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The COVID-19 pandemic is one of the most pressing issues at present. A
question which is particularly important for governments and policy makers
is the following: Does the virus spread in the same way in different countries?
Or are there significant differences in the development of the epidemic? In
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1 Introduction

There are many questions surrounding the current COVID-19 pandemic that are not

well understood yet. A question which is particularly important for governments

and policy makers is the following: How do the outbreak patterns of COVID-19

compare across countries? Are the time trends of daily new infections more or less

the same across countries, or is the virus spreading differently in different regions of

the world? Identifying differences between countries may help, for instance, to better

understand which government policies have been more effective in containing the

virus than others. The main aim of this paper is to develop new inference methods

that allow to detect differences between time trends of COVID-19 infections in a

statistically rigorous way.

Let Xit be the number of new infections on day t in country i and suppose we

observe a sample of data Xi = {Xit : 1 ≤ 1 ≤ T} for n different countries i. In order

to make the data comparable across countries, we take the starting date t = 1 to be

the day of the 100th confirmed case in each country. This way of “normalizing” the

data is common practice (cp. e.g. Cohen and Kupferschmidt, 2020). A simple way
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to model the count data Xit is to use a Poisson distribution. Specifically, we may as-

sume that the random variables Xit are Poisson distributed with time-varying inten-

sity parameter λi(t/T ), that is, Xit ∼ Pλi(t/T ). Since λi(t/T ) = E[Xit] = Var(Xit),

we can model the observations Xit by the nonparametric regression equation

Xit = λi

( t
T

)
+ uit (1.1)

for 1 ≤ t ≤ T , where uit = Xit − E[Xit] with E[uit] = 0 and Var(uit) = λi(t/T ).

As usual in nonparametric regression (cp. Robinson, 1989), we let the regression

function λi in model (1.1) depend on rescaled time t/T rather than on real time

t. Hence, λi : [0, 1] → R can be regarded as a function on the unit interval, which

allows us to estimate it by standard techniques from nonparametric regression. Since

λi is a function of rescaled time t/T , the variables Xit in model (1.1) depend on the

time series length T in general, that is, Xit = Xit,T . To keep the notation simple, we

however suppress this dependence throughout the paper. In Section 2, we introduce

the model setting in detail which underlies our analysis. As we will see there, it is

a generalized version of the Poisson model (1.1).

In model (1.1), the time trend of new COVID-19 infections in country i is de-

scribed by the intensity function λi of the underlying Poisson distribution. Hence,

the question whether the time trends are comparable across countries amounts

to the question whether the intensity functions λi have the same shape across

countries i. In this paper, we construct a multiscale test which allows to iden-

tify and locate the differences between the functions λi. More specifically, let

F = {Ik ⊆ [0, 1] : 1 ≤ k ≤ K} be a family of (rescaled) time intervals Ik and

let H
(ijk)
0 be the hypothesis that the functions λi and λj are the same on the interval

Ik, that is,

H
(ijk)
0 : λi(w) = λj(w) for all w ∈ Ik.

We design a method to test the hypothesis H
(ijk)
0 simultaneously for all pairs of

countries i and j under consideration and for all intervals Ik in the family F . The

main theoretical result of the paper shows that the method controls the familywise

error rate, that is, the probability of wrongly rejecting at least one null hypothesis

H
(ijk)
0 . As we will see, this allows us to make simultaneous confidence statements of

the following form for a given significance level α ∈ (0, 1):

With probability at least 1 − α, the functions λi and λj differ on the

interval Ik for every (i, j, k) for which the test rejects H
(ijk)
0 .

Hence, the method allows us to make simultaneous confidence statements (a) about

which time trend functions differ from each other and (b) about where, that is, in

which time intervals Ik they differ.
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Even though our multiscale test is motivated by the current COVID-19 crisis, its

applicability is by no means restricted to this specific event. It is a general method to

compare nonparametric trends in epidemiological (count) data. It thus contributes

to the literature on statistical tests for equality of nonparametric regression and

trend curves. Examples of such tests can be found in Härdle and Marron (1990),

Hall and Hart (1990), King et al. (1991), Delgado (1993), Kulasekera (1995), Young

and Bowman (1995), Munk and Dette (1998), Lavergne (2001), Neumeyer and Dette

(2003) and Pardo-Fernández et al. (2007). More recent approaches were developed in

Degras et al. (2012), Zhang et al. (2012), Hidalgo and Lee (2014) and Chen and Wu

(2019). Compared to existing methods, our test has the following crucial advantage:

it is much more informative. Most existing procedures allow to test whether the

regression or trend curves under consideration are all the same or not. However,

they do not allow to infer which curves are different and where (that is, in which

parts of the support) they differ. Our multiscale approach, in contrast, conveys this

information. Indeed, it even allows to make rigorous confidence statements about

which curves λi are different and where they differ. To the best of our knowledge,

there is no other method available in the literature which allows to make such

simultaneous confidence statements. As far as we know, the only other multiscale

test for comparing trend curves has been developed in Park et al. (2009). However,

their analysis is mainly methodological and not backed up by a general theory.

In particular, theory is only available for the special case n = 2. Moreover, the

theoretical results are only valid under very severe restrictions on the family of time

intervals F .

The paper is structured as follows. As already mentioned above, Section 2 details

the model setting which underlies our analysis. The multiscale test is developed step

by step in Section 3. To keep the presentation as clear as possible, the technical

details are deferred to the Appendix and the Supplementary Material. Section 4

contains the empirical part of the paper. There, we run some simulation experiments

to demonstrate that the multiscale test has the formal properties predicted by the

theory. Moreover, we use the test to compare the outbreak patterns of the COVID-

19 epidemic in a number of European countries.

2 Model setting

As already discussed in the Introduction, the assumption that Xit ∼ Pλi(t/T ) leads

to a nonparametric regression model of the form

Xit = λi

( t
T

)
+ uit with uit =

√
λi

( t
T

)
ηit, (2.1)
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where ηit has zero mean and unit variance. In this model, both the mean and the

variance are described by the same function λi. In empirical applications, however,

the variance often tends to be much larger than the mean. To deal with this issue,

which has been known for a long time in the literature (Cox, 1983) and which

is commonly called overdispersion, so-called quasi-Poisson models (McCullagh and

Nelder, 1989; Efron, 1986) are frequently used. In our context, a quasi-Poisson

model of Xit has the form

Xit = λi

( t
T

)
+ εit with εit = σ

√
λi

( t
T

)
ηit, (2.2)

where σ is a scaling factor that allows the variance to be a multiple of the mean

function λi. In what follows, we assume that the observed data Xit are produced by

model (2.2), where the noise residuals ηit have zero mean and unit variance but we

do not impose any further distributional assumptions on them.

Poisson and quasi-Poisson models are often used in the literature on epidemic

modelling. De Salazar et al. (2020), for example, assume that the observed COVID-

19 case count in country i follows a Poisson distribution with parameter λi being a

linear function of some covariate Zi, that is, λi = βZi. Pellis et al. (2020) consider

a quasi-Poisson model for the number of new COVID-19 cases. They in particular

examine (a) a version of the model where the mean function is parametrically re-

stricted to be exponentially growing with a constant growth rate and (b) a version

where the mean function is modelled nonparametrically by splines. Tob́ıas et al.

(2020) analyze data on the accumulated number of cases using quasi-Poisson regres-

sion, where the mean function is modelled parametrically as a piecewise linear curve

with known change points.

In order to derive our theoretical results, we impose the following regularity

conditions on model (2.2):

(C1) The functions λi are uniformly Lipschitz continuous, that is, |λi(u)− λi(v)| ≤
L|u − v| for all u, v ∈ [0, 1], where the constant L does not depend on i.

Moreover, they are uniformly bounded away from zero and infinity, that is,

there exist constants λmin and λmax with 0 ≤ λmin ≤ minw∈[0,1] λi(w) ≤
maxw∈[0,1] λi(w) ≤ λmax <∞ for all i.

