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In this supplement, we provide the proofs that are omitted in the paper.
In particular, we derive Theorems 4.1–4.3 from Section 4. Throughout the
supplement, we use the symbol C to denote a universal real constant which
may take a different value on each occurrence.

Auxiliary results

In the proofs of Theorems 4.1–4.3, we frequently make use of the following uniform

convergence result.

Lemma S.1. Let Zs = {Zst : 1 ≤ t ≤ T} be sequences of real-valued random

variables for 1 ≤ s ≤ S with the following properties: (i) for each s, the random

variables in Zs are independent of each other, and (ii) E[Zst] = 0 and E[|Zst|φ] ≤
C <∞ for some φ > 2 and C > 0 that depend neither on s nor on t. Suppose that

S = T q with 0 ≤ q < φ/2− 1. Then

P
(

max
1≤s≤S

∣∣∣ 1√
T

T∑
t=1

Zst

∣∣∣ > T η
)

= o(1),

where the constant η > 0 can be chosen as small as desired.

Proof of Lemma S.1. Define τS,T = (ST )1/{(2+δ)(q+1)} with some sufficiently small

δ > 0. In particular, let δ > 0 be so small that (2 + δ)(q + 1) < φ. Moreover, set

Z≤st = Zst1(|Zst| ≤ τS,T )− E
[
Zst1(|Zst| ≤ τS,T )

]
Z>
st = Zst1(|Zst| > τS,T )− E

[
Zst1(|Zst| > τS,T )

]
and write

1√
T

T∑
t=1

Zst =
1√
T

T∑
t=1

Z≤st +
1√
T

T∑
t=1

Z>
st.
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In what follows, we show that

P
(

max
1≤s≤S

∣∣∣ 1√
T

T∑
t=1

Z>
st

∣∣∣ > CT η
)

= o(1) (S.1)

P
(

max
1≤s≤S

∣∣∣ 1√
T

T∑
t=1

Z≤st

∣∣∣ > CT η
)

= o(1) (S.2)

for any fixed constant C > 0. Combining (S.1) and (S.2) immediately yields the

statement of Lemma S.1.

We start with the proof of (S.1): It holds that

P
(

max
1≤s≤S

∣∣∣ 1√
T

T∑
t=1

Z>
st

∣∣∣ > CT η
)
≤ Q>

1 +Q>
2 ,

where

Q>
1 :=

S∑
s=1

P
( 1√

T

T∑
t=1

|Zst|1(|Zst| > τS,T ) >
C

2
T η
)

≤
S∑
s=1

P
(
|Zst| > τS,T for some 1 ≤ t ≤ T

)
≤

S∑
s=1

T∑
t=1

P
(
|Zst| > τS,T

)
≤

S∑
s=1

T∑
t=1

E
[ |Zst|φ
τφS,T

]
≤ CST

τφS,T
= o(1)

and

Q>
2 :=

S∑
s=1

P
( 1√

T

T∑
t=1

E
[
|Zst|1(|Zst| > τS,T )

]
>
C

2
T η
)

= 0

for S and T sufficiently large, since

1√
T

T∑
t=1

E
[
|Zst|1(|Zst| > τS,T )

]
≤ 1√

T

T∑
t=1

E
[ |Zst|φ
τφ−1S,T

1(|Zst| > τS,T )
]

≤ C
√
T

τφ−1S,T

= o(T η).

This yields (S.1).
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We next turn to the proof of (S.2): We apply the crude bound

P
(

max
1≤s≤S

∣∣∣ 1√
T

T∑
t=1

Z≤st

∣∣∣ > CT η
)
≤

S∑
s=1

P
(∣∣∣ 1√

T

T∑
t=1

Z≤st

∣∣∣ > CT η
)

and show that for any 1 ≤ s ≤ S,

P
(∣∣∣ 1√

T

T∑
t=1

Z≤st

∣∣∣ > CT η
)
≤ C0T

−ρ, (S.3)

where C0 is a fixed constant and ρ > 0 can be chosen as large as desired by picking

η slightly larger than 1/2 − 1/(2 + δ). Since S = O(T q), this immediately implies

(S.2). To prove (S.3), we make use of the following facts:

(i) For a random variable Z and λ > 0, Markov’s inequality says that

P
(
± Z > δ

)
≤ E exp(±λZ)

exp(λδ)
.

(ii) Since |Z≤st/
√
T | ≤ 2τS,T/

√
T , it holds that λS,T |Z≤st/

√
T | ≤ 1/2, where we set

λS,T =
√
T/(4τS,T ). As exp(x) ≤ 1 + x+ x2 for |x| ≤ 1/2, this implies that

E
[

exp
(
± λS,T

Z≤st√
T

)]
≤ 1 +

λ2S,T
T

E
[
(Z≤st)

2
]
≤ exp

(λ2S,T
T

E
[
(Z≤st)

2
])
.

(iii) By definition of λS,T , it holds that

λS,T =

√
T

4(ST )
1

(2+δ)(q+1)

=

√
T

4(T q+1)
1

(2+δ)(q+1)

=
T

1
2
− 1

2+δ

4
.

