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In this supplement, we provide the proofs that are omitted in the paper.
In particular, we derive Theorems 4.1-4.3 from Section 4. Throughout the
supplement, we use the symbol C to denote a universal real constant which
may take a different value on each occurrence.

Auxiliary results

In the proofs of Theorems 4.1-4.3, we frequently make use of the following uniform

convergence result.

Lemma S.1. Let Z, = {Zy : 1 < t < T} be sequences of real-valued random
variables for 1 < s < S with the following properties: (i) for each s, the random
variables in Z, are independent of each other, and (ii) E[Zy] = 0 and E[|Z4|?] <
C < oo for some ¢ > 2 and C' > 0 that depend neither on s nor on t. Suppose that
S=T%with0<q<¢/2—1. Then

]P( max

1<s<S

% N Za| > T”) = o(1),

where the constant n > 0 can be chosen as small as desired.

Proof of Lemma S.1. Define 757 = (ST)Y{2+9@+D} with some sufficiently small

9 > 0. In particular, let 6 > 0 be so small that (2 +9)(¢ + 1) < ¢. Moreover, set

Z5 = Z4l(|Zg| < s7) — E[Z41(|Zg| < Ts1)]
73, = Zuy1l(|Zu| > 1s7) — E[Zu1(| Zs| > Ts7)]

and write

1 < 1 < 1 <
=D Za=—=) Zat—=) o
\/T; ' \/T; ! \/T; t



In what follows, we show that

T
1 > n\ _—
P(@% ﬁ;&t > T ) = o(1) (S.1)
T
1 < mn) _
]P’(gga;% —ngst > 0T ) = o(1) (S.2)

for any fixed constant C' > 0. Combining (S.1) and (S.2) immediately yields the
statement of Lemma S.1.
We start with the proof of (S.1): It holds that

T
_ > ul > >
P(fél?g}% T;Zst >C’T>§Q1 +Q3,
where
S T
1 C
— P( Za1(|Za| > 7 >—T">
S CONEMIEAELES
S
< ZIP’(]ZM > g7 for some 1 <t < T)
s=1
S T S T |Z |¢
<3 Y R(d > o) < Y B[ 2]
s=1 t=1 s=1 t=1 S, T
CST
= o(1)
S,T
and

Z]P( ZE | Z|1(|Zot| > T5.7)] > (;T"> =0

for S and T sufficiently large, since

1 T
= 2 B[ Zal1(1Za] > 751)]

T
1 Zg|®
<SR[ (120 > o)
Ts

t=1 T
CvT

< ;{1_ = o(T")
TsT

This yields (S.1).



We next turn to the proof of (S.2): We apply the crude bound

T S T
p( max %;z > or) g;p()%;z; > o)
and show that for any 1 < s < S,
P(‘iizﬁ >CT”> < CyT~" (S.3)
VT R |

where () is a fixed constant and p > 0 can be chosen as large as desired by picking
n slightly larger than 1/2 — 1/(2 4 ¢). Since S = O(T), this immediately implies
(S.2). To prove (S.3), we make use of the following facts:

(i) For a random variable Z and A > 0, Markov’s inequality says that

Eexp(£AZ)
P(+tZ>0) < ——m—~
( >9) < exp(Ad)
(ii) Since |Z5/VT| < 2757/V/T, it holds that Agp|Z5/VT| < 1/2, where we set
Asr = VT /(47sr). As exp(z) <1+ + 22 for x| < 1/2, this implies that

Z; NS oty < ASr oty <
E| exp (& )\S,T\/—‘%ﬂ <1+ LE[(25)7 < exp (RE[(25)7).
(iii) By definition of Ag, it holds that
N vT == VT _ TiEs
>t A(ST)TF@™D  4(Te+1) @m0 4

Using (i)-(iii) and writing E(Z5)? < C < 0o, we obtain that




2

T
A
< 2exp (— AsrCT") Hexp (%E[(Zi)ﬂ)
t=1

=2 exp (CZ)‘Z',T - C/\S,TTH>

Cyz,o1 1.2 C_1_ 1
:26Xp (1—6(T2 2+5) —ZTQ 2+6 T77>

S COTipa

where p > 0 can be chosen arbitrarily large if we pick 5 slightly larger than 1/2 —
1/(2+59). O

Proof of Theorem 4.1

We first prove that
P(?—AL[KO] < q(a)) = (1—a)+o(1). (S.4)

To do so, we derive a stochastic expansion of the individual statistics AEKO].

