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Much of the theory for the lasso in the linear model Y = Xβ∗+ε hinges on the
quantity 2‖X>ε‖∞/n, which we call the lasso’s effective noise. Among other
things, the effective noise plays an important role in finite-sample bounds for
the lasso, the calibration of the lasso’s tuning parameter, and inference on the
parameter vector β∗. In this paper, we develop a bootstrap-based estimator
of the quantiles of the effective noise. The estimator is fully data-driven, that
is, does not require any additional tuning parameters. We equip our estimator
with finite-sample guarantees and apply it to tuning parameter calibration for
the lasso and to high-dimensional inference on the parameter vector β∗.
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1 Introduction

Consider the high-dimensional linear model Y = Xβ∗ + ε with response vector

Y ∈ Rn, design matrix X ∈ Rn×p, target vector β∗ ∈ Rp, and random noise ε ∈ Rn.

We allow for a dimension p that is of the same order or even much larger than the

sample size n, and we assume a target vector β∗ that is sparse. A popular estimator

of β∗ in this framework is the lasso (Tibshirani, 1996)

β̂λ ∈ arg min
β∈Rp

{
1

n
‖Y −Xβ‖2

2 + λ‖β‖1

}
, (1.1)

where λ ∈ [0,∞) is a tuning parameter. The lasso estimator satisfies the well-known

prediction bound

λ ≥ 2‖X>ε‖∞
n

=⇒ 1

n
‖X(β∗ − β̂λ)‖2

2 ≤ 2λ‖β∗‖1, (1.2)

which is an immediate consequence of the basic inequality for the lasso (Bühlmann

and van de Geer, 2011, Lemma 6.1) and Hölder’s inequality. This simple bound high-

lights that a crucial quantity in the analysis of the lasso estimator is 2‖X>ε‖∞/n.

We call this quantity henceforth the effective noise.
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The effective noise does not only play a central role in the stated prediction

bound but rather in almost all known finite-sample bounds for the lasso. Such

bounds, called oracle inequalities, are generally of the form (Bühlmann and van de

Geer, 2011; Giraud, 2014; Hastie et al., 2015)

λ ≥ (1 + δ)
2‖X>ε‖∞

n
=⇒ ‖β∗ − β̂λ‖ ≤ κλ (1.3)

with some constant δ ∈ [0,∞), a factor κ = κ(β∗) that may depend on β∗, and a

(pseudo-)norm ‖·‖. Oracle inequalities of the form (1.3) are closely related to tuning

parameter calibration for the lasso: they suggest to control the loss L(β∗, β̂λ) =

‖β∗ − β̂λ‖ of the lasso estimator β̂λ by taking the smallest tuning parameter λ for

which the bound ‖β∗− β̂λ‖ ≤ κλ holds with probability at least 1−α for some given

α ∈ (0, 1). Denoting the (1 − α)-quantile of the effective noise 2‖X>ε‖∞/n by λ∗α,

we immediately derive from the oracle inequality (1.3) that

P
(
‖β∗ − β̂(1+δ)λ‖ ≤ κ(1 + δ)λ

)
≥ 1− α (1.4)

for λ ≥ λ∗α. Stated differently, λ = (1 + δ)λ∗α is the smallest tuning parameter for

which the oracle inequality (1.3) yields the finite-sample bound ‖β∗− β̂λ‖ ≤ κλ with

probability at least 1− α. Importantly, the tuning parameter choice λ = (1 + δ)λ∗α
is not feasible in practice, since the quantile λ∗α of the effective noise is not observed.

An immediate question is, therefore, whether the quantile λ∗α can be estimated.

The effective noise is also closely related to high-dimensional inference. To give an

example, we consider testing the null hypothesis H0 : β∗ = 0 against the alternative

H1 : β∗ 6= 0. Testing this hypothesis corresponds to an important question in

practice: do the regressors in the model Y = Xβ∗ + ε have any effect on the

response at all? A test statistic for the hypothesis H0 is given by T = 2‖X>Y ‖∞/n.

Under H0, it holds that T = 2‖X>ε‖∞/n, that is, T is the effective noise. A test

based on the statistic T can thus be defined as follows: reject H0 at the significance

level α if T > λ∗α. Since the quantile λ∗α is not observed, this test is not feasible in

practice, which brings us back to the question of whether the quantile λ∗α can be

estimated.

In this paper, we devise a novel estimator of the quantile λ∗α based on bootstrap.

Besides the level α ∈ (0, 1), it does not depend on any free parameters, which means

that it is fully data-driven. The estimator can be used to approach a number of

statistical problems in the context of the lasso. We focus on two such problems:

(i) tuning parameter calibration for the lasso and (ii) inference on the parameter

vector β∗. The idea of using an estimator of the quantile λ∗α to approach statistical

issues such as (i) and (ii) is very natural and by no means new. Belloni and Cher-
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nozhukov (2013), for example, choose the tuning parameter of the lasso based on

an estimator of λ∗α. Similar procedures for the square-root lasso and the Dantzig

selector are considered in Belloni et al. (2011) and Chernozhukov et al. (2013), re-

spectively. However, these methods are quite limited as they presume that either

the noise distribution or a good initial guess for the lasso’s tuning parameter is

known. Even though our estimator builds on ideas from the aforementioned papers,

it is markedly different from the methods considered there and goes beyond them

in important aspects. We discuss this in detail in Section 3 after introducing our

estimator.

We now briefly summarize the main contributions of our paper with regards to

the two statistical problems (i) and (ii).

(i) Tuning parameter calibration for the lasso. Our estimator λ̂α of the quantile λ∗α
can be used to calibrate the lasso with essentially optimal finite-sample guaran-

tees. Specifically, we derive finite-sample statements of the form

P
(
‖β∗ − β̂(1+δ)λ̂α

‖ ≤ κ(1 + δ)λ∗α−νn

)
≥ 1− α− ηn, (1.5)

where 0 < νn ≤ Cn−K and 0 < ηn ≤ Cn−K for some positive constants C

and K. Statement (1.5) shows that calibrating the lasso with the estimator λ̂α

yields almost the same finite-sample bound on the loss L(β∗, β) = ‖β∗ − β‖ as

calibrating it with the oracle parameter λ∗α. In particular, (1.5) is almost as

sharp as the oracle bound P(‖β∗ − β̂(1+δ)λ∗α‖ ≤ κ(1 + δ)λ∗α) ≥ 1 − α, which is

obtained by plugging λ = λ∗α into (1.4).

Finite-sample guarantees for the practical calibration of the lasso’s tuning pa-

rameter are scarce. Exceptions include finite-sample bounds for Adaptive Vali-

dation (AV) (Chichignoud et al., 2016) and Cross-Validation (CV) (Chetverikov

et al., 2016). One advantage of our approach via the effective noise is that it

yields finite-sample guarantees not only for a specific loss but for any loss for

which an oracle inequality of the type (1.3) is available. Another advantage is

that it does not depend on secondary tuning parameters that are difficult to

choose in practice; the only parameter it depends on is the level 1 − α, which

plays a similar role as the significance level of a test and, therefore, can be

chosen in the same vein in practice.

(ii) Inference on the parameter vector β∗. Our estimator λ̂α of the quantile λ∗α
can also be used to test hypotheses on the parameter vector β∗ in the model

Y = Xβ∗ + ε. Consider again the problem of testing H0 : β∗ = 0 against

H1 : β∗ 6= 0. Our approach motivates the following test: reject H0 at the signif-

icance level α if T > λ̂α. We prove under mild regularity conditions that this
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test has the correct level α under H0 and is consistent against alternatives that

are not too close to H0. Moreover, we show that the test can be generalized

readily to more complex hypotheses.

High-dimensional inference based on the lasso has turned out to be a very dif-

ficult problem. Some of the few advances that have been made in recent years

include tests for the significance of small, fixed groups of parameters (Belloni

et al., 2013; Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and

Montanari, 2014; Gold et al., 2019), tests for the significance of parameters

entering the lasso path (Lockhart et al., 2014), rates for confidence balls for

the entire parameter vector (and infeasibility thereof) (Nickl and van de Geer,

2013; Cai and Guo, 2018), and methods for inference after model selection (Lee

et al., 2016; Tibshirani et al., 2016). In stark contrast to most other methods for

high-dimensional inference, our tests are completely free of tuning parameters

and, therefore, dispense with any fine-tuning (such as the calibration of multiple

lasso tuning parameters in the first group of papers cited above).

The paper is organized as follows. In Section 2, we detail the modeling framework.

Our estimator of the quantiles of the effective noise is developed in Section 3. In

Section 4, we apply the estimator to tuning parameter calibration and inference for

the lasso. Our theoretical analysis is complemented by a simulation study in Section

5, which investigates the finite-sample performance of our methods.

2 Model setting

We consider the standard linear model

Y = Xβ∗ + ε, (2.1)

where Y = (Y1, . . . , Yn)> ∈ Rn is the response vector, X = (X1, . . . , Xn)> ∈ Rn×p

is the design matrix with the vectors Xi = (Xi1, . . . , Xip)
>, β∗ = (β∗1 , . . . , β

∗
p)
> ∈ Rp

is the parameter vector, and ε = (ε1, . . . , εn)> ∈ Rn is the noise vector. We are

particularly interested in high-dimensional versions of the model, that is, p ≈ n or

even p� n. Throughout the paper, we assume the design matrix X to be random,

but our results carry over readily to fixed design matrices. We impose the following

regularity conditions on the model (2.1):

(C1) The random variables (Xi, εi) are independent across i.

(C2) The covariates Xij have bounded support, that is, |Xij| ≤ CX for all i, j and

some sufficiently large constant CX <∞. Moreover, n−1
∑n

i=1 E[X2
ij] ≥ c2

X for

some constant cX > 0.
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(C3) The noise variables εi are such that E[εi|Xi] = 0 and E[|εi|θ] ≤ Cθ < ∞ for

some θ > 4 and all i. Moreover, the conditional noise variance σ2(Xi) =

E[ε2
i |Xi] satisfies 0 < c2

σ ≤ σ2(·) ≤ C2
σ < ∞ with some suitable constants cσ

and Cσ.

(C4) It holds that p ≤ Crn
r, where r > 0 is an arbitrarily large but fixed constant

and Cr > 0.

(C5) There exist a constant Cβ < ∞ and some small δβ > 0 such that ‖β∗‖1 ≤
Cβn

1/2−δβ .

Condition (C1) stipulates independence across the observations, but the obser-

vations need not be identically distributed. The assumption about the boundedness

of the covariates Xij in (C2) makes the derivations more lucid but can be relaxed

to sufficiently strong moment conditions on the variables Xij. Assumption (C3) on

the moments of the noise terms εi is quite mild: only a bit more than the first four

moments are required to exist. Condition (C4) on the relationship between n and p

is mild as well: p is allowed to grow as any polynomial of n. Condition (C5) imposes

sparsity on the parameter vector β∗ in an `1-sense. One could also replace it by a

similar assumption in terms of the `0-norm. However, an advantage of the `1-version

is that it allows for approximate sparsity – see e.g. Section 3.2 in van de Geer and

Lederer (2013) or Section 2.8 in van de Geer (2016).

