(x−Xit)

]∣∣∣
+
C

T
sup
x∈[0,1]

∣∣∣ 1

T

T∑
t=1

{
Wh(x−Xit)− E

[
Wh(x−Xit)

]}∣∣∣
= O

( 1

T

)
+Op

( 1

T

√
log T

Th

)

10



uniformly over i. As a result, we get that max1≤i≤n ‖A(i)
T ‖ ≤ max1≤i≤n λ

(i)
= Op(T

−1),

thus completing the proof of (S.17). To see (S.18), note that
∫
Wh(Xis − x)Wh(Xit −

x)π(x)/f 2
i (x)dx ≤ C/h. Keeping this in mind, we obtain that

Λ
(i)
T =

1

T 4

T∑
s,t=1
s 6=t

{∫
Wh(Xis − x)Wh(Xit − x)

π(x)

f 2
i (x)

dx
}2

≤ C

T 4h

T∑
s,t=1

∫
Wh(Xis − x)Wh(Xit − x)

π(x)

fi(x)
dx

≤ C

T 2h

∫ ( 1

T

T∑
s=1

Wh(Xis − x)
)( 1

T

T∑
t=1

Wh(Xit − x)
) π(x)

fi(x)
dx

= Op

( 1

T 2h

)
uniformly in i, taking into account that T−1

∑T
t=1Wh(Xit − x) = Op(1) uniformly over

i and x.

We now let Xn,T = (X11, . . . , X1T , X21, . . . , X2T , . . . , Xn1, . . . , XnT ) be the vector of

the regressors Xit and define the event

ET =
{
Xn,T : max

1≤i≤n
‖A(i)

T ‖ ≤
log T

T
and max

1≤i≤n
Λ

(i)
T ≤

log T

T 2h

}
.

By (S.17) and (S.18), it holds that P(ET )→ 1. Hence,

P
(

max
1≤i≤n

|Ui,T | > CU
log T

Th1/2

)
= P

(
max
1≤i≤n

|Ui,T | > CU
log T

Th1/2
, ET

)
+ o(1)

≤
n∑
i=1

P
(
|Ui,T | > CU

log T

Th1/2
, ET

)
+ o(1)

=
n∑
i=1

P
(

1(ET ) |Ui,T | > CU
log T

Th1/2

)
+ o(1).

We further write

P
(

1(ET ) |Ui,T | > CU
log T

Th1/2

)
= E

[
P
(

1(ET ) |Ui,T | > CU
log T

Th1/2

∣∣∣Xn,T)]
and derive an exponential bound on the conditional probability P(1(ET ) |Ui,T | >
CU log T/(Th1/2)|Xn,T ). To do so, we make use of the following result, which is im-

mediately implied by the proof of the theorem in Wright (1973).

Theorem. Define

UT =
T∑

s,t=−T

ast
(
ηsηt − E[ηsηt]

)
and suppose that the following conditions are satisfied:

11



(i) {ηt : −T ≤ t ≤ T} is a sequence of independent random variables with zero means.

For some constants M , γ > 0, P(|ηt| ≥ c) ≤M
∫∞
c

exp(−γr2)dr for all −T ≤ t ≤ T

and all c ≥ 0.

(ii) For −T ≤ s, t ≤ T , ast are real numbers with ast = ats and ΛT =
∑T

s,t=−T a
2
st ≤

C <∞. Let AT = (|ast|)Ts,t=−T and denote the spectral norm of AT by ‖AT‖.

There exist constants Ca and Cb depending only on M and γ such that for every δ > 0,

P
(
UT > δ

)
≤ exp

(
−min

{ Caδ

‖AT‖
,
Cbδ

2

ΛT

})
.

Setting a
(i)
st = 0 whenever s < 1 or t < 1, we can write Ui,T =

∑T
s,t=−T a

(i)
st εisεit and

directly apply the above theorem. This yields

P
(

1(ET ) |Ui,T | > CU
log T

Th1/2

∣∣∣Xn,T)
≤ exp

(
−min

{CaCU log T/(Th1/2)

log T/T
,
CbC

2
U(log T/(Th1/2))2

log T/(T 2h)

})
= exp

(
− CbC2

U log T
)

= T−CbC
2
U

for sufficiently large sample sizes T . As a result,

P
(

max
1≤i≤n

|Ui,T | > CU
log T

Th1/2

)
≤ nT−CbC

2
U + o(1) = o(1)

for CU chosen sufficiently large.