Lemma S.2. It holds that

where
ol 1 N fE
= :%Z{ﬁ—l}/“

and the remainder REKO] has the property that

]P’( max | R > pfﬁ) = o(1) (S.5)

1<i<n
for some € > 0.

The proof of Lemma S.2 as well as those of the subsequent Lemmas S.3-S.5 are
postponed until the proof of Theorem 4.1 is complete. With the help of Lemma S.2,

we can bound the probability of interest

as follows: Since

K K
max A[KO} S maxi<i<n A£ o] + maxi<i<n |Rz[ 0}|
1<i<n ¢ [ o] Ko]|
7 )

> maxX<ij<p A;  — MaxXi<i<p |R£
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it holds that

where
P =P( max A < g(a) — max |R))
Fy = P( max A < g(a) + max IREKO]I)-
As the remainder REKO] has the property (S.5), we further obtain that
PSS +0(1) < P, < P +0(1), (S.6)
where
Py = P( max A < g(a) - p*)

P> = IP’( max AR < g(a) + p*5>.

1<i<n

With the help of strong approximation theory, we can derive the following result on

the asymptotic behaviour of the probabilities P& and P>,

Lemma S.3. It holds that

Py =(1-a)+o(l)
P> =(1-a)+o(1).

Together with (S.6), this immediately yields that P, = (1—a)+o(1), thus completing
the proof of (S.4).
We next show that for any K < K,

p(ﬁm < q(a)) — o). (S.7)

Consider a fixed K < K and let S € {égﬂ : 1 <k < K} be any cluster with the
following property:

#S > n = min;<x<k, #Gk, and S contains elements from at least two

(S.8)

different classes Gy, and Gi,.

It is not difficult to see that a cluster with the property (S.8) must always exist
under our conditions. By & C {@ECK] : 1 <k < K}, we denote the collection of
clusters that have the property (S.8). With this notation at hand, we can derive the

following stochastic expansion of the individual statistics AEK].
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Lemma S.4. For anyi € S and S € €, it holds that

_ 2 [K]
o 02\/— Z dij + R;
where dij = p;; — (#5)7' Y 1cq ;. and the remainder RZ[-K] has the property that

K] . 1oe)
P(I?g;(l{le%x‘f:f ‘>p £) o(1) (S.9)

for some small £ > 0.

Using (S.9) and the fact that

maxmaXA[ ]>maxmax{ Zd } maxmaX|R[ ]}
Sc¢ icS Sc¢ icS 02\/_ Sc¢ icS

we obtain that

P(ﬁm < q(a)) = P( max AEK} < q(a)>

»n
m
N
M
9

ko2, /p 4 - K Se% ieS
‘7:

p

,{02\/—216%} < q(a )+p%_§> +o0(1). (S.10)

(
(

S]P’(maxmax{ ! Zdz} maxmaX‘R ’<q ))
(

< P max max{
Se¢ ieS

The arguments from the proof of Lemma S.3, in particular (S.22), imply that ¢(a) <
Cy/logn for some fixed constant C' > 0 and sufficiently large n. Moreover, we can

prove the following result.

Lemma S.5. It holds that
T
2
max m el E 2 L >
sgg ieasx { /P = d”} =

for some fixed constant ¢ > 0.

Since ¢(a) < Cy/logn and v/logn/,/p = o(1) by (C3), Lemma S.5 allows us to infer
that

—£) =
P(maemax { de < ato) +p4) = o)
Together with (S.10), this yields that P(HX] < ¢(a)) = o(1). O
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P

=1 €ij along with

Proof of Lemma S.2. Let n, = #G), and write & = p!

fi; =p ' D00, pij. Since

P({GI 1<k < Ko} = {Gri1 Sk < Ko}) > 1

by (3.1), we can ignore the estimation error in the clusters @,LKO] and replace them

by the true classes Gy. For i € G}, we thus get
E[Ko] _ AKO + R[Ko] + R[Ko] RKO] + R%O :

where

j=1
- () e 5 (o)
ko \/ﬁ j=1 Mk i'e€Gy,
1y 1< 1 2
Ry;o] = (?) — Z {gi +— Z (gl’ 51’)}
K;O-Q \/ﬁ 7=1 ' €Gy ’

We now show that max;eg, |R£§°}| = 0,(p~¢) for any k and ¢ = A,..., D. This im-
plies that max;<;<p |R[ 0]| = maxi<k< kK, MaX;eq, |R£§°]| =o,(p¢) fort=A,...,D,
which in turn yields the statement of Lemma S.2. Throughout the proof, we use the
symbol 7 > 0 to denote a sufficiently small constant which results from applying
Lemma S.1.