3 Estimating the effective noise

3.1 Definition of the estimator

Let λ∗α be the (1− α)-quantile of the effective noise 2‖X>ε‖∞/n, which is formally

defined as λ∗α = inf{q : P(2‖X>ε‖∞/n ≤ q) ≥ 1 − α}. We estimate λ∗α as follows:

for any λ, let ε̂λ = Y −Xβ̂λ be the residual vector that results from fitting the

lasso with the tuning parameter λ, and let e = (e1, . . . , en)> be a standard normal

random vector independent of the data (X, Y ). Define the criterion function

Q̂(λ, e) = max
1≤j≤p

∣∣∣ 2
n

n∑
i=1

Xij ε̂λ,iei

∣∣∣,
and let q̂α(λ) be the (1−α)-quantile of Q̂(λ, e) conditionally on X and Y . Formally,

q̂α(λ) = inf{q : Pe(Q̂(λ, e) ≤ q) ≥ 1 − α}, where we use the shorthand Pe( · ) =

P( · |X, Y ). Our estimator of λ∗α is defined as

λ̂α = inf
{
λ > 0 : q̂α(λ′) ≤ λ′ for all λ′ ≥ λ

}
. (3.1)
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In practice, λ̂α can be computed by the following algorithm:

Step 1: For some large natural number M , specify a grid of points 0 < λ1 < . . . <

λM = λ, where λ = 2‖X>Y ‖∞/n is the smallest tuning parameter λ for

which β̂λ equals zero. Simulate L samples e(1), . . . , e(L) of the standard

normal random vector e.

Step 2: For each grid point 1 ≤ m ≤M , compute the values of the criterion function

{Q̂(λm, e
(`)) : 1 ≤ ` ≤ L} and calculate the empirical (1 − α)-quantile

q̂α,emp(λm) from them.

Step 3: Approximate λ̂α by λ̂α,emp := q̂α,emp(λm̂), where m̂ = min{m : q̂α,emp(λm′) ≤
λm′ for all m′ ≥ m} if q̂α,emp(λM) ≤ λM and m̂ = M otherwise.

The values of M and L in this algorithm can be chosen large without excessive load

on the computations: the dependence of the computational complexity on M can

be reduced by computing the lasso with warm starts along the tuning parameter

path; the influence of L can be reduced through basic parallelization. Hence, the

algorithm is computationally feasible even when n and p are very large.

3.2 Heuristic idea of the estimator

Before analyzing the estimator λ̂α mathematically, we describe the heuristic idea

behind it: for every λ ∈ (0,∞), the criterion function Q̂(λ, e) can be regarded

as a multiplier bootstrap version of the effective noise 2‖X>ε‖∞/n = 2 max1≤j≤p

|
∑n

i=1 Xijεi|/n, where e is the vector of bootstrap multipliers. Consequently, q̂α(λ)

can be interpreted as a bootstrap estimator of the (1−α)-quantile λ∗α of the effective

noise. Since the quality of the estimator q̂α(λ) hinges on the choice of λ, the question

is how to select an estimator q̂α(λ) from the family {q̂α(λ) : λ > 0} that is a good

approximation of λ∗α. Our selection rule (3.1) is motivated by the following two

heuristic claims which are justified below: with high probability, it holds that

q̂α(λ) ≈ λ for λ ∈ [λ∗α − δ, λ∗α + δ] (3.2)

q̂α(λ) < λ for λ > λ∗α + δ (3.3)

with some small δ > 0. Equation (3.2) suggests that the function λ 7→ q̂α(λ) has a

fixed point near λ∗α, whereas equation (3.3) tells us that there should not be any fixed

point for values λ > λ∗α + δ. Taken together, (3.2) and (3.3) suggest approximating

λ∗α by solving the fixed point equation q̂α(λ) = λ and picking the largest such fixed

point λ = λ̂α. This is the heuristic idea which underlies the formal definition of our

estimator λ̂α in (3.1). A graphical illustration is provided in Figure 1.
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Figure 1: Graphical illustration of the estimator λ̂α. The solid black line is the function
λ 7→ q̂α(λ), the dashed line is the 45-degree line, and the two vertical dotted lines indicate
the values of λ∗α and λ̂α, respectively.

Discussion of the heuristic claim (3.2). To start with, we bound the criterion

function Q̂(λ, e) from below and above by

Q(e)− rλ(e) ≤ Q̂(λ, e) ≤ Q(e) + rλ(e),

where

Q(e) = max
1≤j≤p

∣∣∣ 2
n

n∑
i=1

Xijεiei

∣∣∣
rλ(e) = max

1≤j≤p

∣∣∣ 2
n

n∑
i=1

XijX
>
i (β∗ − β̂λ)ei

∣∣∣.
Here, Q(e) is a multiplier bootstrap version of the effective noise which is based on

the true noise terms ε rather than the residuals ε̂λ. The term rλ(e) is a remainder

that captures the estimation error ε̂λ − ε produced by the lasso β̂λ. Let λα be

the (1 − α)-quantile of Q(e) conditionally on X and Y . Theory for the multiplier

bootstrap in high dimensions (Chernozhukov et al., 2013) suggests that the quantile

λα gives a good approximation to λ∗α. If the remainder rλ(e) tends to be small for

a certain choice of λ, then the criterion function Q̂(λ, e) tends to be close to Q(e),

which in turn suggests that the quantile q̂α(λ) is close to λα. Since λα gives a good

approximation to λ∗α, we expect q̂α(λ) to be an accurate estimate of λ∗α as well.

Standard prediction bounds for the lasso suggest that the tuning parameter choice

λ = λ∗α produces a precise model fit Xβ̂λ∗α . The prediction bound (1.2), for example,

implies that with probability at least 1−α, we have ‖X(β∗− β̂λ∗α)‖2
2/n ≤ 2λ∗α‖β∗‖1,

where 2λ∗α‖β∗‖1 = O(‖β∗‖1

√
log(p)/n) = o(1) under our technical conditions.

Hence, we expect the remainder term rλ∗α(e) to be small. From the considerations

in the previous paragraph, it follows that q̂α(λ∗α) should be a suitable estimate of
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λ∗α, that is, q̂α(λ∗α) ≈ λ∗α. Since q̂α(λ) ≈ q̂α(λ∗α) for values of λ close to λ∗α (which is

due to the continuity of the solution path of the lasso), we further expect that

q̂α(λ) ≈ λ for λ ∈ [λ∗α − δ, λ∗α + δ]

with some small δ > 0, which is the heuristic claim (3.2).

Discussion of the heuristic claim (3.3). As we gradually increase λ from λ∗α to

larger values, the lasso estimator β̂λ tends to become more biased towards zero,

implying that the residual vector ε̂λ gets a less accurate proxy of the noise vector

ε. As a consequence, we expect the remainder term rλ(e) and thus the criterion

function Q̂(λ, e) to increase as λ gets larger. This in turn suggests that the quantile

q̂α(λ) gets larger with increasing λ, thus overestimating λ∗α more and more strongly.

On the other hand, one can formally prove that the remainder rλ(e) grows quite

slowly with λ. In particular, one can show that with high probability, rλ(e) ≤
C{(log n)2/n1/4}

√
λ for all λ ≥ λ∗α. A formalized version of this statement is given

in Lemma A.2 in the Appendix. Since Q̂(λ, e) ≤ Q(e) + rλ(e), this implies that the

criterion function Q̂(λ, e) and thus its (1−α)-quantile q̂α(λ) grow fairly slowly with

increasing λ. In particular, we expect q̂α(λ) to grow more slowly than λ, that is,

q̂α(λ) < λ for λ > λ∗α + δ

with some small δ > 0. This is the heuristic claim (3.3).

3.3 Theoretical analysis of the estimator

We now analyze the theoretical properties of the estimator λ̂α. To do so, we use the

following notation. By C1, K1, C2 and K2, we denote positive real constants that

depend only on the set of model parameters Θ = {cX , CX , cσ, Cσ, Cθ, θ, Cr, r, Cβ, δβ}
defined in (C1)–(C5). The constants C1, K1, C2 and K2 are thus in particular

independent of the sample size n and the dimension p. Moreover, we let

Tλ =
{ 2

n
‖X>ε‖∞ ≤ λ

}
be the event that the effective noise 2‖X>ε‖∞/n is smaller than λ. The following

theorem, which is the main result of the paper, formally relates the estimator λ̂α to

the quantiles of the effective noise. In the sequel, we will use this theorem to derive

results on optimal tuning parameter choice and inference for the lasso.
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Theorem 3.1. Let (C1)–(C5) be satisfied. There exist an event An with P(An) ≥
1−C1n

−K1 for some positive constants C1 and K1 and a sequence of real numbers νn

with 0 < νn ≤ C2n
−K2 for some positive constants C2 and K2 such that the following

holds: on the event Tλ∗α+νn
∩ An,

λ∗α+νn ≤ λ̂α ≤ λ∗α−νn

for every α ∈ (an, 1− an) with an = 2νn + (n ∨ p)−1.

The proof of Theorem 3.1 is given in the Appendix. Precise definitions of An and

νn are provided in equations (A.2) and (A.6), respectively. It is important to note

that the bounds λ∗α+νn and λ∗α−νn in Theorem 3.1 are design-specific, that is, they

depend on the distribution of the design vectors Xi (as well as on the distribution

of the noise variables εi). Among other things, the bounds tend to get smaller as

the design gets more correlated, that is, as the correlation between the covariates

Xij increases.

Since P(Tλ∗α+νn
∩ An) ≥ 1 − α − Cn−K with some constants C and K that only

depend on the model parameters Θ, Theorem 3.1 immediately implies that

P
(
λ∗α+νn ≤ λ̂α ≤ λ∗α−νn

)
≥ 1− α− Cn−K .

Hence, with probability at least 1 − α − Cn−K = 1 − α − o(1), our estimator λ̂α

gives a good approximation to λ∗α in the sense that λ∗α+νn ≤ λ̂α ≤ λ∗α−νn . Another

immediate consequence of Theorem 3.1 is that |λ̂α − λ∗α| ≤ λ∗α−νn − λ
∗
α+νn on the

event Tλ∗α+νn
∩ An. From this, we obtain the deviation inequality

P
(
|λ̂α − λ∗α| ≤ ρn,X,ε,α

)
≥ 1− α− Cn−K ,

where ρn,X,ε,α = λ∗α−νn−λ
∗
α+νn . With the help of Proposition A.1 from the Appendix,

it is further possible to replace the bound ρn,X,ε,α by some kind of Gaussian version:

Let G = (G1, . . . , Gp)
> be a Gaussian random vector with E[Gj] = 0 for all j and

the covariances

E[GjGk] = E

[( 1√
n

n∑
i=1

Xijεi

)( 1√
n

n∑
i=1

Xikεi

)]

for 1 ≤ j ≤ k ≤ p. Moreover, let γGα be the (1− α)-quantile of max1≤j≤p |Gj|. Then

P
(
|λ̂α − λ∗α| ≤ ρGn,X,ε,α

)
≥ 1− α− Cn−K

with ρGn,X,ε,α = 2(γGα−2νn − γ
G
α+2νn)/

√
n.

9



Remark 3.1. An interesting question is the following: how large is the distance

γGα−νn − γ
G
α+νn and thus the bound ρGn,X,ε,α? By definition, γGα is the (1−α)-quantile

of the maximum max1≤j≤p |Gj| of p Gaussian random variables with a general, poten-

tially very complicated covariance structure. It is highly non-trivial to characterize

the distribution of maxima of Gaussian random variables with a general correlation

structure. Hence, finding precise bounds on the quantiles γGα (and thus their dis-

tance) is a hard problem in general. In some special cases, however, it is possible

to obtain suitable bounds. Consider in particular the situation that the variables Gj

are i.i.d., which occurs for example when (i) the design variables Xij are normalized

such that E[Xij] = 0 and E[X2
ij] = 1 for all i and j, (ii) the design is uncorrelated

(i.e., E[XijXik] = 0 for all j 6= k), and (iii) the noise εi is homoskedastic (i.e.,

σ2(Xi) ≡ const.). In this case, one can show that

γGα−2νn − γ
G
α+2νn ≤

C√
log p

(3.4)

via classic extreme value theory, where C is a sufficiently large constant independent

of n and p. A brief sketch of the proof is included in the Supplementary Material

for completeness.