(C2) The random variables ηit are independent both across i and t. Moreover, for

any i and t, it holds that E[ηit] = 0, E[η2it] = 1 and E[|ηit|θ] ≤ Cθ < ∞ for

some θ > 4.
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(C1) imposes some standard-type regularity conditions on the functions λi. In par-

ticular, the functions are assumed to be smooth, bounded from above and bounded

away from zero. The latter restriction is required because the noise variance in

model (2.2) equals zero if λi is equal to zero. Since we normalize our test statistics

by an estimate of the noise variance as detailed in Section 3, we need this vari-

ance and thus the functions λi to be bounded away from zero. (C2) assumes the

noise terms ηit to fulfill some mild moment conditions and to be independent both

across countries i and time t. In the current COVID-19 crisis, independence across

countries i seems to be a fairly reasonable assumption due to severe travel restric-

tions, the closure of borders, etc. Independence across time t is more debatable, but

it is by no means unreasonable in our model framework: The time series process

Xi = {Xit : 1 ≤ t ≤ T} produced by model (2.2) is nonstationary for each i. Specif-

ically, both the mean E[Xit] = λi(t/T ) and the variance Var(Xit) = σ2λi(t/T ) are

time-varying. A well-known fact in the time series literature is that nonstationarities

such as a time-varying mean may produce spurious sample autocorrelations (cp. e.g.

Mikosch and Stărică, 2004; Fryzlewicz et al., 2008). Hence, the observed persistence

of a time series (captured by the sample autocorrelation function) may be due to

nonstationarities rather than real autocorrelations. This insight has led researchers

to prefer simple nonstationary models over intricate stationary time series models

in some application areas such as finance (cp. Mikosch and Stărică, 2000, 2004; Fry-

zlewicz et al., 2006; Hafner and Linton, 2010). In a similar vein, our model accounts

for the persistence in the observed time series Xi via nonstationarities rather than

autocorrelations in the error terms.

3 The multiscale test

Let S ⊆ {(i, j) : 1 ≤ i < j ≤ n} be the set of all pairs of countries (i, j) whose trend

functions λi and λj we want to compare. Moreover, as already introduced above, let

F = {Ik : 1 ≤ k ≤ K} be the family of (rescaled) time intervals under consideration.

Finally, write M := S × {1, . . . , K} and let p := |M| be the cardinality of M. In

this section, we devise a method to test the null hypothesis H
(ijk)
0 simultaneously

for all pairs of countries (i, j) ∈ S and all time intervals Ik ∈ F , that is, for all

(i, j, k) ∈ M. The value p = |M| is the dimensionality of the simultaneous test

problem we are dealing with. It amounts to the number of tests that we carry out

simultaneously. As shown by our theoretical results in the Appendix, p may be

much larger than the time series length T , which means that the simultaneous test

problem under consideration can be very high-dimensional.
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3.1 Construction of the test statistics

A statistic to test the hypothesis H
(ijk)
0 for a given triple (i, j, k) can be constructed

as follows. To start with, we introduce the expression

ŝijk,T =
1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
(Xit −Xjt),

where hk is the length of the time interval Ik, 1(·) denotes the indicator function

and 1(t/T ∈ Ik) can be regarded as a rectangular kernel weight. A simple applica-

tion of the law of large numbers yields that ŝijk,T/
√
Thk = (Thk)

−1∑T
t=1 1(t/T ∈

Ik){λi(t/T ) − λj(t/T )} + op(1) for any fixed pair of countries (i, j). Hence, the

statistic ŝijk,T/
√
Thk estimates the average distance between the functions λi and

λj on the interval Ik. Under (C2), it holds that

ν2ijk,T := Var(ŝijk,T ) =
σ2

Thk

T∑
t=1

1
( t
T
∈ Ik

){
λi

( t
T

)
+ λj

( t
T

)}
.

In order to normalize the variance of the statistic ŝijk,T , we scale it by an estimator

of νijk,T . In particular, we estimate ν2ijk,T by

ν̂2ijk,T =
σ̂2

Thk

T∑
t=1

1
( t
T
∈ Ik

)
{Xit +Xjt},

where σ̂2 is defined as follows: For each country i, let

σ̂2
i =

∑T
t=2(Xit −Xit−1)

2

2
∑T

t=1Xit

and set σ̂2 = |C|−1
∑

i∈C σ̂
2
i with C = {` : ` = i or ` = j for some (i, j) ∈ S} denoting

the set of countries that are taken into account by our test. The idea behind the

estimator σ̂2
i is as follows: Since λi is Lipschitz continuous,

Xit −Xit−1 = σ

√
λi

( t
T

)
(ηit − ηit−1) + rit,

where |rit| ≤ C(1 + |ηit−1|)/T with a sufficiently large constant C. This suggests

that T−1
∑T

t=2(Xit − Xit−1)
2 = 2σ2{T−1

∑T
t=2 λi(t/T )} + op(1). Moreover, since

T−1
∑T

t=1Xit = T−1
∑T

t=1 λi(t/T ) + op(1), we expect that σ̂2
i = σ2 + op(1) for any

i and thus σ̂2 = σ2 + op(1). In Lemma S.1 of the Supplementary Material, we

formally show that σ̂2 is a consistent estimator of σ2 under our regularity conditions.
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Normalizing the statistic ŝijk,T by the estimator ν̂ijk,T yields the expression

ψ̂ijk,T :=
ŝijk,T
ν̂ijk,T

=

∑T
t=1 1( t

T
∈ Ik)(Xit −Xjt)

σ̂{
∑T

t=1 1( t
T
∈ Ik)(Xit +Xjt)}1/2

, (3.1)

which serves as our test statistic of the hypothesis H
(ijk)
0 . For later reference, we

additionally introduce the statistic

ψ̂0
ijk,T =

∑T
t=1 1( t

T
∈ Ik)σλ

1/2

ij ( t
T

)(ηit − ηjt)
σ̂{
∑T

t=1 1( t
T
∈ Ik)(Xit +Xjt)}1/2

(3.2)

with λij(u) = {λi(u) + λj(u)}/2, which is identical to ψ̂ijk,T under H
(ijk)
0 .

3.2 Construction of the test

Our multiscale test is carried out as follows: For a given significance level α ∈ (0, 1)

and each (i, j, k) ∈M, we reject H
(ijk)
0 if

|ψ̂ijk,T | > cijk,T (α),

where cijk,T (α) is the critical value for the (i, j, k)-th test problem. The critical

values cijk,T (α) are chosen such that the familywise error rate (FWER) is controlled

at level α, which is defined as the probability of wrongly rejecting H
(ijk)
0 for at least

one (i, j, k). More formally speaking, for a given significance level α ∈ (0, 1), the

FWER is

FWER(α) = P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cijk,T (α)

)
= 1− P

(
∀(i, j, k) ∈M0 : |ψ̂ijk,T | ≤ cijk,T (α)

)
= 1− P

(
max

(i,j,k)∈M0

|ψ̂ijk,T | ≤ cijk,T (α)
)
,

where M0 ⊆M is the set of triples (i, j, k) for which H
(ijk)
0 holds true.

There are different ways to construct critical values cijk,T (α) that ensure control

of the FWER at level α. In the traditional approach, the same critical value cT (α) =

cijk,T (α) is used for all (i, j, k). In this case, controlling the FWER at the level α

requires to determine the critical value cT (α) such that

FWER(α) = 1− P
(

max
(i,j,k)∈M0

|ψ̂ijk,T | ≤ cT (α)
)
≤ α. (3.3)
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This can be achieved by choosing cT (α) as the (1− α)-quantile of the statistic

Ψ̃T = max
(i,j,k)∈M

|ψ̂0
ijk,T |,

where ψ̂0
ijk,T was introduced in (3.2). (Note that both the statistic Ψ̃T and the

quantile cT (α) depend on the dimensionality p of the test problem in general. To

keep the notation simple, we however suppress this dependence throughout the

paper. We use the same convention for all other quantities that are defined in the

sequel.)