Using (i)–(iii) and writing E(Z≤st)
2 ≤ CZ <∞, we obtain that

P
(∣∣∣ 1√

T

T∑
t=1

Z≤st

∣∣∣ > CT η
)

≤ P
( 1√

T

T∑
t=1

Z≤st > CT η
)

+ P
(
− 1√

T

T∑
t=1

Z≤st > CT η
)

≤ exp
(
− λS,TCT η

){
E
[

exp
(
λS,T

T∑
t=1

Z≤st√
T

)]
+ E

[
exp

(
− λS,T

T∑
t=1

Z≤st√
T

)]}

= exp
(
− λS,TCT η

){ T∏
t=1

E
[

exp
(
λS,T

Z≤st√
T

)]
+

T∏
t=1

E
[

exp
(
− λS,T

Z≤st√
T

)]}
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≤ 2 exp
(
− λS,TCT η

) T∏
t=1

exp
(λ2S,T
T

E
[
(Z≤st)

2
])

= 2 exp
(
CZλ

2
S,T − CλS,TT η

)
= 2 exp

(CZ
16

(
T

1
2
− 1

2+δ

)2 − C

4
T

1
2
− 1

2+δ T η
)

≤ C0T
−ρ,

where ρ > 0 can be chosen arbitrarily large if we pick η slightly larger than 1/2 −
1/(2 + δ).

Proof of Theorem 4.1

We first prove that

P
(
Ĥ[K0] ≤ q(α)

)
= (1− α) + o(1). (S.4)

To do so, we derive a stochastic expansion of the individual statistics ∆̂
[K0]
i .

Lemma S.2. It holds that

∆̂
[K0]
i = ∆

[K0]
i +R

[K0]
i ,

where

∆
[K0]
i =

1
√
p

p∑
j=1

{ε2ij
σ2
− 1
}/
κ

and the remainder R
[K0]
i has the property that

P
(

max
1≤i≤n

∣∣R[K0]
i

∣∣ > p−ξ
)

= o(1) (S.5)

for some ξ > 0.

The proof of Lemma S.2 as well as those of the subsequent Lemmas S.3–S.5 are

postponed until the proof of Theorem 4.1 is complete. With the help of Lemma S.2,

we can bound the probability of interest

Pα := P
(
Ĥ[K0] ≤ q(α)

)
= P

(
max
1≤i≤n

∆̂
[K0]
i ≤ q(α)

)
as follows: Since

max
1≤i≤n

∆̂
[K0]
i

≤ max1≤i≤n ∆
[K0]
i + max1≤i≤n |R[K0]

i |

≥ max1≤i≤n ∆
[K0]
i −max1≤i≤n |R[K0]

i |,
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it holds that

P<
α ≤ Pα ≤ P>

α ,

where

P<
α = P

(
max
1≤i≤n

∆
[K0]
i ≤ q(α)− max

1≤i≤n
|R[K0]

i |
)

P>
α = P

(
max
1≤i≤n

∆
[K0]
i ≤ q(α) + max

1≤i≤n
|R[K0]

i |
)
.

As the remainder R
[K0]
i has the property (S.5), we further obtain that

P�α + o(1) ≤ Pα ≤ P�α + o(1), (S.6)

where

P�α = P
(

max
1≤i≤n

∆
[K0]
i ≤ q(α)− p−ξ

)
P�α = P

(
max
1≤i≤n

∆
[K0]
i ≤ q(α) + p−ξ

)
.

With the help of strong approximation theory, we can derive the following result on

the asymptotic behaviour of the probabilities P�α and P�α .

Lemma S.3. It holds that

P�α = (1− α) + o(1)

P�α = (1− α) + o(1).

Together with (S.6), this immediately yields that Pα = (1−α)+o(1), thus completing

the proof of (S.4).

We next show that for any K < K0,

P
(
Ĥ[K] ≤ q(α)

)
= o(1). (S.7)

Consider a fixed K < K0 and let S ∈ {Ĝ[K]
k : 1 ≤ k ≤ K} be any cluster with the

following property:

#S ≥ n := min1≤k≤K0 #Gk, and S contains elements from at least two

different classes Gk1 and Gk2 .
(S.8)

It is not difficult to see that a cluster with the property (S.8) must always exist

under our conditions. By C ⊆ {Ĝ[K]
k : 1 ≤ k ≤ K}, we denote the collection of

clusters that have the property (S.8). With this notation at hand, we can derive the

following stochastic expansion of the individual statistics ∆̂
[K]
i .
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Lemma S.4. For any i ∈ S and S ∈ C , it holds that

∆̂
[K]
i =

1

κσ2
√
p

p∑
j=1

d2ij +R
[K]
i ,

where dij = µij − (#S)−1
∑

i′∈S µi′j and the remainder R
[K]
i has the property that

P
(

max
S∈C

max
i∈S

∣∣R[K]
i

∣∣ > p
1
2
−ξ
)

= o(1) (S.9)

for some small ξ > 0.