3.4 Relationship of the estimator to existing methods

Roughly speaking, existing methods for estimating the quantiles of the effective

noise fall into two categories:

(A) If the distribution of the error vector ε is known, it is trivial to construct an

approximation of λ∗α. To fix ideas, let ε ∼ N(0, σ2I) with known variance

parameter σ2 and consider a fixed design X for simplicity. (Otherwise, assume

that ε is independent of X and condition on the latter.) In this case, the

distribution of the effective noise 2‖X>ε‖∞/n and thus its (1 − α)-quantile

λ∗α is known and can be computed by Monte Carlo simulations in practice. If

the distribution of ε is not known exactly but is known to belong to a small

family of distributions F , it is further possible to compute (finite sample and

asymptotic) upper bounds on λ∗α under certain conditions as detailed in Belloni

et al. (2011).

(B) In the more interesting situation where the distribution of ε is unknown, a

simple way to estimate λ∗α is as follows: Let λ[0] be a preliminary choice of the

lasso’s tuning parameter. Plug λ[0] into q̂α(·) and use the resulting value q̂α(λ[0])

as an estimator of λ∗α. – This plug-in approach is not very satisfactory: The

quality of the estimator q̂α(λ[0]) obviously hinges on the precise choice of λ[0].
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In particular, as discussed in our heuristic considerations of Section 3.2, we can

expect the following: If λ[0] is close to λ∗α, then the estimator q̂α(λ[0]) will tend

to be close to λ∗α as well. In contrast, if λ[0] happens to be far away from λ∗α,

then q̂α(λ[0]) may also be far off. Hence, simply plugging a preliminary choice

λ[0] into q̂α(·) does not solve the problem of estimating λ∗α but merely shifts it

to the choice of λ[0]: if we want to make sure that q̂α(λ[0]) is a good estimator

of λ∗α, we need to make sure that the same holds for the preliminary estimator

λ[0].

Estimators of category (A) are for example considered in Belloni et al. (2011) and

Belloni and Chernozhukov (2013), estimators of category (B) can be found in Cher-

nozhukov et al. (2013) (in the context of the Dantzig selector rather than the lasso).

It is important to emphasize that the problem of estimating the quantile λ∗α is not

the focus but only a very minor aspect of the aforementioned papers. This is pre-

sumably the reason why only the two simple approaches (A) and (B) have been

considered there. Indeed, we are not aware of any article whose main focus is the

estimation of the quantiles of the effective noise.

One way to improve on the plug-in method from (B) is to iterate it: Given some

starting value λ[0], one computes the update λ[r] = q̂α(λ[r−1]) for r = 1, 2, . . . until

some convergence criterion is satisfied. The idea behind this iterative procedure is

to find a fixed point λ = q̂α(λ) of the function q̂α(·). Hence, it relies on the same

heuristic as our method. The main contribution of our paper is (i) to devise an

estimation approach which formalizes the fixed point heuristic and (ii) to derive

finite sample theory for it. An important practical advantage of our fixed point

method over the plug-in method from (B) is that it is free of tuning parameters:

unlike the plug-in method, it does not require a preliminary estimator λ[0]. Its only

free parameter is the value α ∈ (0, 1).

4 Statistical applications

4.1 Tuning parameter choice

A major challenge when implementing the lasso estimator β̂λ is to choose the regu-

larization parameter λ. As already discussed in the Introduction, the lasso satisfies

the prediction bound (1.2), which can be rephrased as follows:

On the event Tλ, ‖X(β∗ − β̂λ′)‖2
2/n ≤ 2λ′‖β∗‖1 for every λ′ ≥ λ. (4.1)

To control the prediction error, we would like to choose the smallest tuning parame-

ter λ such that the bound ‖X(β∗− β̂λ)‖2
2/n ≤ 2λ‖β∗‖1 holds with high probability.
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Formally speaking, we may consider

λoracle
α = inf{λ > 0 : P(Tλ) ≥ 1− α}

with some α ∈ (0, 1) as the optimal tuning parameter. We call λoracle
α the oracle

tuning parameter. It immediately follows from (4.1) that for every λ ≥ λoracle
α ,

P
(

1

n
‖X(β∗ − β̂λ)‖2

2 ≤ 2λ‖β∗‖1

)
≥ 1− α,

whereas this probability bound is not guaranteed for any other λ < λoracle
α . Conse-

quently, λoracle
α is the smallest tuning parameter for which the prediction bound (4.1)

yields the finite-sample guarantee

1

n
‖X(β∗ − β̂λoracle

α
)‖2

2 ≤ 2λoracle
α ‖β∗‖1 (4.2)

with probability at least 1 − α. Importantly, the oracle tuning parameter λoracle
α is

nothing else than the (1− α)-quantile λ∗α of the effective noise, that is, λoracle
α = λ∗α

for every α ∈ (0, 1). Our estimator λ̂α can thus be interpreted as an approximation

of the oracle parameter λoracle
α . With the help of Theorem 3.1, we can show that

implementing β̂λ with the estimator λ = λ̂α produces almost the same finite-sample

guarantee as (4.2).

Proposition 4.1. Let the conditions of Theorem 3.1 be satisfied. With probability

≥ 1− α− νn − C1n
−K1 = 1− α + o(1), it holds that

1

n
‖X(β∗ − β̂λ̂α)‖2

2 ≤ 2λoracle
α−νn‖β

∗‖1.

For completeness, a short proof is provided in the Appendix. The upper bound

2λoracle
α−νn‖β

∗‖1 in Proposition 4.1 is almost as sharp as the bound 2λoracle
α ‖β∗‖1 in

(4.2); the only difference is that the (1−α)-quantile λoracle
α is replaced by the some-

what larger (1 − {α − νn})-quantile λoracle
α−νn . There are improved versions of the

prediction bound (1.2) (Lederer et al., 2019) as well as other types of prediction

bounds (Dalalyan et al., 2017; Hebiri and Lederer, 2012; van de Geer and Lederer,

2013) that can be treated in the same way.

Our method does not only allow us to obtain finite-sample bounds on the pre-

diction loss. It can also be used to equip the lasso with finite-sample guarantees for

other losses. We consider the `∞-loss L∞(β∗, β) = ‖β∗−β‖∞ as an example. Analo-

gous considerations apply to any other loss for which an oracle inequality of the form

(1.3) is available, such as the `1- and `2-losses. Let S = {j : β∗j 6= 0} be the active

set of β∗. Moreover, for any vector v = (v1, . . . , vp)
> ∈ Rp, let vS = (vj1(j ∈ S))pj=1

12



and define vS{ analogously with S{ = {1 . . . , p} \ S. The design matrix X is said

to fulfill the `∞-restricted eigenvalue condition (Chichignoud et al., 2016) with the

constants φ > 0 and δ > 0 if

‖X>Xv‖∞
n

≥ φ‖v‖∞ for all v ∈ Cδ(S), (4.3)

where Cδ(S) is the double cone

Cδ(S) =

{
v ∈ Rp : ‖vS{‖1 ≤

2 + δ

δ
‖vS‖1

}
.

Under condition (4.3), we obtain the following oracle inequality, whose proof is

provided in the Supplementary Material.

Lemma 4.1. Suppose that X satisfies the restricted eigenvalue condition (4.3). On

the event Tλ, it holds that

‖β̂λ′ − β∗‖∞ ≤ κλ′ (4.4)

for every λ′ ≥ (1 + δ)λ with κ = 2/φ.

Whereas this `∞-oracle inequality is valid under condition (4.3), different conditions

are needed to obtain oracle inequalities for other losses – see van de Geer and

Bühlmann (2009) for a discussion of different assumptions. In the `2-loss case, for

instance, an `2-restricted eigenvalue condition is usually imposed, which is somewhat

different (and less restrictive) than (4.3). Moreover, in the prediction loss case

considered above, no conditions on the design (in particular, no restricted eigenvalue

conditions) are needed at all. Hence, condition (4.3) is not an assumption imposed

by our method, it is rather inflicted by the oracle inequality of the `∞-loss.

Let Bn be the event that X satisfies the restricted eigenvalue condition (4.3) and

note that P(Bn)→ 1 for certain classes of random design matrices X (van de Geer

and Muro, 2014). The oracle inequality of Lemma 4.1 can be rephrased as follows:

on the event Tλ ∩ Bn, it holds that ‖β̂λ′ − β∗‖∞ ≤ κλ′ for any λ′ ≥ (1 + δ)λ. The

oracle parameter λoracle
α yields the following finite-sample guarantee: on the event

Tλoracle
α
∩ Bn, that is, with probability ≥ 1− α− P (B{

n), it holds that

‖β̂(1+δ)λoracle
α
− β∗‖∞ ≤ (1 + δ)κλoracle

α . (4.5)

Theorem 3.1 implies that we can approximately recover this finite-sample guarantee

when replacing the oracle parameter λoracle
α with the estimator λ̂α.
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Proposition 4.2. Let the conditions of Theorem 3.1 be satisfied. With probability

≥ 1− α− P(B{
n)− νn − C1n

−K1 = 1− α− P(B{
n) + o(1), it holds that

‖β̂(1+δ)λ̂α
− β∗‖∞ ≤ (1 + δ)κλoracle

α−νn .

A proof of Proposition 4.2 can be found in the Appendix. It is important to note

that the `∞-bound of Proposition 4.2 entails finite-sample guarantees for variable

selection. Specifically, it implies that with probability ≥ 1 − α − P(B{
n) + o(1),

the lasso estimator β̂(1+δ)λ̂α
recovers all non-zero components of β∗ that are larger

in absolute value than (1 + δ)κλoracle
α−νn . From Lemma A.3 and Proposition A.1 in

the Appendix, it follows that λoracle
α−νn ≤ C

√
log(n ∨ p)/n with some sufficiently large

constant C. Hence, with probability ≥ 1 − α − P(B{
n) + o(1), the lasso estimator

β̂(1+δ)λ̂α
in particular recovers all non-zero entries of β∗ that are of larger order than

O(
√

log(n ∨ p)/n).

4.2 Inference for the lasso

Inference for the lasso is a notoriously difficult problem: the distribution of the lasso

has a complicated limit and is hardly useful for statistical inference (Knight and Fu,

2000; Leeb and Pötscher, 2005). For this reason, inferential methods for the lasso

are quite rare. Some exceptions are tests for the significance of small, fixed groups

of parameters (Belloni et al., 2013; Zhang and Zhang, 2014; van de Geer et al., 2014;

Javanmard and Montanari, 2014; Gold et al., 2019) and tests for the significance

of parameters entering the lasso path (Lockhart et al., 2014). In what follows, we

show that our method enables us to construct tuning-parameter-free tests for certain

hypotheses of interest.

We first consider testing the null hypothesis H0 : β∗ = 0 against the alternative

H1 : β∗ 6= 0, which was briefly discussed in the Introduction. Our test statistic of H0

is defined as

T =
2‖X>Y ‖∞

n
,

which implies that T = 2‖X>ε‖∞/n under H0, that is, T is the effective noise under

H0. This observation suggests to define a test of H0 as follows: reject H0 at the

significance level α if T > λ̂α, where λ̂α estimates the (1−α)-quantile λ∗α of T under

H0. This test has the following theoretical properties.