A more modern approach assigns different critical values cijk,T (α) to the test

problems (i, j, k). In particular, the critical value for the hypothesis H
(ijk)
0 is allowed

to depend on the length hk of the time interval Ik, that is, on the scale of the

test problem. A general approach to construct scale-dependent critical values was

pioneered by Dümbgen and Spokoiny (2001) and has been used in many other studies

since then; cp. for example Rohde (2008), Dümbgen and Walther (2008), Rufibach

and Walther (2010), Schmidt-Hieber et al. (2013), Eckle et al. (2017) and Dunker

et al. (2019). In our context, the approach of Dümbgen and Spokoiny (2001) leads

to the critical values

cijk,T (α) = cT (α, hk) := bk + qT (α)/ak,

where ak = {log(e/hk)}1/2/ log log(ee/hk) and bk =
√

2 log(1/hk) are scale-dependent

constants and the quantity qT (α) is determined by the following consideration: Since

FWER(α) = P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cT (α, hk)

)
= 1− P

(
∀(i, j, k) ∈M0 : |ψ̂ijk,T | ≤ cT (α, hk)

)
= 1− P

(
∀(i, j, k) ∈M0 : ak

(
|ψ̂ijk,T | − bk

)
≤ qT (α)

)
= 1− P

(
max

(i,j,k)∈M0

ak
(
|ψ̂ijk,T | − bk

)
≤ qT (α)

)
, (3.4)

we need to choose the quantity qT (α) as the (1− α)-quantile of the statistic

Ψ̂T = max
(i,j,k)∈M

ak
(
|ψ̂0
ijk,T | − bk

)
in order to ensure control of the FWER at level α. Comparing (3.4) with (3.3),

the current approach can be seen to differ from the traditional one in the fol-

lowing respect: the maximum statistic Ψ̃T is replaced by the rescaled version Ψ̂T

which re-weights the individual statistics ψ̂0
ijk,T by the scale-dependent constants ak

and bk. As demonstrated above, this translates into scale-dependent critical values
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cijk,T (α) = cT (α, hk).

Our theory allows us to work with both the traditional choice cijk,T (α) = cT (α)

and the more modern, scale-dependent choice cijk,T (α) = cT (α, hk). Since the latter

choice produces a test approach with better theoretical properties in general (cp.

Dümbgen and Spokoiny, 2001), we restrict attention to the critical values cT (α, hk)

in the sequel. There is, however, one complication we need to deal with: As the

quantiles qT (α) are not known in practice, we cannot compute the critical values

cT (α, hk) exactly in practice but need to approximate them. This can be achieved

as follows: Under appropriate regularity conditions, it can be shown that

ψ̂0
ijk,T =

∑T
t=1 1( t

T
∈ Ik)σλ

1/2

ij ( t
T

)(ηit − ηjt)
σ̂{
∑T

t=1 1( t
T
∈ Ik)(Xit +Xjt)}1/2

≈ 1√
2Thk

T∑
t=1

1
( t
T
∈ Ik

)
{ηit − ηjt}.

A Gaussian version of the statistic displayed in the final line above is given by

φijk,T =
1√

2Thk

T∑
t=1

1
( t
T
∈ Ik

){
Zit − Zjt

}
,

where Zit are independent standard normal random variables for 1 ≤ t ≤ T and

1 ≤ i ≤ n. Hence, the statistic

ΦT = max
(i,j,k)∈M

ak
(
|φijk,T | − bk

)
can be regarded as a Gaussian version of the statistic Ψ̂T . We approximate the

unknown quantile qT (α) by the (1 − α)-quantile qT,Gauss(α) of ΦT , which can be

computed (approximately) by Monte Carlo simulations and can thus be treated as

known.

To summarize, we propose the following procedure to simultaneously test the

hypothesis H
(ijk)
0 for all (i, j, k) ∈M at the significance level α ∈ (0, 1):

For each (i, j, k) ∈M, reject H
(ijk)
0 if |ψ̂ijk,T | > cT,Gauss(α, hk), (3.5)

where cT,Gauss(α, hk) = bk + qT,Gauss(α)/ak with ak = {log(e/hk)}1/2/ log log(ee/hk)

and bk =
√

2 log(1/hk).
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3.3 Formal properties of the test

In Theorem A.1 of the Appendix, we prove that under appropriate regularity con-

ditions, the test defined in (3.5) (asymptotically) controls the familywise error rate

FWER(α) for each pre-specified significance level α. As shown in Corollary A.1,

this has the following implication:

P
(
∀(i, j, k) ∈M : If |ψ̂ijk,T | > cT,Gauss(α, hk), then (i, j, k) /∈M0

)
≥ 1− α + o(1), (3.6)

where M0 is the set of triples (i, j, k) ∈ M for which H
(ijk)
0 holds true. Verbally,

(3.6) can be expressed as follows:

With (asymptotic) probability at least 1− α, the null hypothesis H
(ijk)
0 is

violated for all (i, j, k) ∈M for which the test rejects H
(ijk)
0 .

(3.7)

In other words:

With (asymptotic) probability at least 1−α, the functions λi and λj differ

on the interval Ik for all (i, j, k) ∈M for which the test rejects H
(ijk)
0 .

(3.8)

Hence, the test allows us to make simultaneous confidence statements (a) about

which pairs of countries (i, j) have different trend functions and (b) about where,

that is, in which time intervals Ik the functions differ.

3.4 Implementation of the test in practice

For a given significance level α ∈ (0, 1), the test procedure defined in (3.5) is imple-

mented as follows in practice:

Step 1. Compute the quantile qT,Gauss(α) by Monte Carlo simulations. Specifically,

draw a large number N (say N = 5000) samples of independent standard

normal random variables {Z(`)
it : 1 ≤ t ≤ T, 1 ≤ i ≤ n} for 1 ≤ ` ≤ N .

Compute the value Φ
(`)
T of the Gaussian statistic ΦT for each sample ` and

calculate the empirical (1 − α)-quantile q̂T,Gauss(α) from the values {Φ(`)
T :

1 ≤ ` ≤ N}. Use q̂T,Gauss(α) as an approximation of the quantile qT,Gauss(α).

Step 2. Compute the critical values cT,Gauss(α, hk) for 1 ≤ k ≤ K based on the

approximation q̂T,Gauss(α).

Step 3. Carry out the test for each (i, j, k) ∈ M and store the test results in the

variable rijk,T = 1(|ψ̂ijk,T | > cT,Gauss(α, hk)) for each (i, j, k) ∈ M, that is,

let rijk,T = 1 if the hypothesis H
(ijk)
0 is rejected and rijk,T = 0 otherwise.

10



To graphically present the test results, we produce a plot for each pair of countries

(i, j) ∈ S that shows the intervals Ik for which the test rejects the null H
(ijk)
0 , that is,

the intervals in the set Freject(i, j) = {Ik ∈ F : rijk,T = 1}. The plot is designed such

that it graphically highlights the subset of intervals Fmin
reject(i, j) = {Ik ∈ Freject(i, j) :

there exists no Ik′ ∈ Freject(i, j) with Ik′ ⊂ Ik}. The elements of Fmin
reject(i, j) are

called minimal intervals. By definition, there is no other interval Ik′ in Freject(i, j)

which is a proper subset of a minimal interval Ik. Hence, the minimal intervals can

be regarded as those intervals in Freject(i, j) which are most informative about the

precise location of the differences between the trends λi and λj. In Section 4, we

use the graphical device just described to present the test results of our empirical

application; cp. panels (d) in Figures 3–6.

According to (3.6), we can make the following simultaneous confidence statement

about the intervals in Freject(i, j) for (i, j) ∈ S:

With (asymptotic) probability at least 1 − α, it holds that for every pair

of countries (i, j) ∈ S, the functions λi and λj differ on each interval in

Freject(i, j).

(3.9)

Hence, we can claim with statistical confidence at least 1−α that the functions λi and

λj differ on each time interval which is depicted in the plots of our graphical device.

Since Fmin
reject(i, j) ⊆ Freject(i, j) for any (i, j) ∈ S, the confidence statement (3.9)

trivially remains to hold true when the sets Freject(i, j) are replaced by Fmin
reject(i, j).

4 Empirical application to COVID-19 data

We now use our test to analyze the outbreak patterns of the COVID-19 epidemic.

We proceed in two steps. In Section 4.1, we assess the finite sample performance

of our test by Monte-Carlo experiments. Specifically, we run a series of experi-

ments which show that the test controls the FWER at level α as predicted by the

theory and that it has good power properties. In Section 4.2, we then apply the

test to a sample of COVID-19 data from different European countries. Our mul-

tiscale test is implemented in the R package multiscale, available on GitHub at

https://github.com/marina-khi/multiscale.