Using (S.9) and the fact that

max
S∈C

max
i∈S

∆̂
[K]
i ≥ max

S∈C
max
i∈S

{ 1

κσ2
√
p

p∑
j=1

d2ij

}
−max

S∈C
max
i∈S

∣∣R[K]
i

∣∣,
we obtain that

P
(
Ĥ[K] ≤ q(α)

)
= P

(
max
1≤i≤n

∆̂
[K]
i ≤ q(α)

)
≤ P

(
max
S∈C

max
i∈S

∆̂
[K]
i ≤ q(α)

)
≤ P

(
max
S∈C

max
i∈S

{ 1

κσ2
√
p

p∑
j=1

d2ij

}
−max

S∈C
max
i∈S

∣∣R[K]
i

∣∣ ≤ q(α)
)

≤ P
(

max
S∈C

max
i∈S

{ 1

κσ2
√
p

p∑
j=1

d2ij

}
≤ q(α) + p

1
2
−ξ
)

+ o(1). (S.10)

The arguments from the proof of Lemma S.3, in particular (S.22), imply that q(α) ≤
C
√

log n for some fixed constant C > 0 and sufficiently large n. Moreover, we can

prove the following result.

Lemma S.5. It holds that

max
S∈C

max
i∈S

{ 1
√
p

p∑
j=1

d2ij

}
≥ c
√
p

for some fixed constant c > 0.

Since q(α) ≤ C
√

log n and
√

log n/
√
p = o(1) by (C3), Lemma S.5 allows us to infer

that

P
(

max
S∈C

max
i∈S

{ 1

κσ2
√
p

p∑
j=1

d2ij

}
≤ q(α) + p

1
2
−ξ
)

= o(1).

Together with (S.10), this yields that P(Ĥ[K] ≤ q(α)) = o(1).
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Proof of Lemma S.2. Let nk = #Gk and write εi = p−1
∑p

j=1 εij along with

µi = p−1
∑p

j=1 µij. Since

P
({
Ĝ

[K0]
k : 1 ≤ k ≤ K0

}
=
{
Gk : 1 ≤ k ≤ K0

})
→ 1

by (3.1), we can ignore the estimation error in the clusters Ĝ
[K0]
k and replace them

by the true classes Gk. For i ∈ Gk, we thus get

∆̂
[K0]
i = ∆

[K0]
i +R

[K0]
i,A +R

[K0]
i,B −R

[K0]
i,C +R

[K0]
i,D ,

where

R
[K0]
i,A =

(1

κ̂
− 1

κ

) 1
√
p

p∑
j=1

{ε2ij
σ2
− 1
}

R
[K0]
i,B =

1

κ̂

( 1

σ̂2
− 1

σ2

) 1
√
p

p∑
j=1

ε2ij

R
[K0]
i,C =

( 2

κ̂σ̂2

) 1
√
p

p∑
j=1

εij

{
εi +

1

nk

∑
i′∈Gk

(
εi′j − εi′

)}
R

[K0]
i,D =

( 1

κ̂σ̂2

) 1
√
p

p∑
j=1

{
εi +

1

nk

∑
i′∈Gk

(
εi′j − εi′

)}2

.

We now show that maxi∈Gk |R
[K0]
i,` | = op(p

−ξ) for any k and ` = A, . . . , D. This im-

plies that max1≤i≤n |R[K0]
i,` | = max1≤k≤K0 maxi∈Gk |R

[K0]
i,` | = op(p

−ξ) for ` = A, . . . , D,

which in turn yields the statement of Lemma S.2. Throughout the proof, we use the

symbol η > 0 to denote a sufficiently small constant which results from applying

Lemma S.1.

By assumption, σ̂2 = σ2 + Op(p
−(1/2+δ)) and κ̂ = κ + Op(p

−δ) for some δ > 0.

Applying Lemma S.1 and choosing ξ > 0 such that ξ < δ − η, we obtain that

max
i∈Gk

∣∣R[K0]
i,A

∣∣ ≤ ∣∣∣1
κ̂
− 1

κ

∣∣∣ max
i∈Gk

∣∣∣ 1
√
p

p∑
j=1

{ε2ij
σ2
− 1
}∣∣∣

=
∣∣∣1
κ̂
− 1

κ

∣∣∣Op(p
η) = Op(p

−(δ−η)) = op(p
−ξ)

and

max
i∈Gk

∣∣R[K0]
i,B

∣∣ ≤ ∣∣∣1
κ̂

( 1

σ̂2
− 1

σ2

)∣∣∣ {max
i∈Gk

∣∣∣ 1
√
p

p∑
j=1

(
ε2ij − σ2

)∣∣∣+ σ2√p
}

=
∣∣∣1
κ̂

( 1

σ̂2
− 1

σ2

)∣∣∣{Op(p
η) + σ2√p

}
= op(p

−ξ).
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We next show that

max
i∈Gk

∣∣R[K0]
i,C

∣∣ = op
(
p−

1
4

)
. (S.11)

To do so, we work with the decomposition R
[K0]
i,C = {2κ̂−1σ̂−2}{R[K0]

i,C,1+R
[K0]
i,C,2−R

[K0]
i,C,3},

where

R
[K0]
i,C,1 =

1
√
p

p∑
j=1

εijεi

R
[K0]
i,C,2 =

1
√
p

p∑
j=1

εij

( 1

nk

∑
i′∈Gk

εi′j

)
R

[K0]
i,C,3 =

( 1
√
p

p∑
j=1

εij

)( 1

nk

∑
i′∈Gk

εi′
)
.