Proof of (S.14). First of all, note that we can write

Uij,T =

∫
Qi,V (x)Qj,V (x)

fi(x)fj(x)
π(x)dx

with Qi,V (x) = T−1
∑T

t=1Wh(Xit−x)εit. The arguments from the proof of Lemma A.1

show that

P
(

max
1≤i≤n

sup
x∈[0,1]

∣∣Qi,V (x)
∣∣ > CQ

√
log T

Th

)
= o(1)

for CQ chosen sufficiently large. Now let ET be the event that maxi supx |Qi,V (x)| ≤
CQ
√

log T/(Th) and Ej,T the event that supx |Qj,V (x)| ≤ CQ
√

log T/(Th). Then

P
(

max
1≤i<j≤n

∣∣Uij,T ∣∣ > CU
log T

Th1/2

)
= P

(
max

1≤i<j≤n

∣∣Uij,T ∣∣ > CU
log T

Th1/2
, ET

)
+ o(1)

≤
∑

1≤i<j≤n

P
(∣∣Uij,T ∣∣ > CU

log T

Th1/2
, ET

)
+ o(1)
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and

P
(∣∣Uij,T ∣∣ > CU

log T

Th1/2
, ET

)
= P

(
1(ET )

∣∣Uij,T ∣∣ > CU
log T

Th1/2

)
≤ P

(
1(Ej,T )

∣∣Uij,T ∣∣ > CU
log T

Th1/2

)
= P

(∣∣∣ 1

T

T∑
t=1

wij,T εit

∣∣∣ > CU
log T

Th1/2

)
,

where we set

wij,T =

∫
Wh(Xit − x)

fi(x)

Qj,V (x)1(Ej,T )

fj(x)
π(x)dx.

Noting that wij,T ≤ C
√

log T/(Th), one can show that

P
(∣∣∣ 1

T

T∑
t=1

wij,T εit

∣∣∣ > CU
log T

Th1/2

)
≤ CT−r,

where r > 0 can be made arbitrarily large by choosing CU large enough. This implies

that

P
(

max
1≤i<j≤n

∣∣Uij,T ∣∣ > CU
log T

Th1/2

)
= o(1)

for CU sufficiently large.

Proof of Theorem 3.3

We focus attention on the proof of the distribution result (3.2). The convergence result

(3.1) follows by slightly modifying the arguments of the proof. In a first step, we replace

the estimator ĝk by the infeasible version

ĝ∗k(x) =
1

nk

∑
i∈Gk

m̂i(x)

and show that the difference between the two estimators is asymptotically negligible:

For any null sequence {an,T} of positive numbers, it holds that

P
(∣∣ĝk(x)− ĝ∗k(x)

∣∣ > an,T

)
≤ P

(∣∣ĝk(x)− ĝ∗k(x)
∣∣ > an,T , Ĝk = Gk

)
+ P

(
Ĝk 6= Gk

)
= o(1),

since the first probability on the right-hand side is equal to zero by definition of ĝk and ĝ∗k
and the second one is of the order o(1) by Theorem 3.1. Hence, |ĝk(x)−ĝ∗k(x)| = Op(an,T )

for any null sequence {an,T} of positive numbers, which in turn implies that√
n̂kTh

(
ĝk(x)− gk(x)

)
=
√
n̂kTh

(
ĝ∗k(x)− gk(x)

)
+ op(1).

13



The difference between ĝk and ĝ∗k can thus be asymptotically ignored.