4.1 Simulation experiments

We simulate count data X = {Xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T} by drawing the obser-

vations Xit independently from a negative binomial distribution with mean λi(t/T )

and variance σ2λi(t/T ). By definition, Xit has a negative binomial distribution

11
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Figure 1: (a) Plot of the function λ; (b) plot of the family of intervals F .

with parameters q and r if P(Xit = m) = Γ(m + r)/(Γ(r)m!)qr(1 − q)m for each

m ∈ N ∪ {0}. Since E[Xit] = r(1− q)/q and Var(Xit) = r(1− q)/q2, we can use the

parametrization q = 1/σ2 and r = λi(t/T )/(σ2− 1) to obtain that E[Xit] = λi(t/T )

and Var(Xit) = σ2λi(t/T ). With this parametrization, the simulated data follow a

nonparametric regression model of the form

Xit = λi

( t
T

)
+ σ

√
λi

( t
T

)
ηit,

where the noise variables ηit have zero mean and unit variance. The functions λi

are specified below. The overdispersion parameter is set to σ = 15, which is similar

to the estimate σ̂ = 14.44 obtained in the empirical application of Section 4.2.

Robustness checks with σ = 10 and σ = 20 are provided in the Supplementary

Material.

We consider different values for T and n, in particular, T ∈ {100, 250, 500} and

n ∈ {5, 10, 50}. Note that in the application, we have T = 139 and n = 5. We

let S = {(i, j) : 1 ≤ i < j ≤ n}, that is, we compare all pairs of countries (i, j)

with i < j. Moreover, we choose F to be a family of time intervals Ik with length

hk ∈ {7/T, 14/T, 21/T, 28/T}. Hence, the intervals in F have length either 7, 14,

21 or 28 days (i.e., 1, 2, 3 or 4 weeks). For each length hk, we include all intervals

that start at days t = 1 + 7(j − 1) and t = 4 + 7(j − 1) for j = 1, 2, . . . A graphical

presentation of the family F for T = 139 (as in the application) is given in Figure

1b. All our simulation experiments are based on R = 5000 simulation runs.

In the first part of the simulation study, we examine whether our test controls

12



Table 1: Empirical size of the test for different values of n and T .

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.011 0.047 0.093 0.010 0.044 0.087 0.008 0.037 0.075
T = 250 0.009 0.047 0.091 0.009 0.046 0.087 0.008 0.035 0.069
T = 500 0.010 0.044 0.083 0.008 0.048 0.093 0.007 0.035 0.077

the FWER as predicted by the theory. To do so, we assume that the hypothesis

H
(ijk)
0 holds true for all (i, j, k) under consideration, which implies that λi = λ for

all i. We consider the function

λ(u) = 5000 exp
(
− (10u− 3)2

2

)
+ 1000, (4.1)

which is similar in shape to some of the estimated trend curves in the application of

Section 4.2. A plot of the function λ is provided in Figure 1a. To evaluate whether

the test controls the FWER at level α, we compare the empirical size of the test

with the target α. The empirical size is computed as the precentage of simulation

runs in which the test falsely rejects at least one null hypothesis H
(ijk)
0 .

The simulation results are reported in Table 1. As can be seen, the empirical size

gives a reasonable approximation to the target α in all scenarios under investigation,

even though the size numbers have a slight downward bias. This bias gets larger as

the number of time series n increases, which reflects the fact that the test problem

becomes more difficult for larger n. Already for n = 5, the number p of hypotheses

to be tested is quite high, in particular, p = 960, 2 680, 5 560 for T = 100, 250, 500.

This number increases to p = 117 600, 328 300, 681 100 when n = 50. Hence, the

dimensionality and thus the complexity of the test problem increases considerably

as n gets larger. On first sight, it may seem astonishing that the downward bias

does not diminish notably as the time series length T increases. This, however,

has a simple explanation: The interval lengths hk remain the same (7, 14, 21 or 28

days) as T increases, which implies that the effective sample size for computing the

test statistics ψ̂ijk,T does not change as well. To summarize, even though slightly

conservative, the test controls the FWER quite accurately in the simulation setting

at hand.

In the second part of the simulation study, we investigate the power properties

of the test. To do so, we assume that λi = λ for all i > 1 and that λ1 6= λ, where

λ is defined in (4.1). Hence, only the first mean function λ1 is different from the

others. This implies that the hypothesis H
(ijk)
0 holds true for all (i, j, k) with i > 1

and j > 1, while there is at least one hypothesis H
(ijk)
0 with either i = 1 or j = 1

13



0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00
70

00
Plot of the functions λ1 and λ

u

λ1(u)  
λ(u)  

(a) Scenario A

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

Plot of the functions λ1 and λ

u

λ1(u)  
λ(u)  

(b) Scenario B

Figure 2: Plot of the functions λ1 (black) and λ (red) in the simulation scenarios A and
B.

that does not hold true. We consider two different simulation scenarios. In Scenario

A, the function λ1 has the form

λ1(u) = 6000 exp
(
− (10u− 3)2

2

)
+ 1000

and is plotted together with λ in Figure 2a. As can be seen, the two functions λ1

and λ peak at the same point in time, but the peak of λ1 is higher than that of λ.

In Scenario B, we let

λ1(u) = 5000 exp
(
− (9u− 3)2

2

)
+ 1000.

Figure 2b shows that the peaks of λ1 and λ have the same height but are reached

at different points in time. To evaluate the power properties of the test in Scenarios

A and B, we compute the percentage of simulation runs where the test (i) correctly

detects differences between λ1 and at least one of the other mean functions and (ii)

does not spuriously detect differences between the other mean functions. Put dif-

ferently, we calculate the percentage of simulation runs where (i) the set Freject(1, j)

is non-empty at least for one j ∈ {2, . . . , n} and (ii) all other sets Freject(i, j) with

2 ≤ i < j ≤ n are empty. We call this percentage number the (empirical) power of

the test. We thus use the term “power” a bit differently than usual.

The results for Scenario A (see Figure 2a) are presented in Table 2 and those

for Scenario B (see Figure 2b) in Table 3. As can be seen, the test has substantial

power in all the considered simulation settings. It is more powerful in Scenario B

than in Scenario A, which is most presumably due to the fact that the differences

|λ1(u)− λ(u)| are much larger in Scenario B. Moreover, it is less powerful for larger

14



Table 2: Power of the test for different values of n and T in Scenario A.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.335 0.518 0.597 0.306 0.474 0.545 0.212 0.352 0.418
T = 250 0.615 0.790 0.836 0.580 0.764 0.800 0.470 0.648 0.705
T = 500 0.736 0.905 0.917 0.738 0.884 0.890 0.636 0.799 0.830

Table 3: Power of the test for different values of n and T in Scenario B.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.824 0.910 0.903 0.812 0.893 0.890 0.738 0.847 0.857
T = 250 0.991 0.972 0.941 0.991 0.960 0.920 0.991 0.965 0.933
T = 500 0.997 0.973 0.949 0.995 0.961 0.923 0.996 0.969 0.932

numbers of time series n, which reflects the fact that the test problem gets more

high-dimensional and thus more difficult as n increases. As one would expect, the

power numbers tend to become larger as the time series length T and the significance

level α increase. In Scenario B (mostly for T = 250 and T = 500), however, the

power numbers drop down a bit as α gets larger. This reverse dependance can be

explained by the way we calculate power: we exclude simulation runs where the test

spuriously detects differences between the trends in countries i and j with i, j > 1.

The number of spurious findings increases as we make the significance level α larger,

which presumably causes the slight drop in power.

4.2 Analysis of COVID-19 data

The COVID-19 pandemic is one of the most pressing issues at present. The first

outbreak occurred in Wuhan, China, in December 2019. On 30 January 2020, the

World Health Organization (WHO) declared that the outbreak constitutes a Public

Health Emergency of International Concern, and on 11 March 2020, the WHO

characterized it as a pandemic. As of 22 July 2020, more than 14.56 million cases of

COVID-19 infections have been reported worldwide, resulting in more than 607 000

deaths.

There are many open questions surrounding the current COVID-19 pandemic. A

question which is particularly relevant for governments and policy makers is whether

the pandemic has developed similarly in different countries or whether there are no-

table differences. Identifying these differences may give some insight into which

government policies have been more effective in containing the virus than others. In
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what follows, we use our multiscale test to compare the development of COVID-19 in

several European countries. It is important to emphasize that our test allows to iden-

tify differences in the development of the epidemic across countries in a statistically

rigorous way, but it does not tell what causes these differences. By distinguishing

statistically significant differences from artefacts of the sampling noise, the test pro-

vides the basis for a further investigation into the causes. Such an investigation,

however, presumably goes beyond a mere statistical analysis.

