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In this supplement, we examine the finite sample performance of
our method by further simulations. In addition, we provide the proofs
that are omitted in the paper.

1. Simulations. In what follows, we continue the simulation study
from Section 7.1 of the paper. As announced there, we examine a volatility
model together with a multivariate extension of it. The univariate model is

(S.1) Xt,T = σ
( t
T

)
εt,

where σ is a time-varying volatility function and εt are i.i.d. residuals that
are normally distributed with zero mean and unit variance. This is the same
model as discussed in the application on the S&P 500 returns in Section
7.3 of the paper. Our aim is to estimate the time point where the volatility
function σ starts to vary over time. We consider two different specifications
of σ,

σ1(u) = 1(u < 0.5) + 2 · 1(u ≥ 0.5)

σ2(u) = 1(u < 0.5) + {1 + 10(u− 0.5)} · 1(0.5 < u < 0.6) + 2 · 1(u ≥ 0.6),

both of which are equal to 1 on the interval [0, 0.5] and then start to vary
over time. Thus, u0 = 0.5 in both cases. Analogously to the time-varying
mean setting, σ1 has a jump at u0 = 0.5, whereas σ2 smoothly deviates from
its baseline value 1.

The multivariate extension of model (S.1) is given by the equation

(S.2) Xt,T = Σ
( t
T

)
εt,

where Xt,T = (Xt,T,1, Xt,T,2)
ᵀ

are bivariate random variables, Σ(u) is a 2×2-
matrix for each time point u and εt = (εt,1, εt,2)

ᵀ
are bivariate standard

normal i.i.d. residuals. Since Σ2( tT ) := Σ( tT )Σ
ᵀ
( tT ) = E[Xt,TX

ᵀ

t,T ], the time-

varying matrix Σ2( tT ) is the covariance matrix ofXt,T . Our aim is to estimate
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the time point where this matrix starts to vary over time. Put differently, we
want to localize the time point where the covariance structure of Xt,T starts
to change. The stochastic feature of interest is thus the vector of covariances

λt,T = (ν
(1,1)
t,T , ν

(1,2)
t,T , ν

(2,2)
t,T )

ᵀ
, where ν

(i,j)
t,T = E[Xt,T,iXt,T,j ]. We consider two

different specifications of the volatility matrix Σ,

Σ1(u) = σ1(u) ·A
Σ2(u) = σ2(u) ·A,

where

AA
ᵀ

=

(
1 0.5

0.5 1

)
, or put differently, A ≈

(
0.87 −0.5
0.87 0.5

)
and σ1(u) along with σ2(u) are defined above. Both matrices Σ1(u) and
Σ2(u) are constant on the interval [0, 0.5] and then start to vary over time.
Hence, as in the univariate case, u0 = 0.5.
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Fig 1: Simulation results for model (S.1) with the volatility function σ1 (upper
panel) and the function σ2 (lower panel).

We implement our method as described in Setting II of Section 6 in the
paper and let α = 0.1, h = 0.2 as well as b = 0, exploiting the fact that
the simulated data are independent. The resulting estimator is denoted by
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û0. For each model specification, we draw N = 1000 samples of length
T ∈ {500, 1000} and compute the estimate of u0 for each draw. The results
are presented by means of histograms in the same way as in Section 7 of the
paper.
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Fig 2: A typical sample path of length T = 500 for model (S.1) with σ2.

We first discuss the results on the univariate model (S.1). The upper panel
of Figure 1 presents the histograms for the design with σ1, the lower panel
those for the design with σ2. The results are fairly similar to those from the
time-varying mean setting: Our method is again able to detect the point u0

quite precisely in the jump design with σ1. The histograms in the setup with
σ2 are a bit more dispersed, reflecting the fact that it is harder to localize a
gradual change than a jump.
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Fig 3: Simulation results for model (S.2) with the volatility matrix Σ1 (upper panel)
and the matrix Σ2 (lower panel).
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Figure 2 shows a typical sample path of length T = 500 for the design (S.1)
with σ2. As can be seen, the increase in the volatility level is hardly visible
close to u0 = 0.5 and only becomes apparent with some delay. It is thus
natural that our procedure detects the time-variation in the volatility level
only with a bit of delay. This produces the upward bias in the histograms
which becomes less pronounced in larger samples.

We next turn to the results for the bivariate model (S.2). The histograms
for the model with Σ1 are displayed in the upper panel of Figure 3, those
for the design with Σ2 in the lower panel. Overall, the estimates give a good
approximation to the true value u0, those in the jump design with Σ1 being
a bit more precise than those in the gradual change design. Moreover, the
histograms again make visible an upward bias which is comparable in size
to that in the univariate setting.
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Fig 4: Simulation results produced by our method in model (7.1) with the mean
function µ3 defined in (S.3).