To complete the proof of Theorem 3.3, we derive the limit distribution of the

term
√
n̂kTh(ĝ∗k(x) − gk(x)): Since P(n̂k 6= nk) = o(1) by Theorem 3.1, it holds that√

n̂kTh(ĝ∗k(x)− gk(x)) =
√
nkTh(ĝ∗k(x)− gk(x)) + op(1). It thus suffices to compute the

limit distribution of
√
nkTh(ĝ∗k(x)− gk(x)). To do so, write

m̂i(x)−mi(x) =
[
Qi,V (x) +Qi,B(x)−Qi,γ(x)

]/
f̂i(x)−Qi +Qi,

where Qi,V (x), Qi,B(x), Qi,γ(x) along with Qi, Qi and f̂i(x) are defined in the proof of

Lemma A.1. With this notation at hand, we obtain that√
nkTh

(
ĝ∗k(x)− gk(x)

)
=
√
nkTh

{ 1

nk

∑
i∈Gk

Qi,V (x)

f̂i(x)
+

1

nk

∑
i∈Gk

Qi,B(x)

f̂i(x)
− 1

nk

∑
i∈Gk

Qi,γ(x)

f̂i(x)
− 1

nk

∑
i∈Gk

(
Qi −Qi

)}
=
√
nkTh

{ 1

nk

∑
i∈Gk

Qi,V (x)

f̂i(x)
+

1

nk

∑
i∈Gk

Qi,B(x)

f̂i(x)
− 1

nk

∑
i∈Gk

Qi,γ(x)

f̂i(x)

}
+ op(1),

the last line following by standard calculations. In the sequel, we show that

1

nk

∑
i∈Gk

Qi,γ(x)

f̂i(x)
= op

( 1√
nkTh

)
(S.19)

1

nk

∑
i∈Gk

Qi,V (x)

f̂i(x)
=

1

nk

∑
i∈Gk

Qi,V (x)

fi(x)
+ op

( 1√
nkTh

)
(S.20)

1

nk

∑
i∈Gk

Qi,B(x)

f̂i(x)
=

1

nk

∑
i∈Gk

Qi,B(x)

fi(x)
+ op

( 1√
nkTh

)
. (S.21)

(S.19)–(S.21) allow us to conclude that√
nkTh

(
ĝ∗k(x)− gk(x)

)
=
√
nkTh

{ 1

nk

∑
i∈Gk

Qi,V (x)

fi(x)
+

1

nk

∑
i∈Gk

Qi,B(x)

fi(x)

}
+ op(1)

=
√
nkTh

( 1

nkT

∑
i∈Gk

T∑
t=1

Wh(Xit − x)

fi(x)
εit

)
+
√
nkTh

( 1

nkT

∑
i∈Gk

T∑
t=1

Wh(Xit − x)

fi(x)

[
mi(Xit)−mi(x)

])
+ op(1).

With the help of a standard central limit theorem, the first term on the right-hand side

can be shown to weakly converge to a normal distribution with mean zero and variance

Vk(x). Moreover, standard bias calculations yield that the second term converges in

probability to the bias expression Bk(x). This completes the proof.
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Proof of (S.19). In a first step, we show that

Rγ :=
1

nk

∑
i∈Gk

Qi,γ(x)

f̂i(x)
− 1

nk

∑
i∈Gk

Qi,γ(x)

E[f̂i(x)]
= op

( 1√
nkTh

)
. (S.22)

To do so, we write Rγ = Rγ,1 +Rγ,2, where

Rγ,1 =
1

nk

∑
i∈Gk

E[f̂i(x)]− f̂i(x)

E[f̂i(x)]2
Qi,γ(x)

Rγ,2 =
1

nk

∑
i∈Gk

(E[f̂i(x)]− f̂i(x))2

E[f̂i(x)]2f̂i(x)
Qi,γ(x).

Defining Zit(x) = E[Wh(Xit − x)] −Wh(Xit − x), the first term Rγ,1 can be expressed

as

Rγ,1 =
1

nk

∑
i∈Gk

1

E[f̂i(x)]2

{ 1

T

T∑
t=1

Zit(x)
}

×
{ 1

T

T∑
t=1

Wh(Xit − x)
( 1

n− 1

n∑
j=1
j 6=i

[
mj(Xjt) + εjt

])}
.

We thus obtain that

E[R2
γ,1] =

1

n2
k(n− 1)2

∑
i,i′∈Gk

∑
j 6=i
j′ 6=i′

1

E[f̂i(x)]2

1

E[f̂i′(x)]2

×
( 1

T 4

T∑
t,t′,s,s′=1

Ψi,i′,j,j′,t,t′,s,s′(x)
)
, (S.23)

where we use the shorthand

Ψi,i′,j,j′,t,t′,s,s′(x) = E
[
Zit(x)Wh(Xis − x)

{
mj(Xjs) + εjs

}
× Zi′t′(x)Wh(Xi′s′ − x)

{
mj′(Xj′s′) + εj′s′

}]
.