4.2.1 Data

We analyze data from five European countries: Germany, Italy, Spain, France and

the United Kingdom. For each country i, we observe a time series Xi = {Xit :

1 ≤ t ≤ T}, where Xit is the number of newly confirmed COVID-19 cases in

country i on day t. The data are freely available on the homepage of the European

Center for Disease Prevention and Control (https://www.ecdc.europa.eu) and

were downloaded on 22 July 2020. As already mentioned in the Introduction, we

take the day of the 100th confirmed case in each country as the starting date t = 1,

which is a common way of “normalizing” the data and making them comparable

across countries (cp. Cohen and Kupferschmidt, 2020). The time series length T is

taken to be the minimal number of days for which we have observations for all five

countries. The resulting dataset consists of n = 5 time series, each with T = 139

observations (as of July 22). Some of the time series contain negative values which

we replaced by 0. Overall, this resulted in 6 replacements. Plots of the observed

time series are presented in the upper panels (a) of Figures 3–6.

To interpret the results produced by our multiscale test, we consider the Gov-

ernment Response Index (GRI) from the Oxford COVID-19 Government Response

Tracker (OxCGRT) (Hale et al., 2020b). The GRI measures how severe the actions

are that are taken by a country’s government to contain the virus. It is calculated

based on several common government policies such as school closures and travel re-

strictions. The GRI ranges from 0 to 100, with 0 corresponding to no response from

the government at all and 100 corresponding to full lockdown, closure of schools

and workplaces, ban on travelling, etc. Detailed information on the collection of

the data for government responses and the methodology for calculating the GRI is

provided in Hale et al. (2020a). Plots of the GRI time series are given in panels (c)

of Figures 3–6.
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4.2.2 Test results

We assume that the data Xit of each country i in our sample follow the nonpara-

metric trend model

Xit = λi

( t
T

)
+ σ

√
λi

( t
T

)
ηit,

which was introduced in equation (2.2). The overdispersion parameter σ is estimated

by the procedure described in Section 3.1, which yields the estimate σ̂ = 14.44.

Throughout the section, we set the significance level to α = 0.05 and implement the

multiscale test in exactly the same way as in the simulation study of Section 4.1.

In particular, we let S = {(i, j) : 1 ≤ i < j ≤ 5}, that is, we compare all pairs

of countries (i, j) with i < j, and we choose F to be the family of time intervals

plotted in Figure 1b. Hence, all intervals in F have length either 7, 14, 21 or 28

days.

With the help of our multiscale method, we simultaneously test the null hypo-

thesis H
(ijk)
0 that λi = λj on the interval Ik for each (i, j, k) ∈ M. The results

are presented in Figures 3–6, each figure comparing a specific pair of countries (i, j)

from our sample. For the sake of brevity, we only show the results for the pairwise

comparisons of Germany with each of the four other countries. The remaining figures

can be found in Section S.2 of the Supplementary Material. Each figure splits into

four panels (a)–(d). Panel (a) shows the observed time series for the two countries

i and j that are compared. Panel (b) presents smoothed versions of the time series

from (a), that is, it shows nonparametric kernel estimates (specifically, Nadaraya-

Watson estimates) of the two trend functions λi and λj, where the bandwidth is

set to 7 days and a rectangular kernel is used. Panel (c) displays the Government

Response Index (GRI) of the two countries. Finally, panel (d) presents the results

produced by our test: it depicts in grey the set Freject(i, j) of all the intervals Ik for

which the test rejects the null H
(ijk)
0 . The minimal intervals in the subset Fmin

reject(i, j)

are highlighted by a black frame. Note that according to (3.6), we can make the

following simultaneous confidence statement about the intervals plotted in panels

(d) of Figures 3–6: we can claim, with confidence of about 95%, that there is a

difference between the functions λi and λj on each of these intervals.

We now have a closer look at the results in Figures 3–6. Figure 3 presents

the comparison of Germany with Italy. The two time series of daily new cases in

panel (a) can be seen to be very similar until approximately day 40. Thereafter,

the German time series appears to trend downwards more strongly than the Italian

one. The smoothed data in panel (b) give a similar visual impression: the kernel

estimates of the German and Italian trend curves λi and λj are very close to each

other until approximately day 40 but then start to differ. It is however not clear
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Figure 3: Test results for the comparison of
Germany and Italy.
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Figure 4: Test results for the comparison of
Germany and Spain.

Note: In each figure, panel (a) shows the two observed time series, panel (b) smoothed
versions of the time series, and panel (c) the corresponding Government Response Index
(GRI). Panel (d) depicts the set of intervals Freject(i, j) in grey and the subset of minimal
intervals Fmin

reject(i, j) with a black frame.
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Figure 5: Test results for the comparison of
Germany and France.
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Figure 6: Test results for the comparison of
Germany and the UK.

Note: In each figure, panel (a) shows the two observed time series, panel (b) smoothed
versions of the time series, and panel (c) the corresponding Government Response Index
(GRI). Panel (d) depicts the set of intervals Freject(i, j) in grey and the subset of minimal
intervals Fmin

reject(i, j) with a black frame.
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whether the differences between the two curve estimates reflect differences between

the underlying trend curves or whether these are mere artefacts of sampling noise.

Our test allows to clarify this issue. Inspecting panel (d), we see that the test detects

significant differences between the trend curves in the time period between day 36

and 91. However, it does not find any significant differences up to day 36. Taken

together, our results provide evidence that the epidemic developed very similarly in

Germany and Italy until a peak was reached around day 40. Thereafter, however,

the German time series exhibits a significantly stronger downward trend than the

Italian one.

Inspecting Figures 4 and 5, a quite different picture arises when comparing Ger-

many with France and Spain. The test detects significant differences between the

German trend and the trends in France and Spain up to (approximately) day 50

but not thereafter. Hence, we find that the time trends evolve differently during

the outbreak of the crisis, but they appear to decrease in more or less the same

fashion after a peak was reached. Finally, the comparison of Germany with the UK

in Figure 6 reveals significant differences between the time trends over essentially

the whole observation window. Inspecting the time series in panel (a), it is quite

obvious that the UK trend evolves differently from the German one after day 40.

However, our test also detects differences between the trends during the onset of the

crisis, which is not obvious from the time series plot in panel (a).

4.2.3 Discussion

Having identified significant differences between the epidemic trends in the five coun-

tries under consideration, one may ask next what are the causes of these differences.

As already mentioned at the beginning of this section, this question cannot be an-

swered by our test. Rather, a further analysis which presumably goes beyond pure

statistics is needed to shed some light on it. We here do not attempt to provide

any answers. We merely discuss some observations which become apparent upon

considering our test results in the light of the Government Response Index (GRI).

For reasons of brevity, we focus on the comparison of Germany with Italy and Spain

in Figures 3 and 4.

According to our test results in Figure 4, there are significant differences between

the trends in Germany and Spain during the onset of the epidemic up to about day

50, with Spain having more new cases of infections than Germany on most days.

After day 50, the trends become quite similar and start to decrease at approximately

the same rate. This may be due to the fact that Spain in general introduced more

severe measures of lockdown than Germany (as can be seen upon inspecting the GRI

in panel (c) of Figure 4), which may have helped to battle the spread of infection.
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However, a much more thorough analysis is of course needed to find out whether

this is indeed the case or whether other factors were mainly responsible.

Turning to the comparison of Germany and Italy, we found that the German

trend drops down significantly faster than the Italian one after approximately day

40. Interestingly, the GRI of Italy almost always lies above that of Germany. Hence,

even though Italy has in general taken more severe and restrictive measures against

the virus than Germany, it appears that the virus could be contained better in

Germany (in the sense that the trend of daily new cases went down significantly

faster in Germany than in Italy). This suggests that there are indeed important

factors besides the level of government response to the pandemic which substantially

influence the trend of new COVID-19 cases.

This brief discussion already indicates that it is extremely difficult to determine

the exact causes of the differences in epidemic trends across countries. Since even

similar countries such as those in our sample differ in a variety of aspects that

are relevant for the spread of the virus, it is very challenging to pin down these

causes. One issue that is often discussed in the context of cross-country comparisons

are country-specific strategies to test for the coronavirus. The argument is that

differences between epidemic trends may be spuriously produced by country-specific

test procedures.

Even though we can of course not fully exclude this possibility, our test results are

presumably not driven by different test regimes in the countries under consideration.