We finally investigate the performance of our procedure when the smooth
change point u0 occurs very early in the sample. In particular, we examine
the extreme case that u0 = 0. To do so, we go back to the time-varying mean
setting (7.1) from Subsection 7.1 of the paper and consider the function

µ3(u) = 10u · 1(0 ≤ u < 0.2) + {2− 2.5(u− 0.2)} · 1(u ≥ 0.2).(S.3)

The simulation results for this design are depicted in Figure 4 and show that
our method detects the time-variation rather quickly. Of course, it is only
able to detect it with some delay which becomes smaller when moving to
the larger sample size T = 1000.
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2. Technical details. We now prove the main theoretical results of
the paper. Throughout the section, the symbol C denotes a generic con-
stant which may take a different value on each occurrence. Moreover, the
expression ‖X‖p = (E|X|p)1/p is used to denote the Lp-norm of a real-valued
random variable X.

Auxiliary results. Before we turn to the proofs of the main theorems,
we derive some technical lemmas which are needed later on. To formulate
them, we introduce some additional notation. To start with, partition the
observations {Xt,T : t = 1, . . . , T} into blocks of size q, where the r-th block
spans the observations from time point (r−1)q+1 to rq and we set q = CT b

for some small b > 0 (in particular b < 1
4). Now define

WT (k, k′) = sup
f∈F

∣∣∣ k′∑
r=k

Qr,T (f)
∣∣∣

along with

Qr,T (f) =
1√

(k′ − k + 1)q

(2r−1)q∧T∑
t=(2r−2)q+1

(
f(Xt,T )− Ef(Xt,T )

)
.

The terms Qr,T (f) are scaled sums of the variables f(Xt,T ) − Ef(Xt,T ),
the summation running over the observations of the (2r − 1)-th block. The
expression WT (k, k′) sums up the terms Qk,T (f), . . . , Qk′,T (f) which corre-
spond to the odd blocks (2k − 1), (2k + 1), (2k + 3), . . . , (2k′ − 1). The next
two lemmas provide a bound on the Lp-norm of WT (k, k′).

Lemma A.1. Let assumptions (C1) and (C2) be satisfied and let f0 ∈ F
have the property that E|f0(Xt,T )|(1+δ)p ≤ C for some even p ∈ N and a
small δ > 0. Then ∥∥∥ k′∑

r=k

Qr,T (f0)
∥∥∥
p
≤ C

for some sufficiently large constant C.

Proof of Lemma A.1. To shorten notation, write wt,T = f0(Xt,T ) −
Ef0(Xt,T ) and bound the term

VT = VT (k, k′) = E
[( k′∑

r=k

Qr,T (f0)
)p]
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by

VT ≤
1

((k′ − k + 1)q)p/2

×
k′∑

r1,...,rp=k

(2r1−1)q∧T∑
t1=(2r1−2)q+1

. . .

(2rp−1)q∧T∑
tp=(2rp−2)q+1

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ p!

((k′ − k + 1)q)p/2

(2k′−1)q∧T∑
t1,...,tp=(2k−2)q+1

t1≤...≤tp

∣∣E[wt1,T . . . wtp,T ]
∣∣.

Let (t1, . . . , tp) be a tuple of ordered indices, that is, t1 ≤ . . . ≤ tp. We say
that the index ti has a neighbour if |ti − ti−1| ≤ C∗ log T or |ti − ti+1| ≤
C∗ log T for some large constant C∗ to be specified later on. Moreover, ti
is said to have exactly one neighbour if either |ti − ti−1| ≤ C∗ log T and
|ti − ti+1| > C∗ log T or vice versa. Finally, we call (ti−1, ti) a pair of neigh-
bours if |ti − ti−1| ≤ C∗ log T . Now let S≤ denote the set of ordered tuples
(t1, . . . , tp) ∈ {(2k− 2)q+ 1, . . . , (2k′− 1)q ∧T}p such that each index ti has
a neighbour. In addition, let S> be the set of tuples such that at least one
index does not have a neighbour. With this notation at hand, we can write
VT ≤ V ≤T + V >

T , where for ` ∈ {≤, >},

V `
T =

p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S`

∣∣E[wt1,T . . . wtp,T ]
∣∣.

We now analyze the two terms V ≤T and V >
T separately. For the investiga-

tion of V ≤T , define

S≤,a =
{

(t1, . . . , tp) ∈ S≤ | each index ti has exactly one neighbour
}

together with S≤,b = S≤ \ S≤,a. First suppose that (t1, . . . , tp) ∈ S≤,a. In
this case, there are exactly p/2 pairs (t2i−1, t2i) of neighbours (recalling that
p is even by assumption). Using Davydov’s inequality (see e.g. Corollary 1.1
in Bosq (1996)) to bound the covariances of the mixing variables wt,T and
exploiting the fact that the mixing coefficients are decaying exponentially
fast, we obtain that∣∣E[wt1,T . . . wtp,T ]

∣∣
≤
∣∣E[wt1,Twt2,T ]E[wt3,T . . . wtp,T ]

∣∣+
∣∣Cov(wt1,Twt2,T , wt3,T . . . wtp,T )

∣∣
=
∣∣E[wt1,Twt2,T ]E[wt3,T . . . wtp,T ]

∣∣+O
(
α(C∗ log T )ξ

)
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=
∣∣Cov(wt1,T , wt2,T )E[wt3,T . . . wtp,T ]

∣∣+O
(
α(C∗ log T )ξ

)
...