With the help of Lemma S.1, we obtain that

max
i∈Gk

∣∣R[K0]
i,C,1

∣∣ ≤ 1
√
p

(
max
i∈Gk

∣∣∣ 1
√
p

p∑
j=1

εij

∣∣∣)2 = Op

(p2η
√
p

)
. (S.12)

Moreover,

max
i∈Gk

∣∣R[K0]
i,C,2

∣∣ = Op

(
n
− 1

4
k

)
, (S.13)

since

R
[K0]
i,C,2 =

1

nk
√
p

p∑
j=1

{
ε2ij − σ2

}
+ σ2

√
p

nk
+

1

nk

∑
i′∈Gk
i′ 6=i

1
√
p

p∑
j=1

εijεi′j,

p� nk and

max
i∈Gk

∣∣∣ 1

nk
√
p

p∑
j=1

{
ε2ij − σ2

}∣∣∣ = Op

( pη
nk

)
(S.14)

max
i∈Gk

∣∣∣ 1

nk

∑
i′∈Gk
i′ 6=i

1
√
p

p∑
j=1

εijεi′j

∣∣∣ = Op

(
n
− 1

4
k

)
. (S.15)

(S.14) is an immediate consequence of Lemma S.1. (S.15) follows upon observing

that for any constant C0 > 0,

P
(

max
i∈Gk

∣∣∣ 1

nk

∑
i′∈Gk
i′ 6=i

1
√
p

p∑
j=1

εijεi′j

∣∣∣ > C0

n
1/4
k

)

≤
∑
i∈Gk

P
(∣∣∣ 1

nk

∑
i′∈Gk
i′ 6=i

1
√
p

p∑
j=1

εijεi′j

∣∣∣ > C0

n
1/4
k

)
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≤
∑
i∈Gk

E
{ 1

nk

∑
i′∈Gk
i′ 6=i

1
√
p

p∑
j=1

εijεi′j

}4/{ C0

n
1/4
k

}4

≤
∑
i∈Gk

{ 1

n4
kp

2

∑
i′1,...,i

′
4∈Gk

i′1,...,i
′
4 6=i

p∑
j1,...,j4=1

E
[
εi j1 . . . εi j4εi′1j1 . . . εi′4j4

]}/{ C0

n
1/4
k

}4

≤ C

C4
0

,

the last inequality resulting from the fact that the mean E[εi j1 . . . εi j4εi′1j1 . . . εi′4j4 ]

can only be non-zero if some of the index pairs (i′`, j`) for ` = 1, . . . , 4 are identical.

Finally, with the help of Lemma S.1, we get that

max
i∈Gk

∣∣R[K0]
i,C,3

∣∣ ≤ ∣∣∣ 1

nk

∑
i′∈Gk

εi′
∣∣∣ max
i∈Gk

∣∣∣ 1
√
p

p∑
j=1

εij

∣∣∣ = Op

( pη
√
nkp

)
. (S.16)

Combining (S.12), (S.13) and (S.16), we arrive at the statement (S.11) on the re-

mainder R
[K0]
i,C .

We finally show that

max
i∈Gk

∣∣R[K0]
i,D

∣∣ = Op

(p2η
√
p

)
. (S.17)

For the proof, we write R
[K0]
i,D = {κ̂−1σ̂−2}{R[K0]

i,D,1 +R
[K0]
i,D,2}, where

R
[K0]
i,D,1 =

1
√
p

( 1
√
p

p∑
j=1

εij

)2
R

[K0]
i,D,2 =

1
√
p

p∑
j=1

{ 1

nk

∑
i′∈Gk

(
εi′j − εi′

)}2

.

With the help of Lemma S.1, we obtain that

max
i∈Gk

∣∣R[K0]
i,D,1

∣∣ = Op

(p2η
√
p

)
. (S.18)

Moreover, straightforward calculations yield that

max
i∈Gk

∣∣R[K0]
i,D,2

∣∣ = Op

(√p
nk

)
. (S.19)

(S.17) now follows upon combining (S.18) and (S.19).
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Proof of Lemma S.3. We make use of the following three results:

(R1) Let {Wi : 1 ≤ i ≤ n} be independent random variables with a standard normal

distribution and define an = 1/
√

2 log n together with

bn =
√

2 log n− log log n+ log(4π)

2
√

2 log n
.

Then for any w ∈ R,

lim
n→∞

P
(

max
1≤i≤n

Wi ≤ anw + bn

)
= exp(− exp(−w)).

In particular, for w(α± ε) = − log(− log(1− α± ε)), we get

lim
n→∞

P
(

max
1≤i≤n

Wi ≤ anw(α± ε) + bn

)
= 1− α± ε.