To see this, we consider again the comparison of Germany and Italy: The test

regimes in these two countries are arguably quite different. Germany is often cited

as the country that employed early, widespread testing with more than 100 000 tests

per week even in the beginning of the pandemic (Cohen and Kupferschmidt, 2020),

while testing in Italy became widespread only in the late stages of the pandemic.

Nevertheless, visual inspection of the raw and smoothed data in panels (a) and (b) of

Figure 3 suggest that the underlying time trends are very similar up to day 36. This

is confirmed by our multiscale test which does not find any significant differences

before that day. Hence, the different test regimes in Germany and Italy towards

the beginning of the pandemic do not appear to have an overly strong effect and

to produce spurious differences between the time trends. This suggests that the

differences detected by our multiscale test indeed reflect differences in the way the

virus spread in Germany and Italy rather than being mere artefacts of different test

regimes.
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A Appendix

In what follows, we state and prove the main theoretical results on the multiscale

test developed in Section 3. Throughout the Appendix, we let C be a generic

positive constant that may take a different value on each occurrence. Unless stated

differently, C depends neither on the time series length T nor on the dimension p

of the test problem. We further use the symbols hmin := min1≤k≤K hk and hmax :=

max1≤k≤K hk to denote the smallest and largest interval length in the family F .

Theorem A.1. Let (C1) and (C2) be satisfied. Moreover, assume that (i) hmax =

o(1/ log T ), (ii) hmin ≥ CT−b for some b ∈ (0, 1), and (iii) p = O(T (θ/2)(1−b)−(1+δ))

for some small δ > 0. Then for any given α ∈ (0, 1),

FWER(α) := P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
≤ α + o(1),

where M0 ⊆M is the set of all (i, j, k) ∈M for which H
(ijk)
0 holds true.

According to Theorem A.1, the multiscale test asymptotically controls the FWER

at level α under conditions (C1)–(C2) and the restrictions (i)–(iii) on hmin, hmax and

p. Restriction (i) allows the maximal interval length hmax to converge to zero very

slowly, which means that hmax can be picked very large in practice. According to

restriction (ii), the minimal interval length hmin can be chosen to go to zero as any

polynomial T−b with some b ∈ (0, 1). Restriction (iii) allows the dimension p of the

test problem to grow polynomially in T . Specifically, p may grow at most as the

polynomial T γ with γ = (θ/2)(1 − b) − (1 + δ). As one can see, the exponent γ

depends on the number of error moments θ defined in (C2) and the parameter b that

specifies the minimal interval length hmin. In particular, for any given b ∈ (0, 1),

the exponent γ gets larger as θ increases. Hence, the larger the number of error

moments θ, the faster p may grow in comparison to T . In the extreme case where

all error moments exist, that is, where θ can be made as large as desired, p may

grow as any polynomial of T , no matter how we pick b ∈ (0, 1). Thus, if the error

terms have sufficiently many moments, the dimension p can be extremely large in

comparison to T and the minimal interval length hmin can be chosen very small.

The following corollary is an immediate consequence of Theorem A.1. It provides

the theoretical justification needed to make simultaneous confidence statements of

the form (3.7)–(3.9).

Corollary A.1. Under the conditions of Theorem A.1,

P
(
∀(i, j, k) ∈M : If |ψ̂ijk,T | > cT,Gauss(α, hk), then (i, j, k) /∈M0

)
≥ 1− α + o(1)

for any given α ∈ (0, 1).
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Proof of Theorem A.1. The proof proceeds in several steps.

Step 1. Let Ψ̂T = max(i,j,k)∈M ak(|ψ̂0
ijk,T | − bk) with ψ̂0

ijk,T introduced in (3.2) and

define ΨT = max(i,j,k)∈M ak(|ψ0
ijk,T | − bk) with

ψ0
ijk,T =

1√
2Thk

T∑
t=1

1
( t
T
∈ Ik

)
(ηit − ηjt).

To start with, we prove that ∣∣Ψ̂T −ΨT

∣∣ = op(rT ), (A.1)

where {rT} is any null sequence that converges more slowly to zero than ρT =
√

log T{log p/
√
Thmin +hmax

√
log p}, that is, ρT/rT → 0 as T →∞. Since the proof

of (A.1) is rather technical and lengthy, the details are provided in the Supplemen-

tary Material.

Step 2. We next prove that

sup
q∈R

∣∣∣P(ΨT ≤ q
)
− P

(
ΦT ≤ q

)∣∣∣ = o(1). (A.2)

To do so, we rewrite the statistics ΨT and ΦT as follows: Define

V
(ijk)
t = V

(ijk)
t,T :=

√
T

2Thk
1
( t
T
∈ Ik

)
(ηit − ηjt)

for (i, j, k) ∈ M and let Vt = (V
(ijk)
t : (i, j, k) ∈ M) be the p-dimensional ran-

dom vector with the entries V
(ijk)
t . With this notation, we get that ψ0

ijk,T =

T−1/2
∑T

t=1 V
(ijk)
t and thus

ΨT = max
(i,j,k)∈M

ak
(
|ψ0
ijk,T | − bk

)
= max

(i,j,k)∈M
ak

{∣∣∣ 1√
T

T∑
t=1

V
(ijk)
t

∣∣∣− bk}.
Analogously, we define

W
(ijk)
t = W

(ijk)
t,T :=

√
T

2Thk
1
( t
T
∈ Ik

)
(Zit − Zjt)

with Zit i.i.d. standard normal and let Wt = (W
(ijk)
t : (i, j, k) ∈ M). The vector

Wt is a Gaussian version of Vt with the same mean and variance. In particular,

E[Wt] = E[Vt] = 0 and E[WtW
>
t ] = E[VtV

>
t ]. Similarly as before, we can write
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φijk,T = T−1/2
∑T

t=1W
(ijk)
t and

ΦT = max
(i,j,k)∈M

ak
(
|φijk,T | − bk

)
= max

(i,j,k)∈M
ak

{∣∣∣ 1√
T

T∑
t=1

W
(ijk)
t

∣∣∣− bk}.
For any q ∈ R, it holds that

P
(
ΨT ≤ q

)
= P

(
max

(i,j,k)∈M
ak

{∣∣∣ 1√
T

T∑
t=1

V
(ijk)
t

∣∣∣− bk} ≤ q
)

= P
(∣∣∣ 1√

T

T∑
t=1

V
(ijk)
t

∣∣∣ ≤ cijk(q) for all (i, j, k) ∈M
)

= P
(∣∣∣ 1√

T

T∑
t=1

Vt

∣∣∣ ≤ c(q)
)
,

where c(q) = (cijk(q) : (i, j, k) ∈ M) is the Rp-vector with the entries cijk(q) =

q/ak + bk, we use the notation |v| = (|v1|, . . . , |vp|)> for vectors v ∈ Rp and the

inequality v ≤ w is to be understood componentwise for v, w ∈ Rp. Analogously, we

have

P
(
ΦT ≤ q

)
= P

(∣∣∣ 1√
T

T∑
t=1

Wt

∣∣∣ ≤ c(q)
)
.

With this notation at hand, we can make use of Proposition 2.1 from Chernozhukov

et al. (2017). In our context, this proposition can be stated as follows:

Proposition A.1. Assume that

(a) T−1
∑T

t=1 E(V
(ijk)
t )2 ≥ δ > 0 for all (i, j, k) ∈M.

(b) T−1
∑T

t=1 E[|V (ijk)
t |2+r] ≤ Br

T for all (i, j, k) ∈ M and r = 1, 2, where BT ≥ 1

are constants that may tend to infinity as T →∞.

(c) E[{max(i,j,k)∈M |V (ijk)
t |/BT}θ] ≤ 2 for all t and some θ > 4.

Then

sup
c∈Rp

∣∣∣P(∣∣∣ 1√
T

T∑
t=1

Vt

∣∣∣ ≤ c
)
− P

(∣∣∣ 1√
T

T∑
t=1

Wt

∣∣∣ ≤ c
)∣∣∣

≤ C
{(B2

T log7(pT )

T

)1/6
+
(B2

T log3(pT )

T 1−2/θ

)1/3}
, (A.3)

where C depends only on δ and θ.
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It is straightforward to verify that assumptions (a)–(c) are satisfied under the

conditions of Theorem A.1 for sufficiently large T , where BT can be chosen as

BT = Cp1/θh
−1/2
min with C sufficiently large. Moreover, it can be shown that the

right-hand side of (A.3) is o(1) for this choice of BT . Hence, Proposition A.1 yields

that

sup
c∈Rp

∣∣∣P(∣∣∣ 1√
T

T∑
t=1

Vt

∣∣∣ ≤ c
)
− P

(∣∣∣ 1√
T

T∑
t=1

Wt

∣∣∣ ≤ c
)∣∣∣ = o(1),

which in turn implies (A.2).