≤
∣∣∣p/2∏
i=1

Cov(wt2i−1,T , wt2i,T )
∣∣∣+O(T−ν),

where ξ > 0 is a sufficiently small number and the constant ν > 0 can be
made arbitrarily large (by choosing the constant C∗ sufficiently large). This
implies that

V ≤,aT =
p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S≤,a

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S≤,a

∣∣∣p/2∏
i=1

Cov(wt2i−1,T , wt2i,T )
∣∣∣+ o(1)

≤ p!

((k′ − k + 1)q)p/2

×
p/2∏
i=1

( dC∗ log T e∑
`=0

(2k′−1)q∧T∑
t2i−1=(2k−2)q+1

∣∣Cov(wt2i−1,T , wt2i−1+`,T )
∣∣)+o(1)

≤ C p!

((k′ − k + 1)q)p/2

× ((k′ − k + 1)q)p/2
(dC∗ log T e∑

`=0

α(`)ξ
)p/2

+ o(1) ≤ C

for some sufficiently large constant C, where the last line again uses Davy-
dov’s inequality to bound the covariance expressions in the formula.

Next consider the sum V ≤,bT corresponding to indices in the set S≤,b. The

cardinality of this set is bounded by C((k′ − k + 1)q)
p
2
−1(log T )

p
2

+1, which
implies

V ≤,bT =
p!

((k′ − k + 1)q)p/2

∑
(t1,...,tp)∈S≤,b

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ C (log T )p/2+1

(k′ − k + 1)q
= o(1)

(noting that q = T b). This shows that the term V ≤T is bounded.
Finally, we examine the term V >

T corresponding to the index set S>. By
definition, the tuples contained in this set have at least one element, say ti,
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without a neighbour, that is, |ti− ti+1| > C∗ log T and |ti− ti−1| > C∗ log T .
Exploiting the mixing conditions on the model variables in a similar way as
above, we obtain that

E[wt1,T . . . wtp,T ]

= E[wt1,T . . . wti−1,T ]E[wti,T . . . wtp,T ] + Cov(wt1,T . . . wti−1,T , wti,T . . . wtp,T )

= E[wt1,T . . . wti−1,T ]Cov(wti,T , wti+1,T . . . wtp,T ) +O(T−ν) = O(T−ν),

where ν can be chosen arbitrarily large (if C∗ is chosen large enough). Re-
calling the definition of V >

T , this yields that V >
T = o(1). Putting every-

thing together, the quantity VT is seen to be bounded. This completes the
proof.

Lemma A.2. Let (C1) and (C2) be satisfied. Moreover, assume that for
some even p ∈ N and some small δ > 0,

E
[∣∣∣f(Xt,T )− f ′(Xt,T )

dF (f, f ′)

∣∣∣(1+δ)p]
≤ C

for all functions f, f ′ ∈ F . Then for any f0 ∈ F ,

∥∥WT (k, k′)
∥∥
p
≤ C

(∥∥∥ k′∑
r=k

Qr,T (f0)
∥∥∥
p

+

∫ diam(F)

0
N (w/2,F , dF )1/pdw

)
,

where N (w,F , dF ) denotes the covering number of (F , dF ) and diam(F)
= supf,f ′∈F dF (f, f ′) is the diameter of F .

Proof of Lemma A.2. The claim immediately follows from Theorem
2.2.4 and Corollary 2.2.5 in van der Vaart and Wellner (1996) (see their
remark on p.100 before Subsection 2.2.1). It thus suffices to verify the con-
ditions of Theorem 2.2.4. In particular, we have to show that

E
[∣∣∣ k′∑
r=k

Qr,T (f)−
k′∑
r=k

Qr,T (f ′)
∣∣∣p] ≤ CdF (f, f ′)p

for some sufficiently large constant C. To prove this, we introduce the nota-
tion

wt,T =
f(Xt,T )− f ′(Xt,T )

dF (f, f ′)
− E

[f(Xt,T )− f ′(Xt,T )

dF (f, f ′)

]
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and consider

VT = VT (k, k′) = E
[∣∣∣ k′∑
r=k

Qr,T (f)−Qr,T (f ′)

dF (f, f ′)

∣∣∣p]
≤ 1

((k′ − k + 1)q)p/2

×
k′∑

r1,...,rp=k

(2r1−1)q∧T∑
t1=(2r1−2)q+1

. . .

(2rp−1)q∧T∑
tp=(2rp−2)q+1

∣∣E[wt1,T . . . wtp,T ]
∣∣

≤ p!

((k′ − k + 1)q)p/2

(2k′−1)q∧T∑
t1,...,tp=(2k−2)q+1

t1≤···≤tp

∣∣E[wt1,T . . . wtp,T ]
∣∣.

Repeating the arguments from Lemma A.1, we can show that VT is bounded,
thus completing the proof.

Proof of Theorem 5.1. To show that ĤT =
√
T [D̂T −D] weakly con-

verges to H, it suffices to prove that

(S.4) Ĥc
T :=

√
T
[
D̂T − ED̂T

]
 H

together with

(S.5)
√
T sup

(u,v,f)∈∆×F
|ED̂T −D| = o(1),

where Ĥc
T is the centred version of ĤT . We start with the proof of (S.5).