Proposition 4.3. Let the conditions of Theorem 3.1 be satisfied. Under the null

hypothesis H0 : β∗ = 0, it holds that

P(T ≤ λ̂α) ≥ 1− α + o(1).
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Moreover, under any alternative β∗ 6= 0 that satisfies the condition P(‖X>Xβ∗‖∞/n
≥ c
√

log(n ∨ p)/n)→ 1 for every fixed c > 0, it holds that

P(T > λ̂α) = 1− o(1).

The proof is deferred to the Appendix. Proposition 4.3 ensures that the proposed

test is of level α asymptotically and has asymptotic power 1 against any alter-

native β∗ 6= 0 that satisfies the condition P(‖X>Xβ∗‖∞/n ≥ c
√

log(n ∨ p)/n)

→ 1 for every c > 0. Such a condition is inevitable: in the model Y = Xβ∗ + ε,

it is not possible to distinguish between vectors β∗ 6= 0 that satisfy Xβ∗ = 0 and

the null vector. Hence, a test can only have power against alternatives β∗ 6= 0

that satisfy Xβ∗ 6= 0, that is, against alternatives β∗ 6= 0 that do not lie in the

kernel Ker(X) = Ker(X>X/n) of the linear mapping X. By imposing the condi-

tion P(‖X>Xβ∗‖∞/n ≥ c
√

log(n ∨ p)/n)→ 1, we restrict attention to alternatives

β∗ 6= 0 that have enough signal outside the kernel of X.

We now generalize the discussed test procedure in a way that allows to handle

more complex hypotheses. Specifically, we generalize it such that a low-dimensional

linear model can be tested against a high-dimensional alternative. To do so, we

partition the design matrix X into two parts according to X = (XA,XB), where

A ∪̇B = {1, . . . , p}, XA is the part of the design matrix that contains the obser-

vations on the regressors in the set A, and XB contains the observations on the

regressors in the set B. We also partition the parameter vector β∗ accordingly into

two parts β∗A ∈ R|A| and β∗B ∈ R|B| such that β∗ = ((β∗A)>, (β∗B)>)>. The linear

model (2.1) can then be written as

Y = XAβ
∗
A +XBβ

∗
B + ε. (4.6)

In practice, regression is often based on simple, low-dimensional models of the form

Y = XAβ
∗
A + w, where w is the error term, and the number of regressors |A| is

small. Quite frequently, however, the question arises whether important explanatory

variables are missing from these simple models. This question can formally be

checked by a statistical test of the low-dimensional model Y = XAβ
∗
A + w against

a high-dimensional alternative of the form (4.6) that contains a large number |B|
of controls. More precisely speaking, a test of the null hypothesis H0,B : β∗B = 0

against the alternative H1,B : β∗B 6= 0 is required. Note that setting A = ∅ and

B = {1, . . . , p} nests the previously discussed problem of testing H0 against H1 as

a special case.

We construct a test of H0,B as follows: let P = I −XA(X>AXA)−1X>A be the

projection matrix onto the orthogonal complement of the column space of XA.
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Applying P to both sides of the model equation (4.6) gives

PY = PXBβ
∗
B + u (4.7)

with u = Pε, which is itself a high-dimensional linear model with response PY and

design matrix PXB. In order to test whether the parameter vector β∗B in model (4.7)

is equal to 0, we use the same strategy as for the simpler problem of testing H0: our

test statistic is given by

TB =
2‖(PXB)>PY ‖∞

n
,

which implies that TB = 2‖(PXB)>u‖∞/n under H0,B. The quantiles of the statis-

tic 2‖(PXB)>u‖∞/n can be approximated by our method developed in Section 3:

define the criterion function

Q̂B(λ, e) = max
j∈B

∣∣∣ 2
n

n∑
i=1

(PXB)ij ûλ,i ei

∣∣∣,
where (PXB)ij is the (i, j)-th element of the matrix PXB, ûλ = PY −PXBβ̂B,λ is

the residual vector which results from fitting the lasso with tuning parameter λ to

the model (4.7), and e = (e1, . . . , en)> is a standard normal random vector indepen-

dent of the data (X, Y ). Moreover, let q̂α,B(λ) be the (1 − α)-quantile of Q̂B(λ, e)

conditionally on (X, Y ). As described in Section 3, we estimate the (1−α)-quantile

λ∗α,B of 2‖(PXB)>u‖∞/n by

λ̂α,B = inf
{
λ > 0 : q̂α,B(λ′) ≤ λ′ for all λ′ ≥ λ

}
.

Our test of the hypothesis H0,B is now carried out as follows: reject H0,B at the

significance level α if TB > λ̂α,B.

To derive the formal properties of the test, we define ϑ(j) = arg minϑ∈R|A| E[(Xij−
X>i,Aϑ)2] with Xi,A = (Xij : j ∈ A). Put differently, we define X>i,Aϑ

(j) to be the

L2-projection of Xij onto the linear subspace spanned by the elements of Xi,A. We

assume that minj∈B E[(Xij − X>i,Aϑ
(j))2] ≥ cϑ > 0 for some constant cϑ. Such an

assumption is to be expected: it essentially says that the random variables Xij with

j ∈ B cannot be represented by a linear combination of the random variables Xij

with j ∈ A. The assumption is also mild; in particular, it is much weaker than

irrepresentable-type conditions that are usually imposed in the context of variable

selection for the lasso (van de Geer and Bühlmann, 2009). We can now summarize

the formal properties of the test.
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Proposition 4.4. Let the conditions of Theorem 3.1 be satisfied, suppose for sim-

plicity that the random variables (Xi, εi) are identically distributed across i, and let

|A| be a fixed number that does not grow with the sample size n. In addition, assume

that the |A| × |A| matrix ΨA = (E[XijXik] : j, k ∈ A) is positive definite and that

minj∈B E[(Xij − X>i,Aϑ(j))2] ≥ cϑ > 0. Under the null hypothesis H0,B : β∗B = 0, it

holds that

P(TB ≤ λ̂α,B) ≥ 1− α + o(1).

Moreover, under any alternative β∗B 6= 0 with the property that P(‖(PXB)>(PXB)

β∗B‖∞/n ≥ c
√

log(n ∨ p)/n)→ 1 for every c > 0, it holds that

P(TB > λ̂α,B) = 1− o(1).

This result shows that the proposed procedure is an asymptotic level-α-test that

has asymptotic power 1 against any alternative β∗B 6= 0 with the property that

P(‖(PXB)>(PXB)β∗B‖∞/n ≥ c
√

log(n ∨ p)/n)→ 1 for any c > 0. The latter con-

dition parallels the one in Proposition 4.3. The proof of Proposition 4.4 is provided

in the Appendix.

5 Simulations

In this section, we corroborate our results through Monte Carlo experiments. We

simulate data from the linear regression model (2.1) with sample size n = 500

and dimension p ∈ {250, 500, 1000}. The covariate vectors Xi = (Xi1, . . . , Xip)
>

are independently sampled from a p-dimensional normal distribution with mean 0

and covariance matrix (1 − κ)I + κE, where I is the p × p identity matrix, E =

(1, . . . , 1)>(1, . . . , 1) ∈ Rp×p, and κ ∈ [0, 1) is the correlation between the entries of

the covariate vector Xi. We show the simulation results for κ = 0.25 unless indicated

differently, but we obtained similar results for other values of κ as well. The noise

variables εi are drawn i.i.d. from a normal distribution with mean 0 and variance

σ2 = 1. The target vector β∗ has the form β∗ = (c, . . . , c, 0, . . . , 0)>, where the first 5

entries are set to c and the remaining ones to 0. The value of c is chosen such that one

obtains a prespecified value for the signal-to-noise ratio SNR =
√
‖Xβ∗‖2

2/n/σ =√
‖Xβ∗‖2

2/n. We set SNR = 1 except when we analyze the hypothesis tests from

Section 4.2: there, we consider the value SNR = 0, which corresponds to the null

hypothesis, and the values SNR ∈ {0.1, 0.2}, which correspond to two different alter-

natives. We implement our estimation method with L = 100 bootstrap replicates,

which seems sufficient across a wide variety of settings. The lasso paths are computed

through glmnet (Friedman et al., 2010) version 2.2.1 with an equidistant grid of λ-
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Figure 2: Histograms of the estimates λ̂α for different values of n and p. The red vertical
lines indicate the values of the oracle parameter λ∗α; the dotted vertical lines give the
values of E[λ], where λ = 2‖X>Y ‖∞/n is the smallest λ for which β̂λ = 0.

values and M = 100, that is, λ ∈ {1 ·2‖X>Y ‖∞/(100n), 2 ·2‖X>Y ‖∞/(100n), . . . }.
All Monte Carlo experiments are based on N = 1000 simulation runs. The imple-

mentations are in R version 3.5.1.

5.1 Approximation quality

We first examine how well the estimator λ̂α approximates the quantile λ∗α. Figure 2

contains histograms of theN = 1000 estimates of λ̂α for α = 0.05 and different values

of n and p. The red vertical line in each plot indicates the value of the quantile λ∗α,

which is computed by simulating 1000 values of the effective noise 2‖X>ε‖∞/n and

then taking their empirical (1 − α)-quantile. The x-axis covers the interval [0,Eλ]

in each plot, where λ = 2‖X>Y ‖∞/n is the smallest tuning parameter for which

the lasso estimator is constantly equal to zero. This range is motivated as follows:

varying the tuning parameter λ in the interval [0, λ] produces all possible lasso

solutions. It is thus natural to measure the approximation quality of λ̂α by the

deviation |λ̂α − λ∗α| relative to the length of the interval [0, λ] rather than by the

absolute deviation |λ̂α − λ∗α|. This, in turn, suggests that the right scale to plot

histograms of the estimates λ̂α is the interval [0, λ]. Since this interval is stochastic,

we let the x-axis of our plots span the interval [0,Eλ] instead. The histogram plots

of Figure 2 can be regarded as an empirical illustration of the deviation inequalities

derived after Theorem 3.1. They demonstrate that the estimates λ̂α approximate

the oracle quantile λ∗α accurately.
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(a) Hamming distances for κ = 0.25
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(b) Hamming distances for κ = 0

Figure 3: Histograms of the Hamming distances produced by the estimators β̂, β̂oracle,
and β̂CV. The solid black lines indicate the histograms of ∆H(β̂, β∗), the gray-shaded areas
indicate the histograms of ∆H(β̂oracle, β

∗), and the dotted lines indicate the histograms of
∆H(β̂CV, β

∗). The histograms of our estimator β̂ and the oracle β̂oracle in Subfigure (b)
essentially consist of only one bin at the value 0 that goes up to almost 1000 (which is the
total number of simulation runs); to make the histograms of the cross-validated estimator
visible, we cut the y-axis of the plots in Subfigure (b) at the value 100.

5.2 Tuning parameter calibration

We next investigate the performance of our method for calibrating the tuning pa-

rameter of the lasso. Our estimator of β∗ is defined as β̂ := β̂λ̂α , where we use the

estimator λ̂α with α = 0.05 as the tuning parameter. Our main interest is a compar-

ison between β̂ and the oracle estimator β̂oracle := β̂λ∗α , which is tuned with the oracle

parameter λ∗α rather than its estimate λ̂α. This comparison allows us to investigate

whether β̂ is as accurate as suggested by our theory. To highlight the practical

performance of our estimator further, we also compare β̂ to the lasso estimator

β̂CV := β̂λ̂CV
, where λ̂CV is the tuning parameter chosen by 10-fold cross-validation

(which is performed on the same grid of λ-values as our method). Of course, there

are many other tuning parameter calibration schemes besides cross-validation, but
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Figure 4: Histograms of the `1-loss produced by the estimators β̂, β̂oracle, and β̂CV. The
format of the plots is the same as in Figure 3.
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Figure 5: Histograms of the `∞-loss produced by the estimators β̂, β̂oracle, and β̂CV. The
format of the plots is the same as in Figure 3.

a comprehensive comparison of all calibration schemes is beyond the scope of this

paper, and, therefore, we focus on the arguably most popular representative.