Step 3. With the help of (A.1) and (A.2), we now show that

sup
q∈R

∣∣∣P(Ψ̂T ≤ q
)
− P

(
ΦT ≤ q

)∣∣∣ = o(1). (A.4)

To start with, the above supremum can be bounded by

sup
q∈R

∣∣∣P(Ψ̂T ≤ q
)
− P

(
ΦT ≤ q

)∣∣∣
= sup

q∈R

∣∣∣P(ΨT ≤ q +
{

ΨT − Ψ̂T

})
− P

(
ΦT ≤ q

)∣∣∣
≤ sup

q∈R
max

{∣∣∣P(ΨT ≤ q +
∣∣ΨT − Ψ̂T

∣∣)− P
(
ΦT ≤ q

)∣∣∣,∣∣∣P(ΨT ≤ q −
∣∣ΨT − Ψ̂T

∣∣)− P
(
ΦT ≤ q

)∣∣∣}
≤ sup

q∈R
max

{∣∣∣P(ΨT ≤ q + rT

)
− P

(
ΦT ≤ q

)∣∣∣+ P
(∣∣ΨT − Ψ̂T

∣∣ > rT

)
,∣∣∣P(ΨT ≤ q − rT

)
− P

(
ΦT ≤ q

)∣∣∣+ P
(∣∣ΨT − Ψ̂T

∣∣ > rT

)}
≤ max

`=0,1
sup
q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣+ P
(∣∣ΨT − Ψ̂T

∣∣ > rT

)
= max

`=0,1
sup
q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣+ o(1), (A.5)

where the last line is by (A.1). Moreover, for ` = 0, 1,

sup
q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣
≤ sup

q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q + (−1)`rT

)∣∣∣
+ sup

q∈R

∣∣∣P(ΦT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣
= sup

q∈R

∣∣∣P(ΦT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣+ o(1), (A.6)

the last line following from (A.2). Finally, by Nazarov’s inequality (cp. Nazarov,
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2003 and Lemma A.1 in Chernozhukov et al., 2017), we have that for ` = 0, 1,

sup
q∈R

∣∣∣P(ΦT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣
= sup

q∈R

∣∣∣P(∣∣∣ 1√
T

T∑
t=1

Wt

∣∣∣ ≤ c(q + (−1)`rT )
)
− P

(∣∣∣ 1√
T

T∑
t=1

Wt

∣∣∣ ≤ c(q)
)∣∣∣

≤ CrT
√

log(2p), (A.7)

where C is a constant that depends only on the parameter δ defined in condition

(a) of Proposition A.1. Inserting (A.6) and (A.7) into equation (A.5) completes the

proof of (A.4).

Step 4. By definition of the quantile qT,Gauss(α), it holds that P(ΦT ≤ qT,Gauss(α)) ≥
1− α. As shown in the Supplementary Material, we even have that

P(ΦT ≤ qT,Gauss(α)) = 1− α (A.8)

for any α ∈ (0, 1). From this and (A.4), it immediately follows that

P
(
Ψ̂T ≤ qT,Gauss(α)

)
= 1− α + o(1), (A.9)

which in turn implies that

FWER(α) = P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
= P

(
max

(i,j,k)∈M0

ak
(
|ψ̂ijk,T | − bk

)
> qT,Gauss(α)

)
= P

(
max

(i,j,k)∈M0

ak
(
|ψ̂0
ijk,T | − bk

)
> qT,Gauss(α)

)
≤ P

(
max

(i,j,k)∈M
ak
(
|ψ̂0
ijk,T | − bk

)
> qT,Gauss(α)

)
= P

(
Ψ̂T > qT,Gauss(α)

)
= α + o(1).

This completes the proof of Theorem A.1.

Proof of Corollary A.1. By Theorem A.1,

1− α + o(1) ≤ 1− FWER(α)

= P
(
@(i, j, k) ∈M0 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
= P

(
∀(i, j, k) ∈M : If |ψ̂ijk,T | > cT,Gauss(α, hk), then (i, j, k) /∈M0

)
,

which gives the statement of Corollary A.1.
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S Supplementary Material

S.1 Technical details

In what follows, we provide the technical details omitted in the Appendix. To start

with, we prove the following auxiliary lemma.

Lemma S.1. Under the conditions of Theorem A.1, it holds that

∣∣σ̂2 − σ2
∣∣ = Op

(√ log p

T

)
.

Proof of Lemma S.1. By definition, σ̂2 = |C|−1
∑

i∈C σ̂
2
i and σ̂2

i = {
∑T

t=2(Xit −
Xit−1)

2}{2
∑T

t=1Xit}−1. It holds that

1

T

T∑
t=2

(Xit −Xit−1)
2 =

σ2

T

T∑
t=2

λi

( t
T

)
(ηit − ηit−1)2 +

{
R

(1)
i,T + . . .+R

(5)
i,T

}
, (S.1)

where

R
(1)
i,T =

2σ

T

T∑
t=2

(
λi

( t
T

)
− λi

(t− 1

T

))√
λi

( t
T

)
(ηit − ηit−1)

R
(2)
i,T =

2σ2

T

T∑
t=2

(√
λi

( t
T

)
−
√
λi

(t− 1

T

))√
λi

( t
T

)
ηit−1(ηit − ηit−1)

R
(3)
i,T =

1

T

T∑
t=2

(
λi

( t
T

)
− λi

(t− 1

T

))2
R

(4)
i,T =

2σ

T

T∑
t=2

(
λi

( t
T

)
− λi

(t− 1

T

))(√
λi

( t
T

)
−
√
λi

(t− 1

T

))
ηit−1

R
(5)
i,T =

σ2

T

T∑
t=2

(√
λi

( t
T

)
−
√
λi

(t− 1

T

))2
η2it−1.

With the help of an exponential inequality and standard arguments, it can be shown

that

max
i∈C

∣∣∣ 1

T

T∑
t=2

wi

( t
T

){
g(ηit, ηit−1)− Eg(ηit, ηit−1)

}∣∣∣ = Op

(√ log p

T

)
,

where we let g(x, y) = x, g(x, y) = y, g(x, y) = |x|, g(x, y) = |y|, g(x, y) = x2,

g(x, y) = y2 or g(x, y) = xy, and wi(t/T ) are deterministic weights with the property

that |wi(t/T )| ≤ wmax <∞ for all i, t and T and some positive constant wmax. Using

30



this uniform convergence result along with conditions (C1) and (C2), we obtain that

max
i∈C

∣∣∣ 1

T

T∑
t=2

λi

( t
T

)
(ηit − ηit−1)2 −

2

T

T∑
t=1

λi

( t
T

)∣∣∣ = Op

(√ log p

T

)
and

max
1≤`≤5

max
i∈C
|R(`)

i,T | = Op(T
−1).

Applying these two statements to (S.1), we can infer that

max
i∈C

∣∣∣ 1

T

T∑
t=2

(Xit −Xit−1)
2 − 2σ2

T

T∑
t=1

λi

( t
T

)∣∣∣ = Op

(√ log p

T

)
. (S.2)

By similar but simpler arguments, we additionally get that

max
i∈C

∣∣∣ 1

T

T∑
t=1

Xit −
1

T

T∑
t=1

λi

( t
T

)∣∣∣ = Op

(√ log p

T

)
. (S.3)

From (S.2) and (S.3), it follows that maxi∈C |σ̂2
i − σ2| = Op(

√
log p/T ), which in

turn implies that |σ̂2 − σ2| = Op(
√

log p/T ) as well.