Making use of condition (C4), we obtain that

1√
T

buT c∑
t=1

E
[
f(Xt,T )

]
=

1√
T

buT c∑
t=1

E
[
f
(
Xt

( t
T

))]
+ o(1)

=
√
T

buT c∑
t=1

∫ t
T

t−1
T

E
[
f(Xt(w))

]
dw + o(1)

=
√
T

∫ u

0
E
[
f(Xt(w))

]
dw + o(1)

uniformly with respect to u ∈ [0, 1] and f ∈ F . From this, (S.5) immediately
follows. To verify (S.4), we show weak convergence of the finite dimensional
distributions of Ĥc

T as well as stochastic equicontinuity of Ĥc
T . In particular,

we derive the following two results.



10 VOGT, M. AND DETTE, H.

Proposition A.1. For any finite number of points (ui, vi, fi) with 1 ≤
i ≤ n, it holds that

(Ĥc
T (u1, v1, f1), . . . , Ĥc

T (un, vn, fn))
ᵀ d−→ N(0,Σ),

where Σ = (Σij)1≤i,j≤n and Σij = Cov(H(ui, vi, fi), H(uj , vj , fj)).

Proposition A.2. The sequence of processes Ĥc
T is asymptotically sto-

chastically equicontinuous, that is, for any ε > 0,

(S.6) lim
δ↘0

lim sup
T→∞

P
(

sup
|u−u′|+|v−v′|
+dF (f,f ′)≤δ

∣∣Ĥc
T (u, v, f)− Ĥc

T (u′, v′, f ′)
∣∣ > ε

)
= 0.

To prove these two results, we make use of the notation

Ĥc
T (u, v, f) = ĜT (v, f)−

(v
u

)
ĜT (u, f),

where

ĜT (u, f) =
1√
T

buT c∑
t=1

(
f(Xt,T )− Ef(Xt,T )

)
.

Combining Propositions A.1 and A.2, the statement (S.4) follows from a
standard functional central limit theorem (see van der Vaart and Wellner
(1996)).

Proof of Proposition A.1. We first calculate the asymptotic expec-
tation and covariances of the process Ĥc

T . As the process is centred, it holds

that E[Ĥc
T (u, v, f)] = 0. Moreover,

Cov
(
Ĥc
T (u1, v1, f1), Ĥc

T (u2, v2, f2)
)

=
v1v2

u1u2
E
[
ĜT (u1, f1)ĜT (u2, f2)

]
(S.7)

− v2

u2
E
[
ĜT (v1, f1)ĜT (u2, f2)

]
− v1

u1
E
[
ĜT (u1, f1)ĜT (v2, f2)

]
+ E

[
ĜT (v1, f1)ĜT (v2, f2)

]
.

In what follows, we show that

(S.8) E
[
ĜT (u1, f1)ĜT (u2, f2)

]
=

∞∑
`=−∞

∫ min{u1,u2}

0
c`(w)dw + o(1)
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with c`(w) = c`(w, f1, f2) = Cov(f1(X0(w)), f2(X`(w))). Plugging (S.8) into
(S.7) yields

Cov
(
Ĥc
T (u1, v1, f1), Ĥc

T (u2, v2, f2)
)

= Cov
(
H(u1, v1, f1), H(u2, v2, f2)

)
+ o(1).

Hence, the covariances of Ĥc
T converge to those of the Gaussian process H.

To show (S.8), we assume without loss of generality that u1 ≤ u2. Ex-
ploiting the mixing condition (C2) by means of Davydov’s inequality, it can
be seen that Cov

(
f1(Xt,T ), f2(Xs,T )

)
≤ Cα(|s − t|)ξ ≤ Caξ|s−t| for some

a < 1, a sufficiently small ξ > 0 and a large enough constant C. We thus
obtain that

E
[
ĜT (u1, f1)ĜT (u2, f2)

]
=

1

T

bu1T c∑
t=1

bu2T c∑
s=1

Cov
(
f1(Xt,T ), f2(Xs,T )

)
=

1

T

bu1T c∑
t=1

bu2T c∑
s=1

1{|s− t| ≤ C∗ log T}Cov
(
f1(Xt,T ), f2(Xs,T )

)
+ o(1)

=: Q
(1)
T +Q

(2)
T +Q

(3)
T + o(1)

for some sufficiently large constant C∗, where the random variables Q
(j)
T (j =

1, 2, 3) are defined by

Q
(1)
T =

1

T

dC∗ log T e∑
`=1

T−∑̀
t=1

1
{
t ≤ bu1T c, t+ ` ≤ bu2T c

}
× Cov

(
f1(Xt,T ), f2(Xt+`,T )

)
Q

(2)
T =

1

T

bu1T c∑
t=1

Cov
(
f1(Xt,T ), f2(Xt,T )

)
Q

(3)
T =

1

T

dC∗ log T e∑
`=1

T∑
t=`+1

1
{
t ≤ bu1T c, t− ` ≤ bu2T c

}
× Cov

(
f1(Xt,T ), f2(Xt−`,T )

)
.