Importantly, the expressions Ψi,i′,j,j′,t,t′,s,s′(x) in (S.23) have the following property:

Ψi,i′,j,j′,t,t′,s,s′(x) 6= 0 only if (a) i = j′ and i′ = j or (b) j = j′. Exploiting the mixing

conditions of (C1) by means of Davydov’s inequality (see Corollary 1.1 in Bosq (1998)),

we can show that in case (a), |T−4
∑T

t,t′,s,s′=1 ψi,i′,j,j′,t,t′,s,s′(x)| ≤ C(log T )2/(Th)2 and

in case (b),

∣∣∣ 1

T 4

T∑
t,t′,s,s′=1

ψi,i′,j,j′,t,t′,s,s′(x)
∣∣∣ ≤

C(log T )3/(T 3h2) for i 6= i′

C(log T )2/(T 2h3) for i = i′.
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Plugging these bounds into (S.23), we immediately arrive at Rγ,1 = op(1/
√
nkTh).

Furthermore, with the help of Hölder’s inequality and (S.5), we obtain that

Rγ,2 ≤
{

max
1≤i≤n

sup
x∈[0,1]

(E[f̂i(x)]− f̂i(x))2

E[f̂i(x)]2f̂i(x)

}{ 1

nk

∑
i∈Gk

( 1

T

T∑
t=1

W
4/3
h (Xit − x)

)3/4
×
( 1

T

T∑
t=1

( 1

n− 1

n∑
j=1
j 6=i

[
mj(Xjt) + εjt

])4)1/4}

= Op

((√ log T

Th

)2 1

h1/4(n− 1)1/2

)
= op

( 1√
nkTh

)
,

which completes the proof of (S.22).

In the next step, we show that

1

nk

∑
i∈Gk

Qi,γ(x)

E[f̂i(x)]
= op

( 1√
nkTh

)
. (S.24)

To do so, we derive the convergence rate of the second moment

E

[{ 1

nk

∑
i∈Gk

Qi,γ(x)

E[f̂i(x)]

}2
]

=
1

n2
k(n− 1)2

∑
i,i′∈Gk

∑
j 6=i
j′ 6=i′

1

E[f̂i(x)]

1

E[f̂i′(x)]

×
( 1

T 2

T∑
t,t′=1

Ψi,i′,j,j′,t,t′(x)
)
, (S.25)

where Ψi,i′,j,j′,t,t′(x) = E[Wh(Xit − x){mj(Xjt) + εjt}Wh(Xi′t′ − x){mj′(Xj′t′) + εj′t′}].
Similarly as above, Ψi,i′,j,j′,t,t′(x) 6= 0 only if (a) i = j′ and i′ = j or (b) j = j′. Applying

Davydov’s inequality once again, we get that in case (a), |T−2
∑T

t,t′=1 Ψi,i′,j,j′,t,t′(x)| ≤
C log T/T and in case (b),

∣∣∣ 1

T 2

T∑
t,t′=1

Ψi,i′,j,j′,t,t′(x)
∣∣∣ ≤

C/T for i 6= i′

C/(Th) for i = i′.

Plugging these bounds into (S.25), we easily arrive at (S.24). The statement (S.19) now

follows upon combining (S.22) with (S.24).

Proof of (S.20) and (S.21). By arguments similar to those for (S.19),

1

nk

∑
i∈Gk

Qi,`(x)

f̂i(x)
− 1

nk

∑
i∈Gk

Qi,`(x)

E[f̂i(x)]
= op

( 1√
nkTh

)
(S.26)
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for ` ∈ {V,B}. With the help of standard bias calculations, we further obtain that

1

nk

∑
i∈Gk

Qi,`(x)

E[f̂i(x)]
− 1

nk

∑
i∈Gk

Qi,`(x)

fi(x)
= op

( 1√
nkTh

)
. (S.27)

Combining (S.26) and (S.27) completes the proof.
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