The next result is known as Khintchine’s Theorem.

(R2) Let Fn be distribution functions and G a non-degenerate distribution function.

Moreover, let αn > 0 and βn ∈ R be such that

Fn(αnx+ βn)→ G(x)

for any continuity point x of G. Then there are constants α′n > 0 and β′n ∈ R
as well as a non-degenerate distribution function G∗ such that

Fn(α′nx+ β′n)→ G∗(x)

at any continuity point x of G∗ if and only if

α−1n α′n → α∗,
β′n − βn
αn

→ β∗ and G∗(x) = G(α∗x+ β∗).

The final result exploits strong approximation theory and is a direct consequence of

the so-called KMT Theorems; see Komlós et al. (1975, 1976):

(R3) Write

∆
[K0]
i =

1
√
p

p∑
j=1

Xij with Xij =
{ε2ij
σ2
− 1
}/

κ

and let F denote the distribution function of Xij. It is possible to construct

i.i.d. random variables {X̃ij : 1 ≤ i ≤ n, 1 ≤ j ≤ p} with the distribution

function F and independent standard normal random variables {Zij : 1 ≤ i ≤
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n, 1 ≤ j ≤ p} such that

∆̃
[K0]
i =

1
√
p

p∑
j=1

X̃ij and ∆∗i =
1
√
p

p∑
j=1

Zij

have the following property:

P
(∣∣∆̃[K0]

i −∆∗i
∣∣ > Cp

1
2+δ
− 1

2

)
≤ p1−

θ/2
2+δ

for some arbitrarily small but fixed δ > 0 and some constant C > 0 that does

not depend on i, p and n.

We now proceed as follows:

(i) We show that for any w ∈ R,

P
(

max
1≤i≤n

∆
[K0]
i ≤ anw + bn

)
→ exp(− exp(−w)). (S.20)

This in particular implies that

P
(

max
1≤i≤n

∆
[K0]
i ≤ wn(α± ε)

)
→ 1− α± ε, (S.21)

where wn(α ± ε) = anw(α ± ε) + bn with an, bn and w(α ± ε) as defined in

(R1). The proof of (S.20) is postponed until the arguments for Lemma S.3 are

complete.

(ii) The statement (S.21) in particular holds in the special case that εij ∼ N(0, σ2).

In this case, q(α) is the (1− α)-quantile of max1≤i≤n ∆
[K0]
i . Hence, we have

P
(

max
1≤i≤n

∆
[K0]
i ≤ wn(α− ε)

)
→ 1− α− ε

P
(

max
1≤i≤n

∆
[K0]
i ≤ q(α)

)
= 1− α

P
(

max
1≤i≤n

∆
[K0]
i ≤ wn(α + ε)

)
→ 1− α + ε,

which implies that

wn(α− ε) ≤ q(α) ≤ wn(α + ε) (S.22)

for sufficiently large n.

(iii) Since p−ξ/an = p−ξ
√

2 log n = o(1) by (C3), we can use (S.20) together with

(R2) to obtain that

P
(

max
1≤i≤n

∆
[K0]
i ≤ wn(α± ε)± p−ξ

)
→ 1− α± ε. (S.23)
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As wn(α− ε)−p−ξ ≤ q(α)−p−ξ ≤ q(α) +p−ξ ≤ wn(α+ ε) +p−ξ for sufficiently

large n, it holds that

P�α,ε := P
(

max
1≤i≤n

∆
[K0]
i ≤ wn(α− ε)− p−ξ

)
≤ P�α = P

(
max
1≤i≤n

∆
[K0]
i ≤ q(α)− p−ξ

)
≤ P�α = P

(
max
1≤i≤n

∆
[K0]
i ≤ q(α) + p−ξ

)
≤ P�α,ε := P

(
max
1≤i≤n

∆
[K0]
i ≤ wn(α + ε) + p−ξ

)
for large n. Moreover, since P�α,ε → 1 − α − ε and P�α,ε → 1 − α + ε for

any fixed ε > 0 by (S.23), we can conclude that P�α = (1 − α) + o(1) and

P�α = (1− α) + o(1), which is the statement of Lemma S.3.

It remains to prove (S.20): Using the notation from (R3) and the shorthand wn =

anw + bn, we can write

P
(

max
1≤i≤n

∆
[K0]
i ≤ wn

)
= P

(
max
1≤i≤n

∆̃
[K0]
i ≤ wn

)
=

n∏
i=1

πi (S.24)

with

πi = P
(

∆̃
[K0]
i ≤ wn

)
.

The probabilities πi can be decomposed into two parts as follows:

πi = P
(

∆∗i ≤ wn +
{

∆∗i − ∆̃
[K0]
i

})
= π≤i + π>i ,

where

π≤i = P
(

∆∗i ≤ wn +
{

∆∗i − ∆̃
[K0]
i

}
,
∣∣∆∗i − ∆̃

[K0]
i

∣∣ ≤ Cp
1

2+δ
− 1

2

)
π>i = P

(
∆∗i ≤ wn +

{
∆∗i − ∆̃

[K0]
i

}
,
∣∣∆∗i − ∆̃

[K0]
i

∣∣ > Cp
1

2+δ
− 1

2

)
.