By assumption (C4), it follows for ` ≤ dC∗ log T e and any w with |w− t
T | ≤

1
T
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that

ct,T,` := Cov
(
f1(Xt,T ), f2(Xt+`,T )

)
= Cov

(
f1

(
Xt

( t
T

))
, f2

(
Xt+`

( t+ `

T

)))
+O

( 1√
T

)
= Cov

(
f1

(
Xt

( t
T

))
, f2

(
Xt+`

( t
T

)))
+O

(√ log T

T

)
= Cov

(
f1(X0(w)), f2(X`(w))

)
+O

(√ log T

T

)
=: c`(w) +O

(√ log T

T

)
,

the last line defining c`(w) in an obvious manner. From this, it is easy to
see that

1

T

dC∗ log T e∑
`=1

T−∑̀
t=1

|ct,T,`| =
dC∗ log T e∑

`=1

T−∑̀
t=1

∫ t
T

t−1
T

|c`(w)|dw +O
(

log T

√
log T

T

)

=

dC∗ log T e∑
`=1

∫ 1

0
|c`(w)|dw +O

(
log T

√
log T

T

)
.

Because of the mixing assumption (C2), the left-hand side of this equa-
tion is bounded as T →∞ and consequently

∑∞
`=1

∫ 1
0 c`(w)dw is absolutely

convergent. Therefore we obtain for the term Q
(1)
T as T → ∞ (recall that

u1 ≤ u2)

Q
(1)
T =

dC∗ log T e∑
`=1

bu1T c−`∑
t=1

∫ t
T

t−1
T

c`(w)dw +O
(

log T

√
log T

T

)
=

∞∑
`=1

∫ u1

0
c`(w)dw +O

(
log T

√
log T

T

)
and similarly

Q
(2)
T =

∫ u1

0
c0(w)dw +O

(
log T

√
log T

T

)
Q

(3)
T =

∞∑
`=1

∫ u1

0
c−`(w)dw +O

(
log T

√
log T

T

)
.

Putting everything together, we arrive at (S.8).
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Having calculated the asymptotic covariance structure of Ĥc
T , we now

apply a central limit theorem for mixing arrays of random variables (see e.g.
Liebscher (1996)) together with the Cramér-Wold device to obtain weak
convergence of the finite dimensional distributions.

Proof of Proposition A.2. Straightforward calculations show that

sup
|u−u′|+|v−v′|
+dF (f,f ′)≤δ

∣∣Ĥc
T (u, v, f)− Ĥc

T (u′, v′, f ′)
∣∣

≤ 2 sup
|u−u′|≤δ
f∈F

∣∣ĜT (u, f)− ĜT (u′, f)
∣∣

+ 2 sup
dF (f,f ′)≤δ
u∈[0,1]

∣∣ĜT (u, f)− ĜT (u, f ′)
∣∣

+ 2 sup
u∈[0,1]
f∈F

∣∣δ 1
2
−η ĜT (u, f)

∣∣+ 2 sup
u∈[0,δ1/2+η ]

f∈F

∣∣ĜT (u, f)
∣∣

for some small η > 0. Therefore, stochastic equicontinuity follows from the
statements

lim
δ↘0

lim sup
T→∞

P
(

sup
|u−u′|≤δ
f∈F

∣∣∣ĜT (u, f)− ĜT (u′, f)
∣∣∣ > ε

)
= 0(S.9)

lim
δ↘0

lim sup
T→∞

P
(

sup
dF (f,f ′)≤δ
u∈[0,1]

∣∣∣ĜT (u, f)− ĜT (u, f ′)
∣∣∣ > ε

)
= 0(S.10)

lim
δ↘0

lim sup
T→∞

P
(

sup
u∈[0,1]
f∈F

∣∣δ 1
2
−η ĜT (u, f)

∣∣ > ε
)

= 0(S.11)

lim
δ↘0

lim sup
T→∞

P
(

sup
u∈[0,δ1/2+η ]

f∈F

∣∣ĜT (u, f)
∣∣ > ε

)
= 0.(S.12)

(S.9)–(S.12) can be shown by very similar arguments. We thus restrict our-
selves to the proof of (S.9).

First of all, observe that for any function g : [0, 1]→ R, the inequality

sup
|u−u′|≤δ
u,u′∈[0,1]

|g(u)− g(u′)| ≤ max
j=1,...,d1/δe

sup
u∈[uj−1,uj ]

|g(u)− g(uj)|

+ max
j=1,...,d1/δe

sup
u′∈[uj−2,uj+1]

|g(u′)− g(uj)|

holds, where u−1 = u0 = 0, uj = jδ (j = 1, . . . , d1/δe − 1) and ud1/δe =
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ud1/δe+1 = 1. From this, it is easily seen that (S.9) is a consequence of

lim
δ↘0

lim sup
T→∞

P
(

max
j=1,...,d1/δe

sup
u∈[uj−1,uj ]

sup
f∈F

∣∣∣ĜT (u, f)(S.13)

− ĜT (jδ, f)
∣∣∣ > ε

)
= 0.