We use four error measures to compare vectors β ∈ Rp to β∗: the Hamming dis-

tance ∆H(β, β∗) =
∑p

j=1 |1(βj = 0) − 1(β∗j = 0)|, the `1-distance ∆1(β, β∗) =

‖β − β∗‖1, the `∞-distance ∆∞(β, β∗) = ‖β − β∗‖∞, and the prediction error

∆pr(β, β
∗) = ‖X(β − β∗)‖2

2/n. The Hamming distance allows us to investigate

the variable selection properties of the estimators β̂, β̂oracle and β̂CV: the quantity

∆H(β, β∗) counts the number of false-negative and false-positive entries in the vec-

tor β, where the entry j is defined to be a false negative if β∗j 6= 0 but βj = 0

and a false positive if β∗j = 0 but βj 6= 0. The `p-loss with ` ∈ {1,∞} and the

mean-squared prediction error ∆pr, on the other hand, allow us to investigate the

estimators’ estimation and prediction properties, respectively.

The simulation results for the Hamming distance are reported in Figure 3a for

our usual value κ = 0.25 of the correlation and in Figure 3b for κ = 0. The black

line in each plot depicts the histogram of the Hamming distances ∆H(β̂, β∗) that are
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Figure 6: Histograms of the prediction loss produced by the estimators β̂, β̂oracle, and β̂CV.
The format of the plots is the same as in Figure 3.

produced by our estimator β̂ over the N = 1000 simulation runs, the gray-shaded

area depicts the histogram of ∆H(β̂oracle, β
∗) produced by the oracle β̂oracle, and the

dotted line depicts the histogram of ∆H(β̂CV, β
∗) produced by the cross-validated

estimator β̂CV.

Comparing Figures 3a and 3b, we find that both the oracle and our estimator

provide more accurate variable selection for smaller correlations – in line with the-

ories for the lasso (Zhao and Yu, 2006). We also find that both the oracle and our

estimator provide more accurate variable selection than cross-validation – in line

with the well-known fact that cross-validation typically overselects. Finally, we find

that the histograms of our estimator are virtually the same as the ones of the oracle

estimator – in line with our theory.

The simulation results for the `1-norm are reported in Figure 4 and for the `∞-

norm in Figure 5. We find again that for both the `1- and the `∞-loss, the histograms

produced by our estimator β̂ are extremely close to those of the oracle β̂oracle, mean-

ing that the performance of our procedure matches the performance of the oracle.

We also find that our estimator improves on cross-validation in terms of the `1-norm

but slightly loses in terms of the `∞-norm. The reason for this difference is that λ̂CV

tends to be much smaller than λ̂α and λ∗α; this induces an accumulation of small,

spurious parameters, which affects the `1-norm more than the `∞-norm.

The simulation results for the prediction error are reported in Figure 6. Once

more, the histograms of our estimator are extremely close to those of the oracle.

Cross-validation performs best, which is no surprise in view of it being specifically

designed for this task.

The two main conclusions from the simulations are that our method (i) exhibits

virtually the same performance as the oracle and (ii) rivals cross-validation in terms

of variable selection and estimation but not necessarily prediction.
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Table 1: Empirical size under the null and power against different alternatives.

(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.024 0.057 0.110 0.021 0.056 0.087
(n, p) = (500, 500) 0.018 0.050 0.097 0.008 0.064 0.116
(n, p) = (500, 1000) 0.015 0.044 0.082 0.010 0.050 0.095

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.151 0.304 0.440 0.118 0.341 0.458
(n, p) = (500, 500) 0.148 0.293 0.433 0.089 0.341 0.456
(n, p) = (500, 1000) 0.122 0.284 0.409 0.090 0.293 0.417

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.644 0.850 0.923 0.664 0.890 0.940
(n, p) = (500, 500) 0.631 0.840 0.909 0.579 0.880 0.926
(n, p) = (500, 1000) 0.599 0.811 0.904 0.600 0.867 0.918

5.3 Inference

We finally explore the empirical performance of the tests developed in Section 4.2.

We focus on the simpler test H0 : β∗ = 0 against H1 : β∗ 6= 0, where we reject H0

at the significance level α if T = 2‖X>Y ‖∞/n > λ̂α. We compare this test with

an oracle version that rejects H0 if T > λ∗α. Similarly as before, this comparison

allows us to investigate if our practical test matches its theoretical (and in practice

infeasible) analog as suggested by our theory. The simulation setup is as described

before, including the mentioned variations over the signal-to-noise ratio SNR: the

value SNR = 0 specifies the null hypothesis H0 : β∗ = 0; the values SNR ∈ {0.1, 0.2}
specify the alternative (the larger SNR, the further the setup deviates from the null).

Table 1a reports the empirical size of our feasible test and of its oracle version

under the null for different values of the nominal size α, sample size n, and dimen-

sion p. The empirical size is defined as the number of rejections divided by the total

number of simulation runs. We find that the size both of our feasible test and of
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the oracle test is close to the target α in all considered scenarios.

Tables 1b and 1c report the empirical power of the tests for the signal-to-noise

ratios SNR = 0.1 and SNR = 0.2, respectively. The empirical power is again defined

as the number of rejections divided by the total number of simulation runs. We find

that the power increases when the signal-to-noise ratio SNR goes up, as expected.

We further find that the power of our test is very similar to the one of the oracle

test. Moreover, the power can be seen to be quite substantial despite the small

signal-to-noise ratios.

We conclude that our test has (i) similar performance as its oracle version,

(ii) sizes close to the nominal ones, and (iii) considerable power against alterna-

tives.

5.4 Robustness checks

In Section S.2 of the Supplementary Material, we carry out some robustness checks.

We in particular examine how our simulation results are affected by different dis-

tributions of the noise εi and the design Xi, how our method for tuning parameter

calibration is influenced by the choice of α, and what is the effect of the number of

bootstrap iterations L and the grid size M on the simulation results.
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Appendix

In what follows, we prove the main theoretical results of the paper. We assume

throughout that the technical conditions (C1)–(C5) are fulfilled.

Notation

Throughout the Appendix, the symbols B, c, C, D and K denote generic constants

that may take a different value on each occurrence. Moreover, the symbols Bj,

cj, Cj, Dj and Kj with subscript j (which may be either a natural number or a

letter) are specific constants that are defined in the course of the Appendix. Unless

stated differently, the constants B, c, C, D, K, Bj, cj, Cj, Dj and Kj depend

neither on the sample size n nor on the dimension p. For ease of notation, we let

Θ = {cX , CX , cσ, Cσ, Cθ, θ, Cr, r, Cβ, δβ} be the list of model parameters specified in

(C1)–(C5). For a, b ∈ R, we write a ∨ b = max{a, b}. The random variables X,
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ε and e are assumed to be defined on the same probability space (Ω,A,P) for all

n ≥ 1. We write Pe(·) = P( · |X, ε) and Ee[ · ] = E[ · |X, ε] to denote the probability

and expectation conditionally on X and ε.

To derive the theoretical results of the paper, it is convenient to reformulate the

estimator λ̂α as follows: define Π̂(γ, e) = max1≤j≤p |Ŵj(γ, e)|, where

Ŵ (γ, e) =
(
Ŵ1(γ, e), . . . , Ŵp(γ, e)

)>
with Ŵj(γ, e) =

1√
n

n∑
i=1

Xij ε̂ 2√
n
γ,iei.

Moreover, let π̂α(γ) be the (1 − α)-quantile of Π̂(γ, e) conditionally on X and Y ,

that is, conditionally on X and ε, which is formally defined as π̂α(γ) = inf{q :

Pe(Π̂(γ, e) ≤ q) ≥ 1− α}, and set

γ̂α = inf
{
γ > 0 : π̂α(γ′) ≤ γ′ for all γ′ ≥ γ

}
.

The quantities Π̂(γ, e), π̂α(γ) and γ̂α are related to Q̂(λ, e), q̂α(λ) and λ̂α by the

equations

Π̂
(√n

2
λ, e
)

=

√
n

2
Q̂(λ, e), π̂α

(√n
2
λ
)

=

√
n

2
q̂α(λ), γ̂α =

√
n

2
λ̂α.

Hence, γ̂α is a rescaled version of the estimator λ̂α. In particular, we can reformulate

λ̂α in terms of γ̂α as λ̂α = 2γ̂α/
√
n.

For our proof strategy, we require some auxiliary statistics which are closely

related to Π̂(γ, e), π̂α(γ) and γ̂α. To start with, we define Π(e) = max1≤j≤p |Wj(e)|,
where

W (e) =
(
W1(e), . . . ,Wp(e)

)>
with Wj(e) =

1√
n

n∑
i=1

Xijεiei,

and let γα be the (1− α)-quantile of Π(e) conditionally on X and ε. Moreover, we

set Π∗ = max1≤j≤p |W ∗
j |, where

W ∗ = (W ∗
1 , . . . ,W

∗
p )> with W ∗

j =
1√
n

n∑
i=1

Xijεi,

and let γ∗α be the (1 − α)-quantile of Π∗. Notice that γ∗α is a rescaled version of

λ∗α, in particular, γ∗α =
√
nλ∗α/2. Finally, we define ΠG = max1≤j≤p |Gj|, where

G = (G1, . . . , Gp)
> is a Gaussian random vector with the same covariance structure

as W ∗, that is, E[G] = E[W ∗] = 0 and E[GG>] = E[W ∗(W ∗)>], and we denote the

(1− α)-quantile of ΠG by γGα .

24



In order to relate the criterion function Π̂(γ, e) to the term Π(e), we make use of

the simple bound

Π̂(γ, e)

≤ Π(e) +R(γ, e)

≥ Π(e)−R(γ, e),
(A.1)

where

R(γ, e) = max
1≤j≤p

∣∣∣∣ 1√
n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ

)
ei

∣∣∣∣.
For our technical arguments, we further define the expression

∆ = max
1≤j,k≤p

∣∣Σjk − Σ∗jk
∣∣ = max

1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

(
XijXikε

2
i − E[XijXikε

2
i ]
)∣∣∣∣,

where Σ = (Σjk : 1 ≤ j, k ≤ p) = Ee[W (e)W (e)>] is the covariance matrix of W (e)

conditionally on X and ε, and Σ∗ = (Σ∗jk : 1 ≤ j, k ≤ p) = E[W ∗(W ∗)>] is the

covariance matrix of W ∗. We finally introduce the event

Sγ =
{ 1√

n
‖X>ε‖∞ ≤ γ

}
,

which relates to Tλ by the equation S√nλ/2 = Tλ, as well as the event

An =
{

∆ ≤ B∆

√
log(n ∨ p)/n

}
, (A.2)

where the constant B∆ is defined in Lemma A.1 below.

Auxiliary results

Before we prove the main results of the paper, we derive some auxiliary lemmas

which are needed later on. Their proofs can be found in the Supplementary Material.