With the help of (R3) and the assumption that n� p(θ/4)−1, we can show that

n∏
i=1

πi =
n∏
i=1

π≤i +Rn, (S.25)

where Rn is a non-negative remainder term with

Rn ≤
n∑
i=1

(
n

i

)(
p1−

θ/2
2+δ

)i
= o(1).

12



Moreover, the probabilities π≤i can be bounded by

π≤i

≤ P
(

∆∗i ≤ wn + Cp
1

2+δ
− 1

2

)
≥ P

(
∆∗i ≤ wn − Cp

1
2+δ
− 1

2

)
− p1−

θ/2
2+δ ,

the second line making use of (R3). From this, we obtain that

n∏
i=1

π≤i

≤ Πn

≥ Πn + o(1),
(S.26)

where

Πn = P
(

max
1≤i≤n

∆∗i ≤ wn + Cp
1

2+δ
− 1

2

)
Πn = P

(
max
1≤i≤n

∆∗i ≤ wn − Cp
1

2+δ
− 1

2

)
.

By combining (S.24)–(S.26), we arrive at the intermediate result that

Πn + o(1) ≤ P
(

max
1≤i≤n

∆
[K0]
i ≤ wn

)
≤ Πn + o(1). (S.27)

Since p
1

2+δ
− 1

2/an = p
1

2+δ
− 1

2
√

2 log n = o(1), we can use (R1) together with (R2) to

show that

Πn → exp(− exp(−w)) and Πn → exp(− exp(−w)). (S.28)

Plugging (S.28) into (S.27) immediately yields that

P
(

max
1≤i≤n

∆
[K0]
i ≤ wn

)
→ exp(− exp(−w)),

which completes the proof.

Proof of Lemma S.4. We use the notation nS = #S along with εi = p−1
∑p

j=1 εij,

µi = p−1
∑p

j=1 µij and di = p−1
∑p

j=1 dij. For any i ∈ S and S ∈ C , we can write

∆̂
[K]
i =

1

κσ2
√
p

p∑
j=1

d2ij +R
[K]
i,A +R

[K]
i,B +R

[K]
i,C +R

[K]
i,D −R

[K]
i,E +R

[K]
i,F +R

[K]
i,G ,

where

R
[K]
i,A =

( 1

κ̂σ̂2
− 1

κσ2

) 1
√
p

p∑
j=1

d2ij

13



R
[K]
i,B =

1
√
p

p∑
j=1

{ε2ij
σ2
− 1
}/

κ

R
[K]
i,C =

(1

κ̂
− 1

κ

) 1
√
p

p∑
j=1

{ε2ij
σ2
− 1
}

R
[K]
i,D =

1

κ̂

( 1

σ̂2
− 1

σ2

) 1
√
p

p∑
j=1

ε2ij

R
[K]
i,E =

( 2

κ̂σ̂2

) 1
√
p

p∑
j=1

εij

{
εi +

1

nS

∑
i′∈S

(
εi′j − εi′

)}
R

[K]
i,F =

( 1

κ̂σ̂2

) 1
√
p

p∑
j=1

{
εi +

1

nS

∑
i′∈S

(
εi′j − εi′

)}2

R
[K]
i,G =

( 2

κ̂σ̂2

) 1
√
p

p∑
j=1

{
εij − εi −

1

nS

∑
i′∈S

(
εi′j − εi′

)}
dij.

We now show that maxS∈C maxi∈S |R[K]
i,` | = op(p

1/2−ξ) for ` = A, . . . , G. This imme-

diately yields the statement of Lemma S.4. Throughout the proof, η > 0 denotes a

sufficiently small constant that results from applying Lemma S.1.

With the help of Lemma S.1 and our assumptions on σ̂2 and κ̂, it is straight-

forward to see that maxS∈C maxi∈S |R[K]
i,` | ≤ max1≤i≤n |R[K]

i,` | = op(p
1/2−ξ) for ` =

A,B,C,D with some sufficiently small ξ > 0. We next show that

max
S∈C

max
i∈S

∣∣R[K]
i,E

∣∣ = Op

(
pη
)
. (S.29)

To do so, we write R
[K]
i,E = {2κ̂−1σ̂−2}{R[K]

i,E,1 +R
[K]
i,E,2 −R

[K]
i,E,3}, where

R
[K]
i,E,1 =

1
√
p

p∑
j=1

εijεi

R
[K]
i,E,2 =

1
√
p

p∑
j=1

εij

( 1

nS

∑
i′∈S

εi′j

)
R

[K]
i,E,3 =

( 1
√
p

p∑
j=1

εij

)( 1

nS

∑
i′∈S

εi′
)
.

Lemma S.1 yields that maxS∈C maxi∈S |R[K]
i,E,1| ≤ max1≤i≤n |R[K]

i,E,1| = Op(p
2η/
√
p).