In the sequel, we derive a suitable bound for the probability

PT (δ, ε) = P
(

max
j=1,...,d1/δe

sup
u∈[uj−1,uj ]

sup
f∈F

∣∣∣ĜT (u, f)− ĜT (jδ, f)
∣∣∣ > ε

)
in (S.13). To start with, we crudely bound this probability by PT (δ, ε) ≤∑d1/δe

j=1 PT,j(δ, ε), where

PT,j(δ, ε) = P
(

sup
u∈[uj−1,uj ]

sup
f∈F

∣∣∣ĜT (u, f)− ĜT (jδ, f)
∣∣∣ > ε

)
= P

(
max

b(j−1)δT c≤`≤bjδT c
sup
f∈F

∣∣∣ĜT( `
T
, f
)
− ĜT (jδ, f)

∣∣∣ > ε
)
.

To bound the probabilities PT,j(δ, ε), we write

ĜT (jδ, f)− ĜT
( `
T
, f
)

= B`+
T (f) +

b jδT
q
c∑

r=d `
q
e+1

Br,T (f) +Bj−
T (f).

Here, Br,T (f) are blocks of length q given by

Br,T (f) =
1√
T

rq∑
t=(r−1)q+1

(
f(Xt,T )− Ef(Xt,T )

)
,

where we set q = CT b for some small b > 0 (specifically, b < 1
4) as in the

discussion of the auxiliary results. In addition,

B`+
T (f) =

1√
T

d `
q
eq∑

t=`+1

(
f(Xt,T )− Ef(Xt,T )

)
Bj−
T (f) =

1√
T

bjδT c∑
t=b jδT

q
cq+1

(
f(Xt,T )− Ef(Xt,T )

)
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denote the first and the last block, respectively. With this notation at hand,
we obtain

PT,j(δ, 6ε) ≤ P
(

max
b(j−1)δT c≤`≤bjδT c

sup
f∈F

∣∣∣ b
jδT
q
c∑

r=d `
q
e+1

Br,T (f)
∣∣∣ > 4ε

)
+ P

(
max

b(j−1)δT c≤`≤bjδT c
sup
f∈F
|B`+

T (f)| > ε
)

+ P
(

sup
f∈F
|Bj−

T (f)| > ε
)

=: PT,j,1(δ, 4ε) + PT,j,2(δ, ε) + PT,j,3(δ, ε).

The terms PT,j,2 and PT,j,3 can be bounded by fairly straightforward ar-
guments: Applying a maximal inequality (see e.g. Section 2.1.3 in van der
Vaart and Wellner (1996)), we get that∥∥∥ max

b(j−1)δT c≤`≤bjδT c
sup
f∈F
|B`+

T (f)|
∥∥∥
p

≤ C(δT )1/p max
b(j−1)δT c≤`≤bjδT c

∥∥sup
f∈F
|B`+

T (f)|
∥∥
p
.

Moreover,

sup
f∈F
|B`+

T (f)| ≤ 2√
T

d `
q
eq∑

t=`+1

F (Xt,T )

and by the moment conditions on the envelope F in (C3), it holds that
‖ supf∈F |B`+

T (f)|‖p ≤ Cq/
√
T . Hence, by Markov’s inequality,

PT,j,2(δ, ε) ≤ ε−p
∥∥∥ max
b(j−1)δT c≤`≤bjδT c

sup
f∈F
|B`+

T (f)|
∥∥∥p
p

≤ CδT
( q

ε
√
T

)p
= o(1)

for T → ∞ given that q = T b with b < 1
4 . By analogous considerations,

PT,j,3(δ, ε) can be bounded in the same way. To deal with PT,j,1, we split it
up into two parts:

PT,j,1(δ, 4ε) ≤ ∆
(0)
T + ∆

(1)
T
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with

∆
(0)
T = P

(
max

b (j−1)δT
2q

c≤k≤d jδT
2q
e

sup
f∈F

∣∣∣b
jδT
2q
c∑

r=k

B2r,T (f)
∣∣∣ > 2ε

)

∆
(1)
T = P

(
max

b (j−1)δT
2q

c≤k≤d jδT
2q
e

sup
f∈F

∣∣∣d
jδT
2q
e∑

r=k

B2r−1,T (f)
∣∣∣ > 2ε

)
.

As the two terms can be treated in the same way, we restrict ourselves to

∆
(1)
T . Applying a version of Ottaviani’s inequality for α-mixing processes

(which has the form stated in Chapter 10.2 of Lin and Bai (2010) and can
be proven by the arguments therein), we obtain that

(S.14) ∆
(1)
T ≤

P
(

sup
f∈F

∣∣∣ d jδT
2q
e∑

r=b (j−1)δT
2q

c
B2r−1,T (f)

∣∣∣ > ε
)

+ δT
2q α(q)

1− max
b (j−1)δT

2q
c≤k≤d jδT

2q
e
P
(

sup
f∈F

∣∣∣ k∑
r=b (j−1)δT

2q
c
B2r−1,T (f)

∣∣∣ > ε
) .