Proof of (A.1). Since∣∣Ψ̂T −ΨT

∣∣ ≤ max
(i,j,k)∈M

ak
∣∣ψ̂0

ijk,T − ψ0
ijk,T

∣∣
≤ max

1≤k≤K
ak max

(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣
≤ C

√
log T max

(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣,
it suffices to prove that

max
(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣ = op

( rT√
log T

)
. (S.4)

To start with, we reformulate ψ̂0
ijk,T as

ψ̂0
ijk,T = ψ̂∗ijk,T +

(σ
σ̂
− 1
)
ψ̂∗ijk,T ,

where

ψ̂∗ijk,T =

∑T
t=1 1( t

T
∈ Ik)λ

1/2

ij ( t
T

)(ηit − ηjt)
{
∑T

t=1 1( t
T
∈ Ik)(Xit +Xjt)}1/2

.
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With this notation, we can establish the bound

max
(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣ ≤ max
(i,j,k)∈M

∣∣ψ̂∗ijk,T − ψ0
ijk,T

∣∣
+
∣∣∣σ
σ̂
− 1
∣∣∣ max
(i,j,k)∈M

∣∣ψ̂∗ijk,T − ψ0
ijk,T

∣∣
+
∣∣∣σ
σ̂
− 1
∣∣∣ max
(i,j,k)∈M

∣∣ψ0
ijk,T

∣∣,
which shows that (S.4) is implied by the three statements

max
(i,j,k)∈M

∣∣ψ̂∗ijk,T − ψ0
ijk,T

∣∣ = Op

( log p√
Thmin

+ hmax

√
log p

)
(S.5)

max
(i,j,k)∈M

∣∣ψ0
ijk,T

∣∣ = Op

(√
log p

)
(S.6)

∣∣σ̂2 − σ2
∣∣ = Op

(√ log p

T

)
. (S.7)

Since (S.7) has already been verified in Lemma S.1, it remains to prove the state-

ments (S.5) and (S.6).

We start with the proof of (S.6). Applying an exponential inequality along with

standard arguments yields that

max
i∈C

max
1≤k≤K

∣∣∣ 1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
wi

( t
T

)
ηit

∣∣∣ = Op

(√
log p

)
, (S.8)

where wi(t/T ) are general deterministic weights with the property that |wi(t/T )| ≤
wmax < ∞ for all i, t and T and some positive constant wmax. This immediately

implies (S.6).

We next turn to the proof of (S.5). As the functions λi are uniformly Lipschitz

continuous by (C1), it can be shown that

max
i∈C

max
1≤k≤K

∣∣∣ 1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
λi

( t
T

)
− 1

hk

∫
w∈Ik

λi(w)dw
∣∣∣ ≤ C

Thmin

. (S.9)

From this, the uniform convergence result (S.8) and condition (C1), we can infer

that

max
(i,j,k)∈M

∣∣∣ 1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
(Xit +Xjt)

− 1

hk

∫
w∈Ik

{
λi(w) + λj(w)

}
dw
∣∣∣ = Op

(√ log p

Thmin

)
(S.10)
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and

max
(i,j,k)∈M

∣∣∣ 1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
λ
1/2

ij

( t
T

)
(ηit − ηjt)

−
{∫

w∈Ik
λij(w)dw

hk

}1/2 1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
(ηit − ηjt)

∣∣∣
= Op

(
hmax

√
log p

)
. (S.11)

The claim (S.5) follows from (S.10) and (S.11) along with straightforward calcula-

tions.

Proof of (A.8). The proof is by contradiction. Suppose that (A.8) does not hold

true, that is, P(ΦT ≤ qT,Gauss(α)) = 1 − α + ξ for some ξ > 0. By Nazarov’s

inequality,

P
(
ΦT ≤ qT,Gauss(α)

)
− P

(
ΦT ≤ qT,Gauss(α)− η

)
≤ Cη

√
log(2p)

for any η > 0 with C depending only on the parameter δ specified in condition (a)

of Proposition A.1. Hence,

P
(
ΦT ≤ qT,Gauss(α)− η

)
≥ P

(
ΦT ≤ qT,Gauss(α)

)
− Cη

√
log(2p)

= 1− α + ξ − Cη
√

log(2p) > 1− α

for η > 0 sufficiently small. This contradicts the definition of the quantile qT,Gauss(α)

according to which qT,Gauss(α) = infq∈R{P(ΦT ≤ q) ≥ 1− α}.
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S.2 Additional graphs for Section 4.2

Here, we provide the pairwise comparisons between Italy, France, Spain and the UK

that were omitted in Section 4.2. The plots have the same format as Figures 3–6.
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Figure S.1: Test results for the comparison
of France and Italy.
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Figure S.2: Test results for the comparison
of the UK and Italy.

34



0 20 40 60 80 100 120 140

0
20

00
60

00

(a) observed new cases per day

Spain
Italy

0 20 40 60 80 100 120 140

0
20

00
60

00

(b) smoothed curves from (a)

0 20 40 60 80 100 120 140

0
20

40
60

80
10

0

(c) government response index

0 20 40 60 80 100 120 140

N
A

(d) minimal intervals produced by our test

days since the hundredth case

Comparison of Spain and Italy

Figure S.3: Test results for the comparison
of Spain and Italy.
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Figure S.4: Test results for the comparison
of Spain and the UK.
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Figure S.5: Test results for the comparison
of Spain and France.
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Figure S.6: Test results for the comparison
of France and the UK.
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S.3 Robustness checks for Section 4.1

In what follows, we supplement the simulation experiments of Section 4.1 by some

robustness checks. Specifically, we repeat the experiments with different values of

the overdispersion parameter σ. The larger we choose σ, the more noise we put on

top of the time trend, that is, on top of the underlying signal. Hence, by varying σ,

we can assess how sensitive our test is to changes in the noise-to-signal ratio. We

first repeat the size simulations for σ = 10 and σ = 20. The results are presented

in Tables S.1 and S.2, respectively. As can be seen, the empirical size numbers are

very similar to those for σ = 15 in Table 1. We next rerun the power simulations for

σ = 10 and σ = 20, where we consider the two Scenarios A and B as in Section 4.1.

The results can be found in Tables S.3–S.6. They show that the test is much more

powerful for σ = 10 than for σ = 20. This is what one would expect, since a higher

value of σ corresponds to a higher noise-to-signal ratio. In particular, the higher

σ, the more noisy the data, and thus the more difficult it is to identify differences

between the trend curves. Nevertheless, even in the very noisy case with σ = 20,

our test has quite some power, which tends to increase swiftly as T gets larger.

Table S.1: Empirical size of the test for σ = 10.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.009 0.043 0.085 0.008 0.039 0.075 0.005 0.023 0.055
T = 250 0.011 0.047 0.095 0.010 0.050 0.094 0.009 0.039 0.079
T = 500 0.009 0.052 0.101 0.013 0.049 0.101 0.010 0.039 0.084

Table S.2: Empirical size of the test for σ = 20.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.011 0.050 0.094 0.010 0.047 0.092 0.009 0.034 0.070
T = 250 0.009 0.047 0.088 0.008 0.044 0.085 0.006 0.032 0.062
T = 500 0.008 0.038 0.081 0.006 0.039 0.079 0.006 0.025 0.060
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Table S.3: Power of the test in Scenario A for σ = 10.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.836 0.915 0.911 0.833 0.903 0.898 0.777 0.874 0.882
T = 250 0.986 0.971 0.938 0.984 0.956 0.918 0.980 0.961 0.924
T = 500 0.996 0.975 0.946 0.994 0.965 0.927 0.992 0.963 0.918

Table S.4: Power of the test in Scenario A for σ = 20.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.144 0.275 0.352 0.115 0.231 0.304 0.048 0.120 0.163
T = 250 0.244 0.434 0.538 0.204 0.403 0.486 0.133 0.247 0.305
T = 500 0.296 0.563 0.662 0.273 0.511 0.603 0.175 0.338 0.433

Table S.5: Power of the test in Scenario B for σ = 10.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.991 0.973 0.946 0.994 0.970 0.935 0.994 0.971 0.940
T = 250 0.993 0.969 0.941 0.993 0.959 0.919 0.991 0.960 0.925
T = 500 0.996 0.976 0.948 0.993 0.966 0.928 0.993 0.962 0.917

Table S.6: Power of the test in Scenario B for σ = 20.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.438 0.636 0.704 0.404 0.598 0.669 0.277 0.449 0.526
T = 250 0.864 0.934 0.927 0.850 0.923 0.915 0.811 0.891 0.898
T = 500 0.960 0.968 0.949 0.961 0.964 0.935 0.945 0.961 0.941
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