Moreover, it holds that

max
S∈C

max
i∈S

∣∣R[K]
i,E,2

∣∣ = Op

(
pη
)
,
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since

R
[K]
i,E,2 =

1

nS
√
p

p∑
j=1

{
ε2ij − σ2

}
+ σ2

√
p

nS
+

1

nS

∑
i′∈S
i′ 6=i

1
√
p

p∑
j=1

εijεi′j

and

max
S∈C

max
i∈S

∣∣∣ 1

nS
√
p

p∑
j=1

{
ε2ij − σ2

}∣∣∣ ≤ 1

n
max
1≤i≤n

∣∣∣ 1
√
p

p∑
j=1

{
ε2ij − σ2

}∣∣∣ = Op

(pη
n

)
max
S∈C

max
i∈S

∣∣∣ 1

nS

∑
i′∈S
i′ 6=i

1
√
p

p∑
j=1

εijεi′j

∣∣∣ ≤ max
1≤i<i′≤n

∣∣∣ 1
√
p

p∑
j=1

εijεi′j

∣∣∣ = Op

(
pη
)
,

which follows upon applying Lemma S.1. Finally,

max
S∈C

max
i∈S

∣∣R[K]
i,E,3

∣∣ ≤ 1
√
p

{
max
1≤i≤n

∣∣∣ 1
√
p

p∑
j=1

εij

∣∣∣}2

= Op

(p2η
√
p

)
,

which can again be seen by applying Lemma S.1. Putting everything together, we

arrive at (S.29). Similar arguments show that

max
S∈C

max
i∈S

∣∣R[K]
i,F

∣∣ = Op

(
pη
)

(S.30)

as well.

To analyze the term R
[K]
i,G , we denote the signal vector of the group Gk by mk =

(m1,k, . . . ,mp,k)
> and write

1

nS

∑
i∈S

µij =

K0∑
k=1

λS,kmj,k

with λS,k = #(S ∩Gk)/nS. With this notation, we get

R
[K]
i,G = {2κ̂−1σ̂−2}{R[K]

i,G,1 −R
[K]
i,G,2 −R

[K]
i,G,3 −R

[K]
i,G,4 +R

[K]
i,G,5},

where

R
[K]
i,G,1 =

1
√
p

p∑
j=1

µijεij

R
[K]
i,G,2 =

K0∑
k=1

λS,k
1
√
p

p∑
j=1

mj,kεij

R
[K]
i,G,3 =

1
√
p

p∑
j=1

εidij
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R
[K]
i,G,4 =

1

nS

∑
i′∈S

1
√
p

p∑
j=1

µijεi′j

R
[K]
i,G,5 =

1

nS

∑
i′∈S

K0∑
k=1

λS,k
1
√
p

p∑
j=1

mj,kεi′j.

With the help of Lemma S.1, it can be shown that maxS∈C maxi∈S
∣∣R[K]

i,G,`

∣∣ = Op(p
η)

for ` = 1, . . . , 5. For example, it holds that

max
S∈C

max
i∈S

∣∣R[K]
i,G,4

∣∣ ≤ max
1≤i<i′≤n

∣∣∣ 1
√
p

p∑
j=1

µijεi′j

∣∣∣ = Op(p
η).

As a result, we obtain that

max
S∈C

max
i∈S

∣∣R[K]
i,G

∣∣ = Op

(
pη
)
. (S.31)

This completes the proof.

Proof of Lemma S.5. Let S ∈ C . In particular, suppose that S ∩ Gk1 6= ∅ and

S ∩Gk2 6= ∅ for some k1 6= k2. We show the following claim: there exists some i ∈ S
such that

1
√
p

p∑
j=1

d2ij ≥ c
√
p, (S.32)

where c = (
√
δ0/2)2 with δ0 defined in assumption (C2). From this, the statement

of Lemma S.5 immediately follows.

For the proof of (S.32), we denote the Euclidean distance between vectors v =

(v1, . . . , vp)
> and w = (w1, . . . , wp)

> by d(v, w) = (
∑p

j=1 |vj −wj|2)1/2. Moreover, as

in Lemma S.4, we use the notation

1

nS

∑
i∈S

µij =

K0∑
k=1

λS,kmj,k,

where nS = #S, λS,k = #(S ∩ Gk)/nS and mk = (m1,k, . . . ,mp,k)
> is the signal

vector of the class Gk.

Take any i ∈ S ∩Gk1 . If

d
(
µi,

K0∑
k=1

λS,kmk

)
= d
(
mk1 ,

K0∑
k=1

λS,kmk

)
≥
√
δ0p

2
,
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the proof is finished, as (S.32) is satisfied for i. Next consider the case that

d
(
mk1 ,

K0∑
k=1

λS,kmk

)
<

√
δ0p

2
.