By assumption, 52 = 02 + O,(p~/2*)) and & = k + O,(p~?) for some § > 0.
Applying Lemma S.1 and choosing £ > 0 such that £ < § — 7, we obtain that

max!RK°]| ‘ L max L i{gfj H
i€Gy - K| i€eGy \/ﬁjzl o?
= |2 = {0, = 0y(r ) = 0,)
and
1 1<
max R < [ (- 22) [ { | 5 20 = o)+ v}



We next show that
[Kol| —  (p~i 11
?61%1(|RZ7C | =0,(p77). (S.11)

To do so, we work with the decomposition Rl c = {2k —1A—2}{Rfé°]1+3£@2 R[KO]

where

R - %3 e

RIE) = 7 ;Eij(n—k >, 51'/3')
[Ko] 1 ¢ 1 =

Ri,C,S = (ﬁ ;5“‘) (n_k ZZ 51‘/)'

With the help of Lemma S.1, we obtain that

R < (max| =3 0a ) = 0,(20) (5.12)
max < —|( max |— giil ] = — ). .
e \/ﬁ i€Gy \/'5]‘:1 J p \/]_9
Moreover,
maX|R£C9]2\ = 0,(n "), (S.13)
since
K
R = — z{ew—o?}wf Ly z
nk\/_ zEG
/7&7/
p < ny and
1 b p"
2 2
L - o} = 0,(%) S.14
Il?(GIECl:I;( nk\/ﬁz{gu g }‘ p Nk ( )

1

max | — = O0,(n, ). (S.15)

Z Z

/#Z

(S.14) is an immediate consequence of Lemma S.1. (S.15) follows upon observing

that for any constant Cyy > 0,

max E E Eiily >
<Z€Gk N EaE 1/4
zGGk
i
SNI(EDY Zwu 1/4)
1€Gy, i'€Gy,
/751



SRR S VL)

i€Gy, 7 EGk k
i i
Co 4
< Z { Z Z E 52]1- -CijaCilg - - '81'21'4}}/{ 1/4}
icGy, il ..... iy €Gy J1,-,Ja=1 T,
Ve iy i
< C
= ~4>
Co

the last inequality resulting from the fact that the mean Ele;j, ...z, - - i,
can only be non-zero if some of the index pairs (i, j,) for £ =1,... ,4 are identical.
Finally, with the help of Lemma S.1, we get that

p
<1 5l ol - oA )
max |R; < |— gy max|— giil = O . S.16
ieGk‘ il N z'esz i€Gl, \/ﬁ; ! P\/mp (5.16)

Combining (S.12), (S.13) and (S.16), we arrive at the statement (S.11) on the re-

mainder R; KO]
We ﬁnally show that
2
max |R[KO]} =0 (p_n) (S.17)
1€Gg D P \/]_)
_ (152 [Ko] -, plKo]
For the proof, we write R ={k HRi o1+ Ripy}, where
1 /1 ¢ 2
i,D,1 — D \/Z_) ; J
1 Gl 2
K, _
REDO]2:—Z{n— Z (51;/3'_51")} .
p 7=1 k i'eGy,
With the help of Lemma S.1, we obtain that
1) p*
O —
max | RS _0,,(\/]3). (S.18)

Moreover, straightforward calculations yield that

Kol | _ o (VP
{Ielgx}RzDQ} Op<nk>. (S5.19)
(S.17) now follows upon combining (S.18) and (S.19). O



Proof of Lemma S.3. We make use of the following three results:

(R1) Let {W;: 1 <i <n} beindependent random variables with a standard normal
distribution and define a,, = 1/y/2logn together with

loglogn + log(4)
b, = /21 — )
een 2y/2Tog 1

Then for any w € R,

lim ]P( max W; < a,w + bn> = exp(— exp(—w)).

n— 00 1<i<n

In particular, for w(a +¢) = —log(—log(l — a £¢)), we get

lim ]P’(maxmganw(ajzs)—i—bn) =1l—azxe.

n—00 1<i<n

The next result is known as Khintchine’s Theorem.

(R2) Let F,, be distribution functions and G' a non-degenerate distribution function.