In order to bound the right-hand side of (S.14), we make use of the random
variables

Qr,T (f) =
1√

(k′ − k + 1)q

(2r−1)q∧T∑
t=(2r−2)q+1

(
f(Xt,T )− Ef(Xt,T )

)
and WT (k, k′) = supf∈F |

∑k′

r=kQr,T (f)|, which we have introduced at the
beginning of the section when discussing the auxiliary results. Combining

Lemmas A.1 and A.2 and noting that
∫ diam(F)

0 N (w/2,F , d)1/pdw is finite by
assumption (C3), we get that E

[
|WT (k, k′)|p

]
≤ C <∞ for some sufficiently

large constant C. This implies that

P
(

sup
f∈F

∣∣∣ k′∑
r=k

B2r−1,T (f)
∣∣∣ > ε

)
= P

(
WT (k, k′) >

ε
√
T√

(k′ − k + 1)q

)
≤ E

[
|WT (k, k′)|p

]((k′ − k + 1)q

ε2T

)p/2
≤ C

((k′ − k + 1)q

ε2T

)p/2
.
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Specifically, whenever (k − k′ + 1)q ≤ δT ,

(S.15) P
(

sup
f∈F

∣∣∣ k′∑
r=k

B2r−1,T (f)
∣∣∣ > ε

)
≤ C δ

p/2

εp
.

With (S.15), it is easy to see that the denominator in (S.14) is bounded
away from zero for δ sufficiently small and to infer that

∆
(1)
T ≤ C

(δp/2
εp

+
δT

2q
α(q)

)
.

Using an analogous bound for the term ∆
(0)
T , it follows that

PT (δ, ε) ≤
d1/δe∑
j=1

PT,j(δ, ε) ≤ C
⌈1

δ

⌉(δp/2
εp

+
δT

2q
α(q) + δT

( q

ε
√
T

)p)
.

This yields that limδ↘0 lim supT→∞ PT (δ, ε) = 0 and the assertion (S.13)
follows. By the discussion at the beginning of this proof we obtain (S.9),
which implies stochastic equicontinuity.

Proof of Theorem 5.3. The proof is an immediate consequence of the
following two statements:

P
(
û0(τT ) < u0

)
= o(1)(S.16)

P
(
û0(τT ) > u0 +KγT

)
= o(1)(S.17)

for some sufficiently large constant K > 0.

Proof of (S.16). It holds that

P
(
û0(τT ) < u0

)
≤ P

(√
T D̂T (u) > τT for some u < u0

)
≤ P

(√
TD(u) + ĤT (u) > τT for some u < u0

)
≤ P

(
sup
u∈[0,1]

ĤT (u) > τT

)
,

where the second inequality follows from the fact that
√
T D̂T (u) ≤

√
TD(u)+

ĤT (u) and the third one exploits the fact that D(u) = 0 at points u < u0.
From Corollary 5.2, we know that supu∈[0,1] ĤT (u) = ĤT (1) converges in
distribution to H(1). Moreover, the distribution function F of H(1) is con-
tinuous on [0,∞) by the results of Section 3 in Lifshits (1982). We can thus
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infer that the distribution function FT of ĤT (1) uniformly converges to F
on [0,∞). As a result, we obtain that

P
(
ĤT (1) > τT

)
= 1− FT (τT ) = [1− F (τT )] + [F (τT )− FT (τT )] = o(1),

which in turn yields (S.16).

Proof of (S.17). Similarly as above, we can write

P
(
û0(τT ) > u0 +KγT

)
≤ P

(√
T D̂T (u) ≤ τT for some u > u0 +KγT

)
≤ P

(√
TD(u)− ĤT (u) ≤ τT for some u > u0 +KγT

)
,

the last line following from the fact that
√
TD(u) − ĤT (u) ≤

√
T D̂T (u).

Next notice that

min
u∈[u0+KγT ,1]

D(u) ≥ cκ(KγT )κ

2

for sufficiently large T , which follows upon inspection of (5.1). This allows
us to infer that

P
(√

TD(u)− ĤT (u) ≤ τT for some u > u0 +KγT

)
≤ P

(√Tcκ(KγT )κ

2
− ĤT (1) ≤ τT

)
≤ P1 + P2,

where

P1 = P
(√Tcκ(KγT )κ

2
− ĤT (1) ≤ τT , ĤT (1) ≤ bT

)
P2 = P

(
ĤT (1) > bT

)
and bT is some diverging sequence of positive numbers satisfying bT /τT → 0.
As already seen in the proof of (S.16), it holds that P2 = o(1). Moreover,
P1 = 0 for sufficiently large T if we set γT = (τT /

√
T )1/κ and choose K to

be sufficiently large. This shows (S.17).

Proof of Theorem 5.4. We first derive (5.12) which says that

P
(
û0(τα) < u0

)
≤ α+ o(1).

It holds that

P
(
û0(τα) < u0

)
≤ P

(√
T D̂T (u) > τα for some u < u0

)
≤ P

(√
T D̂T (u0) > τα

)
= P

(
ĤT (u0) > τα

)
.
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We now make use of the following fact which is a direct consequence of the
results from Section 3 in Lifshits (1982):

(∗) For each u, the random variable

H(u) = sup
f∈F

sup
0≤w≤v≤u

|H(v, w, f)|

has a distribution function which is continuous on [0,∞).