By assumption (C2), it holds that d(mk,mk′) ≥
√
δ0p for k 6= k′. Hence, by the

triangle inequality,√
δ0p ≤ d

(
mk1 ,mk2

)
≤ d
(
mk1 ,

K0∑
k=1

λS,kmk

)
+ d
( K0∑
k=1

λS,kmk,mk2

)
<

√
δ0p

2
+ d
( K0∑
k=1

λS,kmk,mk2

)
,

implying that

d
( K0∑
k=1

λS,kmk,mk2

)
>

√
δ0p

2
.

This shows that the claim (S.32) is fulfilled for any i′ ∈ S ∩Gk2 .

Proof of Theorem 4.2

By Theorem 4.1,

P
(
K̂0 > K0

)
= P

(
Ĥ[K] > q(α) for all K ≤ K0

)
= P

(
Ĥ[K0] > q(α)

)
− P

(
Ĥ[K0] > q(α), Ĥ[K] ≤ q(α) for some K < K0

)
= P

(
Ĥ[K0] > q(α)

)
+ o(1)

= α + o(1)

and

P
(
K̂0 < K0

)
= P

(
Ĥ[K] ≤ q(α) for some K < K0

)
≤

K0−1∑
K=1

P
(
Ĥ[K] ≤ q(α)

)
= o(1).
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Moreover,

P
({
Ĝk : 1 ≤ k ≤ K̂0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= P

({
Ĝk : 1 ≤ k ≤ K̂0

}
6=
{
Gk : 1 ≤ k ≤ K0

}
, K̂0 = K0

)
+ P

({
Ĝk : 1 ≤ k ≤ K̂0

}
6=
{
Gk : 1 ≤ k ≤ K0

}
, K̂0 6= K0

)
= α + o(1),

since

P
({
Ĝk : 1 ≤ k ≤ K̂0

}
6=
{
Gk : 1 ≤ k ≤ K0

}
, K̂0 = K0

)
= P

({
Ĝ

[K0]
k : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

}
, K̂0 = K0

)
≤ P

({
Ĝ

[K0]
k : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= o(1)

by the consistency property (3.1) and

P
({
Ĝk : 1 ≤ k ≤ K̂0

}
6=
{
Gk : 1 ≤ k ≤ K0

}
, K̂0 6= K0

)
= P

(
K̂0 6= K0

)
= α + o(1).

Proof of Theorem 4.3

With the help of Lemma S.1, we can show that

ρ̂(i, i′) = 2σ2 +
1

p

p∑
j=1

(
µij − µi′j

)2
+ op(1) (S.33)

uniformly over i and i′. This together with (C2) allows us to prove the following

claim:

With probability tending to 1, the indices i1, . . . , iK belong to K different

classes in the case that K ≤ K0 and to K0 different classes in the case

that K > K0.

(S.34)

Now let K = K0. With the help of (S.33) and (S.34), the starting values C [K0]
1 , . . .

. . . ,C [K0]
K0

can be shown to have the property that

P
({

C [K0]
k : 1 ≤ k ≤ K0

}
=
{
Gk : 1 ≤ k ≤ K0

})
→ 1. (S.35)
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Together with Lemma S.1, (S.35) yields that

ρ̂
(1)
k (i) = σ2 +

1

p

p∑
j=1

(
µij −mj,k

)2
+ op(1)

uniformly over i and k. Combined with (C2), this in turn implies that the k-means

algorithm converges already after the first iteration step with probability tending to

1 and Ĝ
[K0]
k are consistent estimators of the classes Gk in the sense of (3.1).

Proof of (3.16)

Suppose that (C1)–(C3) along with (3.15) are satisfied. As already noted in Section

3.4, the k-means estimators {ĜA
k : 1 ≤ k ≤ Kmax} can be shown to satisfy (3.14),

that is,

P
(
ĜA
k ⊆ Gk′ for some 1 ≤ k′ ≤ K0

)
→ 1 (S.36)

for any k = 1, . . . , Kmax. This can be proven by very similar arguments as the

consistency property (3.1). We thus omit the details. Let EA be the event that

ĜA
k ⊆ Gk′ for some 1 ≤ k′ ≤ K0

holds for all clusters ĜA
k with k = 1, . . . , Kmax. EA can be regarded as the event

that the partition {ĜA
k : 1 ≤ k ≤ Kmax} is a refinement of the class structure

{Gk : 1 ≤ k ≤ K0}. By (S.36), the event EA occurs with probability tending to 1.

Now consider the estimator

σ̂2
RSS =

1

nbp/2c

Kmax∑
k=1

∑
i∈ĜAk

∥∥∥Ŷ B

i −
1

#ĜA
k

∑
i′∈ĜAk

Ŷ
B

i′

∥∥∥2.
Since the random variables Ŷ

B

i are independent of the estimators ĜA
k , it is not

difficult to verify the following: for any δ > 0, there exists a constant Cδ > 0 (that

does not depend on {ĜA
k : 1 ≤ k ≤ Kmax}) such that on the event EA,

P
(∣∣σ̂2

RSS − σ2
∣∣ ≥ Cδ

p

∣∣∣ {ĜA
k : 1 ≤ k ≤ Kmax

})
≤ δ.

From this, the first statement of (3.16) easily follows. The second statement can be

obtained by similar arguments.
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