Moreover, let o, > 0 and (,, € R be such that
F.(anz + 5,) = G(x)

for any continuity point x of G. Then there are constants o/, > 0 and 3/, € R

as well as a non-degenerate distribution function G, such that
F.(alx+ B)) = G.(x)

at any continuity point x of G, if and only if

o tal = a, ﬁ"a_ a — B, and G.(z) = Gz + B.).

The final result exploits strong approximation theory and is a direct consequence of
the so-called KMT Theorems; see Komlés et al. (1975, 1976):

(R3) Write
NS f X, with X, = {i _ 1}/%
i - \/]—) 1] L/ o2
j=1

and let F' denote the distribution function of X,;. It is possible to construct
i.i.d. random variables {X;; : 1 < i < n, 1 < j < p} with the distribution

function F' and independent standard normal random variables {Z;; : 1 <1i <

10



n, 1 < j < p} such that

~ 1 &= 1 <
[Ko] _ E : * § :
Ai e % X2] and Az = % Zl]

Jj=1 Jj=1

have the following property:

0/2

P(!&EKO} — A7 > C’pﬁ7%> < p'TzHs

for some arbitrarily small but fixed § > 0 and some constant C' > 0 that does

not depend on 7, p and n.
We now proceed as follows:

(i) We show that for any w € R,

]P’( max AF < g0+ bn> — exp(—exp(—w)). (S.20)

1<i<n

This in particular implies that

]P’( max AEKO] < wp(a+ 5)) —1—ate, (S.21)
where w,(a + ) = a,w(a + ¢) + b, with a,, b, and w(a £ ) as defined in
(R1). The proof of (S.20) is postponed until the arguments for Lemma S.3 are

complete.

(ii) The statement (S.21) in particular holds in the special case that €;; ~ N(0,0?).

Kol

In this case, ¢(«) is the (1 — a)-quantile of max;<;<, AE . Hence, we have

IP( max AEKO] < wp (o — s)) —1l—a—c¢
1<i<n

IP( max AEKO] < q(a)) =1—-«

1<i<n

IP’( max AEKO] < wy(a —|—5)> —1—a+e,

1<i<n

which implies that
wy(a—¢€) < gla) < w,(a+e¢) (S.22)

for sufficiently large n.
(iii) Since p~¢/a, = p~*v/2logn = o(1) by (C3), we can use (S.20) together with
(R2) to obtain that

IP’( max AR <, (a £ ¢) j:p%) —1—ate. (S.23)

1<i<n

11



Aswp(a—e)—p~¢ < qla)—p~* < qla)+p~* <w,(a+e)+p* for sufficiently
large n, it holds that

P, = IP’( max Al <, (a—¢) —

1<i<n

1<i<n

P
§P§<:]P’<maXA 0]<q p5>

SP{?:P(maXAKO]<q —|—p5

1<i<n

<P -—]P’(maxA[ V< wn(te) +p )

1<i<n

for large n. Moreover, since Py, — 1 —a —¢ and Py, — 1 —a +¢ for
any fixed € > 0 by (S.23), we can conclude that P& = (1 — a) + o(1) and
P> = (1 — )+ o(1), which is the statement of Lemma S.3.

It remains to prove (S.20): Using the notation from (R3) and the shorthand w, =

a,w + b,, we can write

1<i<n 1<i<n

]P( max A Kol < wn) = IP’( max A J < wn> = ﬁm (S.24)

with
T = P(ﬁEK‘ﬂ < wn>.

The probabilities 7; can be decomposed into two parts as follows:
= P(AZ‘ <w, + {A] - ZEKO}D =75+ 77,

where

1

;- &) < opeti))

nf =P(A] <w, o+ {a] - A,
77 =P(A7 < w, + {A7 - A

;- KEKU]‘ > C’pﬁ_%)
With the help of (R3) and the assumption that n < p®%~1 we can show that

ﬁm = ﬁ 7= + Ry, (S.25)
i=1 i=1

where R, is a non-negative remainder term with

R, < i (C‘) <p1,%) — o(1).