By (∗), we obtain that

P
(
ĤT (u0) > τα

)
= P

(
H(u0) > τα

)
+
[
P
(
ĤT (u0) > τα

)
− P

(
H(u0) > τα

)]
= P

(
H(u0) > τα

)
+ o(1) = α+ o(1),

where the last equality is due to the fact that τα = qα(u0) is the (1 − α)-
quantile of H(u0). From this, (5.12) immediately follows. The statement
(5.13) can be proven by the same arguments as for (S.17) in the proof of
Theorem 5.3.

Proof of Corollary 5.5. Let qα(un) be the (1 − α)-quantile of H(un)
and qα(u) the corresponding quantile of H(u). We first show that for any α
with 0 < α < 1,

(S.18) qα(un)→ qα(u)

as un → u. To do so, let d denote the natural semimetric on ∆×F introduced
in Subsection 5.2. Moreover, let Cu(∆ × F , d) be the space of uniformly
continuous functions on (∆×F , d) and define the functionals

Mn(x) = Mun(x) = sup
f∈F

sup
0≤w≤v≤un

|x(v, w, f)|

M(x) = Mu(x) = sup
f∈F

sup
0≤w≤v≤u

|x(v, w, f)|

for x ∈ Cu(∆×F , d). Elementary arguments show that

M(x) = lim
n→∞,y→x

Mn(y),

where x and y are elements of Cu(∆ × F , d). Using this together with the
extended continuous mapping theorem (see e.g. Theorem 1.11.1 in van der
Vaart and Wellner (1996)), we obtain that

Mn(H)
d−→M(H),
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or put differently,

H(un)
d−→ H(u),

since Mn(H) = H(un) and M(H) = H(u). From this, we can infer that the
quantile functions converge as well, thus arriving at (S.18).

Next let ũ0 be a consistent estimator of u0. By (S.18), the quantile func-
tion qα(·) is continuous at each point u, in particular at u0. Hence,

(S.19) τ̂α = qα(ũ0)
P−→ τα = qα(u0).

Moreover,

P
(
û0(τ̂α) < u0

)
≤ P

(√
T D̂T (u) > τ̂α for some u < u0

)
≤ P

(√
T D̂T (u0) > τ̂α

)
= P

(
ĤT (u0) > τ̂α

)
.

Since ĤT (u0)
d−→ H(u0) and the distribution function of H(u0) is continuous

on [0,∞) by (∗), the distribution function of ĤT (u0) uniformly converges to
that of H(u0) on [0,∞). Hence,

P
(
ĤT (u0) > τ̂α

)
= P

(
H(u0) > τ̂α

)
+
[
P
(
ĤT (u0) > τ̂α

)
− P

(
H(u0) > τ̂α

)]
= P

(
H(u0) > τ̂α

)
+ o(1).

Finally, as τ̂α = τα + op(1) and the distribution function of H(u0) is contin-
uous by (∗), we obtain that

P
(
H(u0) > τ̂α

)
= P

(
H(u0) > τα

)
+ o(1) = α+ o(1).

This completes the proof of (5.14). The statement (5.15) can again be shown
by the same arguments as for (S.17) in the proof of Theorem 5.3.

Proof of (5.11). To start with, write

MSE1(τT ) = E
[{∫ 1

u0

1(
√
T D̂T (u) ≤ τT )du

−
∫ u0

0

[
1− 1(

√
T D̂T (u) ≤ τT )

]
du
}2

1(ĤT (1) ≤ bT )
]

and note that

(S.20)
√
TD(u)− ĤT (1) ≤

√
T D̂T (u) ≤

√
TD(u) + ĤT (1).
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On the event that ĤT (1) ≤ bT , it holds that

0 ≤
∫ u0

0

[
1− 1(

√
T D̂T (u) ≤ τT )

]
du(S.21)

≤
∫ u0

0

[
1− 1(

√
TD(u) + bT ≤ τT )

]
du

=

∫ u0

0

[
1− 1(bT ≤ τT )

]
du = 0

for sufficiently large T , where the second line follows by (S.20) and the third
one uses the fact that D(u) = 0 for u ≤ u0. (S.21) immediately implies that

(S.22) MSE1(τT ) = E
[{∫ 1

u0

1(
√
T D̂T (u) ≤ τT )du

}2
1(ĤT (1) ≤ bT )

]
for sufficiently large T . We now derive an upper and lower bound for the
right-hand side of (S.22): Using (S.20) and borrowing some arguments from
the proof of Theorem 5.3, we obtain that

MSE1(τT ) ≤
{∫ 1

u0

1(
√
TD(u) ≤ τT + bT )du

}2

=
{∫ u0+CγT

u0

1(
√
TD(u) ≤ τT + bT )du

}2
≤ (CγT )2

for some sufficiently large constant C and large enough sample sizes T .
Similarly,

MSE1(τT ) ≥
{∫ u0+CγT

u0

1(
√
TD(u) ≤ τT − bT )du

}2
≥ (CγT )2

for a sufficiently small constant C and large enough T , since by (5.1),
maxu∈[u0,u0+CγT ] D(u) ≤ 2cκ(CγT )κ and thus for u ∈ [u0, u0 + CγT ],

1(
√
TD(u) ≤ τT − bT ) ≥ 1(2cκC

κτT ≤ τT − bT ) = 1

for large enough T and sufficiently small C.
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