Lemma A.1. There exist positive constants B∆, C∆ and K∆ that depend only on

the model parameters Θ such that

P
(
∆ > B∆

√
log(n ∨ p)/n

)
≤ C∆n

−K∆ .

In particular, K∆ can be chosen to be any positive constant with K∆ < (θ − 4)/4,

where θ > 4 is defined in (C3).

Lemma A.2. On the event Sγ, it holds that

Pe
(
R(γ′, e) >

BR(log n)2
√
‖β∗‖1γ′

n1/4

)
≤ CR n

−KR
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for any γ′ ≥ γ, where the constants BR, CR and KR depend only on the model

parameters Θ, and KR can be chosen as large as desired by picking CR large enough.

Lemma A.3. For every α > 1/(n ∨ p), it holds that

γGα ≤ CXCσ
[√

2 log(2p) +
√

2 log(n ∨ p)
]
,

where the constants CX and Cσ are defined in (C2) and (C3), respectively.

In addition to Lemmas A.1–A.3, we state some results on high-dimensional Gaus-

sian approximations and anti-concentration bounds for Gaussian random vectors

from Chernozhukov et al. (2013) and Chernozhukov et al. (2015) that are required

for the proofs in the sequel. The first result is an anti-concentration bound which is

taken from Chernozhukov et al. (2015) – see their Theorem 3 and Corollary 1.

Lemma A.4. Let (V1, . . . , Vp)
> be a centered Gaussian random vector in Rp. Sup-

pose that there are constants 0 < c3 < C3 <∞ with c3 ≤ σj ≤ C3, where σ2
j = E[V 2

j ]

for 1 ≤ j ≤ p. Then for every δ > 0,

sup
t∈R

P
(∣∣∣ max

1≤j≤p
Vj − t

∣∣∣ ≤ δ

)
≤ Cδ

√
1 ∨ log(p/δ),

where C > 0 depends only on c3 and C3.

The next two results correspond to Theorem 2 in Chernozhukov et al. (2015) and

Corollary 2.1 in Chernozhukov et al. (2013), respectively.

Lemma A.5. Let V = (V1, . . . , Vp)
> and V ′ = (V ′1 , . . . , V

′
p)
> be centered Gaussian

random vectors in Rp with covariance matrices ΣV = (ΣV
jk : 1 ≤ j, k ≤ p) and

ΣV ′ = (ΣV ′

jk : 1 ≤ j, k ≤ p), respectively, and define δ = max1≤j,k≤p |ΣV
jk − ΣV ′

jk |.
Suppose that there are constants 0 < c4 < C4 <∞ with c4 ≤ ΣV

jj ≤ C4 for 1 ≤ j ≤ p.

Then there exists a constant C > 0 that depends only on c4 and C4 such that

sup
t∈R

∣∣∣∣P( max
1≤j≤p

Vj ≤ t
)
−P
(

max
1≤j≤p

V ′j ≤ t
)∣∣∣∣

≤ Cδ1/3
{

1 ∨ 2 log p ∨ log(1/δ)
}1/3

(log p)1/3.

Lemma A.6. Let Zi = (Zi1, . . . , Zip)
> be independent Rp-valued random vectors for

1 ≤ i ≤ n with mean zero and the following properties: c5 ≤ n−1
∑n

i=1 E[Z2
ij] ≤ C5

and maxk=1,2{n−1
∑n

i=1 E[|Zij|2+k/Dk
n]} + E[(max1≤j≤p |Zij|/Dn)4] ≤ 4, where c5 >

0, C5 > 0 and Dn ≥ 1 is such that D4
n(log(pn))7/n ≤ C6n

−c6 for some constants

c6 > 0 and C6 > 0. Define

W = (W1, . . . ,Wp)
> with Wj =

1√
n

n∑
i=1

Zij
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and let V = (V1, . . . , Vp)
> be a Gaussian random vector with the same mean and

covariance as W , that is, E[V ] = E[W ] = 0 and E[V V >] = E[WW>]. Then there

exist constants C > 0 and K > 0 that depend only on c5, C5, c6 and C6 such that

sup
t∈R

∣∣∣∣P( max
1≤j≤p

Wj ≤ t
)
− P

(
max
1≤j≤p

Vj ≤ t
)∣∣∣∣ ≤ Cn−K .

The final lemma of this section concerns the quantiles of Gaussian maxima.

Lemma A.7. Let (V1, . . . , Vp)
> be a centered Gaussian random vector in Rp which

fulfills the conditions of Lemma A.4. Moreover, let γVα be the (1 − α)-quantile of

max1≤j≤p Vj, which is formally defined as γVα = inf{q : P(max1≤j≤p Vj ≤ q) ≥ 1−α}.
It holds that

P
(

max
1≤j≤p

Vj ≤ γVα

)
= 1− α

for every α ∈ (0, 1).

Remark A.1. Note that Lemmas A.4–A.7 continue to hold for maxima of the form

max1≤j≤p |Vj|, max1≤j≤p |V ′j | and max1≤j≤p |Wj|. This follows from the fact that

max1≤j≤p |Vj| = max1≤j≤2p Uj with Uj = Vj and Up+j = −Vj for 1 ≤ j ≤ p.

Proof of Theorem 3.1

The proof proceeds in several steps. To start with, we formally relate the quantiles

γ∗α, γα and γGα to each other.

Proposition A.1. There exist positive constants C and K that depend only on the

model parameters Θ such that

γ∗α+κn ≤ γGα ≤ γ∗α−κn

γGα+κn ≤ γ∗α ≤ γGα−κn

for any α ∈ (κn, 1− κn) with κn = Cn−K.

Proof of Proposition A.1. From (C2) and (C3), it immediately follows that 0 <

c5 ≤ n−1
∑n

i=1 E[(Xijεi)
2] ≤ C5 < ∞ and maxk=1,2{n−1

∑n
i=1 E[|Xijεi|2+k/Dk]} +

E[(max1≤j≤p |Xijεi|/D)4] ≤ 4 for some appropriately chosen constants c5, C5 and D

that depend only on the parameters Θ. Since D does not depend on n, it further

holds that D4(log(pn))7/n ≤ C6n
−c6 , where c6 can be chosen to be any positive

constant strictly smaller than 1 provided that C6 is picked sufficiently large. Hence,

we can apply Lemma A.6 to the terms Π∗ = max1≤j≤p |W ∗
j | and ΠG = max1≤j≤p |Gj|

to obtain the following: there exist constants C > 0 and K > 0 depending only on
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c5, C5, c6 and C6 such that

sup
t∈R

∣∣P(Π∗ ≤ t
)
− P

(
ΠG ≤ t

)∣∣ < Cn−K . (A.3)

By Lemma A.7, it holds that P(ΠG ≤ γGα ) = 1 − α. Using this identity together

with (A.3) yields that

1− (α + Cn−K) < P
(
Π∗ ≤ γGα

)
< 1− (α− Cn−K),

which in turn implies that γ∗α+Cn−K ≤ γGα ≤ γ∗α−Cn−K for any α ∈ (Cn−K , 1−Cn−K).

This is the first statement of Proposition A.1. The second statement is an immediate

consequence thereof.

Proposition A.2. There exist positive constants C and K that depend only on the

model parameters Θ such that on the event An,

γ∗α+ξn ≤ γα ≤ γ∗α−ξn

γα+ξn ≤ γ∗α ≤ γα−ξn

for any α ∈ (ξn, 1− ξn) with ξn = Cn−K.

Proof of Proposition A.2. Conditionally on X and ε, W (e) is a Gaussian ran-

dom vector with the covariance matrix Σ = (Σjk : 1 ≤ j, k ≤ p), where Σjk =

n−1
∑n

i=1XijXikε
2
i . Moreover, by definition, G is a Gaussian random vector with

the covariance matrix Σ∗ = (Σ∗jk : 1 ≤ j, k ≤ p), where Σ∗jk = n−1
∑n

i=1 E[XijXikε
2
i ].

It is straightforward to verify that under (C2) and (C3), c4 ≤ Σ∗jj ≤ C4 with some

constants 0 < c4 ≤ C4 < ∞ that depend only on the parameters Θ. Hence, by

Lemma A.5, the distribution of ΠG = max1≤j≤p |Gj| is close to the conditional dis-

tribution of Π(e) = max1≤j≤p |Wj(e)| in the following sense:

sup
t∈R

∣∣Pe(Π(e) ≤ t
)
− P

(
ΠG ≤ t

)∣∣ ≤ π(∆), (A.4)

where π(∆) = C∆1/3{1∨2 log(2p)∨log(1/∆)}1/3{log(2p)}1/3 with C depending only

on c4 and C4. Notice that the logarithm in the expression π(∆) takes the argument

2p rather than p as in the formulation of Lemma A.5. This is due to the fact that

Π(e) and ΠG are maxima over absolute values as discussed in Remark A.1. From

(A.4), it immediately follows that on the event An,

sup
t∈R

∣∣Pe(Π(e) ≤ t
)
− P

(
ΠG ≤ t

)∣∣ < πn, (A.5)

where we let πn be such that π(B∆

√
log(n ∨ p)/n) < πn ≤ Cn−K with some positive
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constants C and K. With the help of (A.5) and analogous arguments as in the proof

of Proposition A.1, we can infer that on the event An,

γα+πn ≤ γGα ≤ γα−πn

γGα+πn ≤ γα ≤ γGα−πn .

Combining this with the statement of Proposition A.1, we finally get that on An,

γ∗α+ξn ≤ γα ≤ γ∗α−ξn

γα+ξn ≤ γ∗α ≤ γα−ξn

with ξn = κn + πn, which completes the proof.

We now turn to the main part of the proof of Theorem 3.1. To make the notation

more compact, we introduce the shorthands ρn = BR(log n)2{Cβn1/2−δβ}1/2/n1/4 and

ψn = CXCσ[
√

2 log(2p)+
√

2 log(n ∨ p)]. Moreover, we let {νn} be any null sequence

with

νn > ξn + CRn
−KR + C7 max

{
gn

√
1 ∨ log

(
2p

gn

)
, hn

√
1 ∨ log

(
2p

hn

)}
, (A.6)

where gn = ρn(1 +ψn), hn = {ρn +ρn(1 +ρn)}ψn +ρn, and C7 is a positive constant

that depends only on the parameters Θ and that is specified below.

Our aim is to prove that on the event Tλ∗α+νn
∩ An, λ∗α+νn ≤ λ̂α ≤ λ∗α−νn . This

is equivalent to the following statement: on the event Sγ∗α+νn
∩ An, it holds that

γ∗α+νn ≤ γ̂α ≤ γ∗α−νn . By definition of γ̂α,

π̂α(γ) ≤ γ for all γ ≥ γ∗α−νn =⇒ γ̂α ≤ γ∗α−νn (A.7)

π̂α(γ) > γ for some γ > γ∗α+νn =⇒ γ̂α > γ∗α+νn , (A.8)

and by definition of π̂α(γ),

Pe(Π̂(γ, e) ≤ γ) > 1− α =⇒ π̂α(γ) ≤ γ (A.9)

Pe(Π̂(γ, e) ≤ γ) < 1− α =⇒ π̂α(γ) > γ. (A.10)

Hence, it suffices to prove the following two statements:

(I) On the event Sγ∗α+νn
∩ An, Pe(Π̂(γ, e) ≤ γ) > 1− α for all γ ≥ γ∗α−νn .