=1
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Moreover, the probabilities 7rl-S can be bounded by

-

< P(Af < w, + szfiri)
> P(A;‘ < w, — C’pﬁ*i) _plf%’

<
(N

-

the second line making use of (R3). From this, we obtain that

T )<L
I~ (S.26)
where
11, = ]P’( max A < w, + C'p#é_%>
1<i<n
I = ]P’( max A < w, — C’pﬁ_%)
1<i<n
By combining (S.24)—(S.26), we arrive at the intermediate result that
I, + o(1) SIP(lrga%XA Kol < ) < I, + o(1). (S5.27)

1 1

Since pﬁ_%/an = p2 24/2logn = o(1), we can use (R1) together with (R2) to
show that

II,, — exp(— exp(—w)) and  II, — exp(—exp(—w)). (S.28)
Plugging (S.28) into (S.27) immediately yields that

]P’( max A[ Kol <w ) — exp(—exp(—w)),

1<i<n
which completes the proof. O]
Proof of Lemma S.4. We use the notation ng = #S5 along with g; = p~! f 1 Eigs
i =p ' Y00 pij and d;=p! "_ydij. For any i € S and S € ¢, we can write
N ng + R84+ R+ R+ R — RIS+ RISL 4 RIX)

K3 0_2\/—

where
RIE <L _ Z 2
A Ro?2 /<;<72
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7=1
R[K}_ 1_1 ip 622]_1
WCT\R kK D o2
j=1
g _ Lol 1y 1 =,
w=z(z" ) 75
W_(2\ 1~ g, !
Ri,E - <@> _p Eij{éz‘ + TL_S Z (€Z/J 811)}
J=1 i'es
p
k) _ (1 1 _ 1 2
Hir = <@> _pZ{“n_SZ (ees =) §
Jj=1 i’eS
p
K [ 2 1 _ 1
Ri¢ = <@> _p Z {gij g — - (ellj 51/) }d”
Jj=1 i'eS
We now show that maxgey max;cg |Ry§]| = 0,(pt/?7¢) for £ = A, ..., G. This imme-

diately yields the statement of Lemma S.4. Throughout the proof, n > 0 denotes a
sufficiently small constant that results from applying Lemma S.1.

2 and R, it is straight-

With the help of Lemma S.1 and our assumptions on &
forward to see that maxges max;eg ]Ryﬂ < maxj<i<p |R£§| = 0,(p'/*7¢) for ( =
A, B,C, D with some sufficiently small £ > 0. We next show that

max max |RZ[I;] | =0,(p"). (S.29)

To do so, we write Ryg = {27%*18*2}{]?,;]271 + Rz[fgg - Rz[-’[g73}, where

K] 1 &<

i,E,1 ij<i
\/Z_j j=1

p
K] 1 1 _
= (53 (2 D)

Lemma S.1 yields that maxgey max;eg \Rl[lgl\ < maxj<i<n |R£Igl| = O,(p*/ /D).
Moreover, it holds that

g R | = 007).

14



since

i Jj=1
i #i
and
P P
1 1 1 P
maxmax‘ E {e, —0®}| < = max |— E {e, —0?}| = Op(—)
Se¢ ieS ns\/ﬁ = n 1<i<n \/ﬁjzl n
P
max max E g gijerj| < max LE | = Op(p"),
Seé¢ €S ns 1<i<i’<n D “ 7
J:

z;ﬁz

which follows upon applying Lemma S.1. Finally,

sel} =o(%)

1
o[BI | < - { max

which can again be seen by applying Lemma S.1. Putting everything together, we

arrive at (S.29). Similar arguments show that

rge%;{r?e%x}}z[ ]} = 0,(p") (S.30)

as well.
To analyze the term Rl[fg, we denote the signal vector of the group Gy by my =

(M1g,...,mpy)" and write

Ko
—E Hij = E )\S,kmj,k
k=1

1€S

with Agr = #(S N Gy)/ns. With this notation, we get

K ~—1~— K K K K
Rig ={2"'5*HRG, — Rig, — Rids — Riga+ RlGs).

where

A zp: .
i,G,1 __p 2 Hij€ij
zGQ_Z/\Sk ng,k%
lcg——zsz g

15



zG4:_Z Z/‘lﬁw

zES

1G5:_§ :E , Ask—= E :mﬂfgw

zESk 1

With the help of Lemma S.1, it can be shown that maxgcy max;eg ‘RE%A = O,(p")
for ¢ =1,...,5. For example, it holds that

1 p
< e = Y
e Rl < g |53 noeis| = Or(0")
=
As a result, we obtain that
(K]
max max |RZG O, (p"). (S5.31)
This completes the proof. n

Proof of Lemma S.5. Let S € €. In particular, suppose that S NGy, # 0 and
SN Gy, # 0 for some ky # k. We show the following claim: there exists some i € S
such that