(II) On the event Sγ∗α+νn
∩ An, Pe(Π̂(γ, e) ≤ γ) < 1− α for some γ > γ∗α+νn .
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Proof of (I). Suppose we are on the event Sγ∗α+νn
∩ An and let γ ≥ γ∗α−νn . Using

the simple bound (A.1), we obtain that

Pe
(
Π̂(γ, e) ≤ γ

)
≥ Pe

(
Π(e) +R(γ, e) ≤ γ

)
≥ Pe

(
Π(e) +R(γ, e) ≤ γ,R(γ, e) ≤ ρn

√
γ
)

≥ Pe
(
Π(e) + ρn

√
γ ≤ γ,R(γ, e) ≤ ρn

√
γ
)

≥ Pe
(
Π(e) ≤ γ − ρn

√
γ
)
− Pe

(
R(γ, e) > ρn

√
γ
)

≥ Pe
(
Π(e) ≤ γ − ρn

√
γ
)
− CRn−KR , (A.11)

where the last inequality is by Lemma A.2. Since γ − ρn
√
γ ≥ γ − ρn(1 + γ) =

(1− ρn)γ − ρn and γ ≥ γ∗α−νn , we further get that

Pe
(
Π(e) ≤ γ − ρn

√
γ
)
≥ Pe

(
Π(e) ≤ (1− ρn)γ − ρn

)
≥ Pe

(
Π(e) ≤ (1− ρn)γ∗α−νn − ρn

)
= Pe

(
Π(e) ≤ γ∗α−νn − ρn(1 + γ∗α−νn)

)
.

Moreover, since γ∗α−νn ≥ γα+ξn−νn on the event An by Proposition A.2 and γ∗α−νn ≤
γGα−κn−νn ≤ ψn by Proposition A.1 and Lemma A.3, it follows that

Pe
(
Π(e) ≤ γ − ρn

√
γ
)
≥ Pe

(
Π(e) ≤ γα+ξn−νn − ρn(1 + ψn)

)
= Pe

(
Π(e) ≤ γα+ξn−νn

)
− Pe

(
γα+ξn−νn − ρn(1 + ψn) < Π(e) ≤ γα+ξn−νn

)
. (A.12)

On the event An, we have that c2
Xc

2
σ − B∆

√
log(n ∨ p)/n ≤ Ee[W 2

j (e)] ≤ C2
XC

2
σ +

B∆

√
log(n ∨ p)/n. Hence, we can apply Lemma A.4 to get that

Pe
(
γα+ξn−νn − ρn(1 + ψn) < Π(e) ≤ γα+ξn−νn

)
≤ sup

t∈R
Pe
(
|Π(e)− t| ≤ ρn(1 + ψn)

)
≤ C7ρn(1 + ψn)

√
1 ∨ log

(
2p

ρn(1 + ψn)

)
(A.13)

with C7 depending only on Θ. By Lemma A.7, it further holds that Pe(Π(e) ≤
γα+ξn−νn) = 1− (α + ξn − νn). Plugging this identity and (A.13) into (A.12) yields

that

Pe
(
Π(e) ≤ γ − ρn

√
γ
)
≥ 1− α + νn − ξn − C7gn

√
1 ∨ log

(
2p

gn

)
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with gn = ρn(1 + ψn). Inserting this into (A.11), we finally arrive at

Pe
(
Π̂(γ, e) ≤ γ

)
≥ 1− α + νn − ξn − CRn−KR − C7gn

√
1 ∨ log

(
2p

gn

)
> 1− α,

where the last inequality follows from the definition of νn in (A.6).

Proof of (II). Suppose we are on the event Sγ∗α+νn
∩An and let γ = (1 +φn)γ∗α+νn ,

where {φn} is a null sequence of positive numbers with φn ≤ Cn−K for some con-

stants C and K. For convenience, we set φn = ρn, but we could also work with any

other choice of φn that satisfies the conditions mentioned in the previous sentence.

With the bound (A.1), we get that

Pe
(
Π̂(γ, e) > γ

)
≥ Pe

(
Π(e)−R(γ, e) > γ

)
≥ Pe

(
Π(e)−R(γ, e) > γ,R(γ, e) ≤ ρn

√
γ
)

≥ Pe
(
Π(e)− ρn

√
γ > γ,R(γ, e) ≤ ρn

√
γ
)

≥ Pe
(
Π(e) > γ + ρn

√
γ
)
− Pe

(
R(γ, e) > ρn

√
γ
)

≥ Pe
(
Π(e) > γ + ρn

√
γ
)
− CRn−KR , (A.14)

where the final inequality is a direct consequence of Lemma A.2. Analogous argu-

ments as in the proof of (I) yield that

Pe
(
Π(e) > γ + ρn

√
γ
)

≥ Pe
(
Π(e) > γ + ρn(1 + γ)

)
= Pe

(
Π(e) > (1 + φn)γ∗α+νn + ρn(1 + (1 + φn)γ∗α+νn)

)
= Pe

(
Π(e) > γ∗α+νn + {φn + ρn(1 + φn)}γ∗α+νn + ρn

)
≥ Pe

(
Π(e) > γα−ξn+νn + hn

)
= Pe

(
Π(e) > γα−ξn+νn

)
− Pe

(
γα−ξn+νn < Π(e) ≤ γα−ξn+νn + hn

)
≥ α + νn − ξn − C7hn

√
1 ∨ log(2p/hn),

where hn = {φn+ρn(1+φn)}ψn+ρn = {ρn+ρn(1+ρn)}ψn+ρn under the assumption

that φn = ρn. Inserting this into (A.14), we arrive that

Pe
(
Π̂(γ, e) > γ

)
≥ α + νn − ξn − CRn−KR − C7hn

√
1 ∨ log

(
2p

hn

)
> α,

which is equivalent to the statement that Pe
(
Π̂(γ, e) ≤ γ

)
< 1− α.
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Proof of Proposition 4.1

From (1.2), it follows that ‖X(β∗ − β̂λ)‖2
2/n ≤ 2λ‖β∗‖1 for every λ ≥ λ∗α+νn on

the event Tλ∗α+νn
. Moreover, by Theorem 3.1, λ∗α+νn ≤ λ̂α ≤ λ∗α−νn on the event

Tλ∗α+νn
∩ An. Hence, we can infer that

1

n
‖X(β∗ − β̂λ̂α)‖2

2 ≤ 2λ̂α‖β∗‖1 ≤ 2λ∗α−νn‖β
∗‖1

on the event Tλ∗α+νn
∩ An, which occurs with probability P(Tλ∗α+νn

∩ An) ≥ 1− α −
νn − C1n

−K1 .

Proof of Proposition 4.2

From Lemma 4.1, we know that on the event Tλ∗α+νn
∩ Bn, ‖β̂λ − β∗‖∞ ≤ κλ for

every λ ≥ (1 + δ)λ∗α+νn . Moreover, on the event Tλ∗α+νn
∩ An, it holds that λ∗α+νn ≤

λ̂α ≤ λ∗α−νn by Theorem 3.1. Hence, we can infer that

‖β̂(1+δ)λ̂α
− β∗‖∞ ≤ (1 + δ)κλ̂α ≤ (1 + δ)κλ∗α−νn

on the event Tλ∗α+νn
∩An ∩Bn, which occurs with probability P(Tλ∗α+νn

∩An ∩Bn) ≥
1− α− P(B{

n)− νn − C1n
−K1 .

Proof of Proposition 4.3

For the proof, we reformulate the test of H0 as follows: slightly abusing notation,

we redefine the test statistic as T = ‖X>Y ‖∞/
√
n. As above, we further let γ∗α =

√
nλ∗α/2 be the (1 − α)-quantile of ‖X>ε‖∞/

√
n and define the estimator γ̂α =

√
nλ̂α/2. Our test ofH0 can now be expressed as follows: rejectH0 at the significance

level α if T > γ̂α.

We first prove that P(T ≤ γ̂α) ≥ 1−α+o(1) under H0. With the help of Theorem

3.1, we obtain that under H0,

P(T ≤ γ̂α) ≥ P(T ≤ γ̂α, Tλ∗α+νn
∩ An) ≥ P(T ≤ γ∗α+νn , Tλ∗α+νn

∩ An)

= P(Tλ∗α+νn
∩ An) ≥ 1− α− νn − C1n

−K1 ,

where the equality in the last line follows from the fact that the two events Tλ∗α+νn

and {T ≤ γ∗α+νn} are identical. As a result, we get that P(T ≤ γ̂α) ≥ 1 − α + o(1)

under H0.

We next prove that P(T > γ̂α) = 1− o(1) under any alternative H1 : β∗ 6= 0 that

fulfills the conditions of Proposition 4.3. Suppose we are on such an alternative and
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let {αn} be a null sequence with 2νn + (n ∨ p)−1 < αn < α. It holds that

P(T > γ̂α) ≥ P(T > γ̂αn) = P
( 1√

n
‖X>Xβ∗ +X>ε‖∞ > γ̂αn

)
≥ P

(‖X>Xβ∗‖∞√
n

> γ̂αn +
‖X>ε‖∞√

n

)
, (A.15)

where the last line is due to the triangle inequality. Applying Theorem 3.1, Propo-

sition A.1 and Lemma A.3, the term γ̂αn can be bounded by

γ̂αn ≤ γ∗αn−νn ≤ γGαn−νn−κn ≤ ψn (A.16)

on the event Tλ∗αn+νn
∩An, where ψn = CXCσ[

√
2 log(2p)+

√
2 log(n ∨ p)]. Moreover,

for the term Π∗ = ‖X>ε‖∞/
√
n, we have that

P
(‖X>ε‖∞√

n
≤ ψn

)
= P(Π∗ ≤ ψn) = P(ΠG ≤ ψn) +

[
P(Π∗ ≤ ψn)− P(ΠG ≤ ψn)

]
≥ P(ΠG ≤ ψn)− Cn−K

≥ P(ΠG ≤ γG2/(n∨p))− Cn−K

= 1− 2

n ∨ p
− Cn−K = 1− o(1) (A.17)

with some positive constants C and K, where the first inequality follows from (A.3)

and the second one from Lemma A.3. Using (A.16) and (A.17) in the right-hand

side of equation (A.15), we can infer that

P
(‖X>Xβ∗‖∞√

n
> γ̂αn +

‖X>ε‖∞√
n

)
≥ P

(‖X>Xβ∗‖∞√
n

> γ̂αn +
‖X>ε‖∞√

n
,
‖X>ε‖∞√

n
≤ ψn, Tλ∗αn+νn

∩ An
)

≥ P
(‖X>Xβ∗‖∞√

n
> 2ψn,

‖X>ε‖∞√
n

≤ ψn, Tλ∗αn+νn
∩ An

)
= P

(‖X>Xβ∗‖∞√
n

> 2ψn

)
− o(1) = 1− o(1), (A.18)

the last equality following from the assumption that P(‖X>Xβ∗‖∞/n
≥ c

√
log(n ∨ p)/n) → 1 for every c > 0. Combining (A.18) with (A.15) yields

that P(T > γ̂α) = 1− o(1) under the alternative, which completes the proof.
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Proof of Proposition 4.4

Similarly as in the proof of Proposition 4.3, we reformulate the test of H0,B : β∗B = 0.

Slightly abusing notation, we redefine the test statistic as

TB =
‖(PXB)>PY ‖∞√

n
.