= Z dz] > (S.32)

where ¢ = (1/00/2)? with §y defined in assumption (C2). From this, the statement
of Lemma S.5 immediately follows.
For the proof of (S.32), we denote the Euclidean distance between vectors v =

1/2

(v1,...,v,) " and w = (wy,...,w,)" by d(v,w) = ( "y lvj —w;[*)'/?. Moreover, as

in Lemma S.4, we use the notation

Ko
_§ /flzy E )\S,kmj,kv
k=1

ZGS

where ng = #8S, A\sx = #(S N Gy)/ns and my, = (myg,...,myx)" is the signal
vector of the class G.
Take any ¢ € SN Gy,. If

16



the proof is finished, as (S.32) is satisfied for 7. Next consider the case that

d(mkl,i)\&kmk> < m.

2
k=1

By assumption (C2), it holds that d(my, my) > /oop for k # k. Hence, by the

triangle inequality,
Voop < d(my,, my,)

Ko KO
< d<mk1; Z )\S,kmk> + d( Z As kT, mk2)
k=1 k=1

< @ + d< io: AS T, mk2>7

2
k=1

implying that

d( i As kMg, mk2> > m.

2
k=1
This shows that the claim (S.32) is fulfilled for any i € S N Gj,. O

Proof of Theorem 4.2

By Theorem 4.1,
]P)(I?Q > Ko)
= P(ﬁm > ¢(a) for all K < KO)
= IP’(”;‘/-Z[KO} > q(a)) — P('}'/-[\[KO] > (o), X < g(«) for some K < K0>
= ]P’(?Q[KO} > q(a)) +o(1)

=a+o(1)

and

17



Moreover,

P({Gri1 <k < Ko} #{Gi: 1Sk < Ko})
:P({ék:1gkg1?0}7A{Gk;1gk§f(0},f?0:f(o)

— a+o(1),

since
]P’({@’kzlgkgf(o}yé{(}k:lgkgKO},IA(O:KO>
—P({GI 1<k < Ko} £ (G 1 S k< Ko} Ko = Ko
<P({GI 1<k <Ko} £ {Ghi1 <k < Ko}
= o(1)

by the consistency property (3.1) and

P({@k:1§k§f(0}7é{Gk:1§k§KO},IA(U7£KO)
:]P)([?O %KQ) :Oé—f—O(l) O

Proof of Theorem 4.3

With the help of Lemma S.1, we can show that
A~ - 2 1 u 2
pli,i') =20 + 5 D (15 = 1)~ + 0p(1) (S.33)
j=1
uniformly over ¢ and /. This together with (C2) allows us to prove the following

claim:

With probability tending to 1, the indices 71, . . ., 15 belong to K different
classes in the case that K < K, and to Ky different classes in the case (S.34)
that K > Ko.

Now let K = K,. With the help of (S.33) and (S.34), the starting values Cfl[KO], .
e ,‘KI[(IEO] can be shown to have the property that

P({6/) 1<k <Ko} = {Gri1 <k < Ko}) =1, (S.35)
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Together with Lemma S.1, (S.35) yields that

1 p
1), 2
p(i) =0+ , > (g —mjx)” + 0p(1)
j=1
uniformly over ¢ and k. Combined with (C2), this in turn implies that the k-means
algorithm converges already after the first iteration step with probability tending to

1 and @LKO] are consistent estimators of the classes Gy, in the sense of (3.1). O]

Proof of (3.16)

Suppose that (C1)—(C3) along with (3.15) are satisfied. As already noted in Section
3.4, the k-means estimators {@;;‘ : 1 < k < Kpax} can be shown to satisfy (3.14),
that is,

IP’(@;? C Gy for some 1 < k' < K0> — 1 (S.36)

for any k = 1,..., Kyax. This can be proven by very similar arguments as the
consistency property (3.1). We thus omit the details. Let £ be the event that

@,? C Gy for some 1 < k' < K,

holds for all clusters @? with £ = 1,..., Kmax. E? can be regarded as the event
that the partition {@f : 1 < k < Kpax} is a refinement of the class structure
{G) : 1 <k < Ky}. By (S.36), the event £ occurs with probability tending to 1.

Now consider the estimator

~B ~
Since the random variables Y, are independent of the estimators G, it is not
difficult to verify the following: for any § > 0, there exists a constant Cs > 0 (that
does not depend on {CA;? 1 < k < Kpay}) such that on the event E4,
P |A2 2 Cs AA .

From this, the first statement of (3.16) easily follows. The second statement can be

obtained by similar arguments. O]
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