Moreover, we let γ∗α,B =
√
nλ∗α,B/2 be the (1−α)-quantile of ‖(PXB)>u‖∞/

√
n and

set γ̂α,B =
√
nλ̂α,B/2. Our test of H0,B can now be formulated as follows: reject

H0,B at the significance level α if TB > γ̂α,B. This test has the same structure as the

test of the simpler hypothesis H0 : β∗ = 0. The only difference is that it is based

on the transformed model PY = PXBβ
∗
B + u rather than on the original model

Y = Xβ∗+ε. Even though a minor detail at first sight, this change of model brings

about some technical complications. The issue is that the entries of the noise vector

u are in general not independent, whereas those of ε are. Similarly, the rows of the

design matrix PXB are in general not independent in contrast to those of X. As

a consequence, the central result of our theory, Theorem 3.1, cannot be applied to

the estimator γ̂α,B directly. To adapt it to the present situation, we define the event

S ′γ =
{ 1√

n
‖(PXB)>u‖∞ ≤ γ

}
and let C ′1, K ′1, C ′2 and K ′2 be positive constants that depend only on the model

parameters Θ′ = Θ ∪ {cϑ, |A|, ‖Ψ−1
A ‖2}. With this notation at hand, we can prove

the following.

Proposition A.3. There exist an event A′n with P(A′n) ≥ 1 − C ′1n
−K′1 for some

positive constants C ′1 and K ′1 and a sequence of real numbers ν ′n with 0 < ν ′n ≤
C ′2n

−K′2 for some positive constants C ′2 and K ′2 such that the following holds: on the

event S ′γ∗
α+ν′n,B

∩ A′n,

γ∗α+ν′n,B
≤ γ̂α,B ≤ γ∗α−ν′n,B

for any α ∈ (an, 1− an) with an = 2ν ′n + (n ∨ p)−1.

The overall strategy to prove Proposition A.3 is the same as the one for Theorem

3.1. There are some complications, however, that stem from the fact that the entries

of u and the rows of PXB are not independent. We provide the proof of Proposition

A.3 in the Supplementary Material, where we highlight the main differences to the

proof of Theorem 3.1.

With Proposition A.3 in place, the proof of Proposition 4.4 proceeds analogously

to the one of Proposition 4.3. For this reason, we only give a brief summary of the

main steps. First suppose that the null hypothesis H0,B holds true. With the help
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of Proposition A.3, we get that

P(TB ≤ γ̂α,B) ≥ P
(
TB ≤ γ̂α,B,S ′γ∗

α+ν′n,B
∩ A′n

)
≥ P

(
TB ≤ γ∗α+ν′n,B

,S ′γ∗
α+ν′n,B

∩ A′n
)

= P
(
S ′γ∗

α+ν′n,B
∩ A′n

)
≥ 1− α− ν ′n − C ′1n−K

′
1 ,

which implies that P(TB ≤ γ̂α,B) ≥ 1− α + o(1) under H0,B.

Next suppose we are on an alternative H1,B : β∗B 6= 0 that satisfies the conditions

of Proposition 4.4 and let {αn} be a null sequence with 2ν ′n + (n ∨ p)−1 < αn < α.

Similarly as in the proof of Proposition 4.3, we can establish the bound

P(TB > γ̂α,B) ≥ P
(‖(PXB)>PXBβ

∗
B‖∞√

n
> γ̂αn,B +

‖(PXB)>u‖∞√
n

)
(A.19)

and verify the following: (i) γ̂αn,B ≤ ψ′n on the event S ′γ∗
αn+ν′n,B

∩ A′n, where ψ′n =

C[
√

2 log(2p) +
√

2 log(n ∨ p)] with some sufficiently large constant C that depends

only on Θ′, and (ii) P(‖(PXB)>u‖∞/
√
n ≤ ψ′n) = 1− o(1). Applying (i) and (ii) to

the right-hand side of (A.19) yields that

P
(‖(PXB)>PXBβ

∗
B‖∞√

n
> γ̂αn,B +

‖(PXB)>u‖∞√
n

)
≥ P

(‖(PXB)>PXBβ
∗
B‖∞√

n
> 2ψ′n

)
− o(1) = 1− o(1),

which in turn implies that P(TB > γ̂α,B) = 1− o(1) under the alternative.
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S.1 Technical details

In what follows, we provide the technical details and proofs that are omitted in the

paper.

Proof of Lemma 4.1

To show the result, we slightly generalize the proof of Lemma 5 in Chichignoud et al.

(2016). Standard arguments from the lasso literature (Bühlmann and van de Geer,

2011) show that on the event Tλ,

‖β̂λ′,S{ − β∗S{‖1 ≤
2 + δ

δ
‖β̂λ′,S − β∗S‖1,

that is, β̂λ′−β∗ ∈ Cδ(S) for every λ′ ≥ (1 + δ)λ. Under the `∞-restricted eigenvalue

condition (4.3), we thus obtain that on Tλ,

φ‖β̂λ′ − β∗‖∞ ≤
‖X>X(β̂λ′ − β∗)‖∞

n
(S.1)

for every λ′ ≥ (1 + δ)λ. Moreover, since the lasso satisfies the zero-subgradient

condition 2X>(Xβ̂λ′ − Y )/n+ λ′ẑ = 0 with ẑ ∈ Rp belonging to the subdifferential

of the function f(β) = ‖β‖1, it holds that

2X>X

n
(β̂λ′ − β∗) = −λ′ẑ +

2X>ε

n
.

Taking the supremum norm on both sides of this equation and taking into account

that 2‖X>ε‖∞/n ≤ λ on the event Tλ, we obtain that

2‖X>X(β̂λ′ − β∗)‖∞
n

≤ λ′ +
2‖X>ε‖∞

n
≤ 2λ′ (S.2)

for every λ′ ≥ (1 + δ)λ on Tλ. The statement of Lemma 4.1 follows upon combining

(S.1) and (S.2).
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Proof of Lemma A.1

Let δ be a small positive constant with 0 < δ < (θ− 4)/θ and θ > 4 defined in (C3).

Define Zijk = XijXikε
2
i along with Zijk = Z≤ijk + Z>

ijk, where

Z≤ijk = Zijk 1
(
|εi| ≤ n

1−δ
4

)
and Z>

ijk = Zijk 1
(
|εi| > n

1−δ
4

)
,

and write ∆ ≤ ∆≤ + ∆> with

∆≤ = max
1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

(Z≤ijk − EZ≤ijk)
∣∣∣∣

∆> = max
1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

(Z>
ijk − EZ>

ijk)

∣∣∣∣.
In what follows, we prove that

P
(
∆≤ > B

√
log(n ∨ p)/n

)
≤ Cn−K (S.3)

P
(
∆> > B

√
log(n ∨ p)/n

)
≤ Cn1−( 1−δ

4
)θ, (S.4)

where B, C and K are positive constants depending only on the parameters Θ, and

K can be made as large as desired by choosing B and C large enough. Lemma A.1

is a direct consequence of the two statements (S.3) and (S.4).

We start with the proof of (S.3). A simple union bound yields that

P
(
∆≤ > B

√
log(n ∨ p)/n

)
≤

p∑
j,k=1

P≤jk, (S.5)

where

P≤jk = P
(∣∣∣ 1√

n

n∑
i=1

Uijk

∣∣∣ > B
√

log(n ∨ p)
)

with Uijk = Z≤ijk − EZ≤ijk. Using Markov’s inequality, P≤jk can be bounded by

P≤jk ≤ exp
(
− µB

√
log(n ∨ p)

)
E
[
exp

(
µ
∣∣∣ 1√
n

n∑
i=1

Uijk

∣∣∣)]
≤ exp

(
− µB

√
log(n ∨ p)

){
E
[
exp

(
µ√
n

n∑
i=1

Uijk

)]

+ E
[
exp

(
− µ√

n

n∑
i=1

Uijk

)]}
(S.6)

with an arbitrary constant µ > 0. We now choose µ =
√

log(n ∨ p)/Cµ, where the
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constant Cµ > 0 is picked so large that µ|Uijk|/
√
n ≤ 1/2 for all n. With this choice

of µ, we obtain that

E
[
exp

(
± µ√

n

n∑
i=1

Uijk

)]
=

n∏
i=1

E
[
exp

(
± µ√

n
Uijk

)]
≤

n∏
i=1

(
1 +

µ2

n
E[U2

ijk]

)
≤

n∏
i=1

exp

(
µ2

n
E[U2

ijk]

)
≤ exp(CUµ

2),

where the first inequality follows from the fact that exp(x) ≤ 1+x+x2 for |x| ≤ 1/2

and CU <∞ is an upper bound on E[U2
ijk]. Plugging this into (S.6) gives

P≤jk ≤ 2 exp
(
− µB

√
log(n ∨ p) + CUµ

2
)

≤ 2 exp

(
−
{ B
Cµ
− CU
C2
µ

}
log(n ∨ p)

)
= 2(n ∨ p)

CU
C2
µ
− B
Cµ .

Inserting this bound into (S.5), we finally obtain that

P
(
∆≤ > B

√
log(n ∨ p)/n

)
≤ 2p2(n ∨ p)

CU
C2
µ
− B
Cµ ≤ Cn−K ,

where K > 0 can be chosen as large as desired by picking B sufficiently large. This

completes the proof of (S.3).

We next turn to the proof of (S.4). It holds that

P
(
∆> > B

√
log(n ∨ p)/n

)
≤ P>

1 + P>
2 ,

where

P>
1 := P

(
max

1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

Z>
ijk

∣∣∣ > B

2

√
log(n ∨ p)

n

)
≤ P

(
|εi| > n

1−δ
4 for some 1 ≤ i ≤ n

)
≤

n∑
i=1

P
(
|εi| > n

1−δ
4

)
≤

n∑
i=1

E
[
|εi|θ

]
/n( 1−δ

4
)θ

≤ Cθn
1−( 1−δ

4
)θ (S.7)

and

P>
2 := P

(
max

1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

EZ>
ijk

∣∣∣ > B

2

√
log(n ∨ p)

n

)
= 0 (S.8)
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for sufficiently large n, since

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

EZ>
ijk

∣∣∣ ≤ C2
X max

1≤i≤n
E
[
ε2
i 1(|εi| > n

1−δ
4 )
]

≤ C2
X max

1≤i≤n
E
[
|εi|θ

/
n

(θ−2)(1−δ)
4

]
≤ C2

XCθn
− (θ−2)(1−δ)

4 = o

(√
log(n ∨ p)

n

)
.

(S.4) follows upon combining (S.7) and (S.8).

Proof of Lemma A.2

Suppose we are on the event Sγ and let γ′ ≥ γ. In the case that β∗ = 0, it holds that

β̂2γ′/
√
n = 0 for all γ′ ≥ γ, implying that R(γ′, e) = 0. Hence, Lemma A.2 trivially

holds true if β∗ = 0. We can thus restrict attention to the case that β∗ 6= 0. Define

an = B(log n)2
√
‖β∗‖1 with some B > 0 and write ei = e≤i + e>i with

e≤i = ei 1(|ei| ≤ log n)− E[ei 1(|ei| ≤ log n)]

e>i = ei 1(|ei| > log n)− E[ei 1(|ei| > log n)].

With this notation, we get that

Pe
(
R(γ′, e) >

an
√
γ′

n1/4

)
= Pe

(
max
1≤j≤p

∣∣∣ 1√
n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
ei

∣∣∣ > an
√
γ′

n1/4

)

≤
p∑
j=1

Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
ei

∣∣∣ > an
√
γ′

n1/4

)

≤
p∑
j=1

{
P≤e,j + P>

e,j

}
, (S.9)

where

P≤e,j = Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e≤i

∣∣∣ > an
√
γ′

2n1/4

)
P>
e,j = Pe

(∣∣∣ 1√
n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e>i

∣∣∣ > an
√
γ′

2n1/4

)
.
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In what follows, we prove that for every j ∈ {1, . . . , p},

P≤e,j ≤ Cn−K and P>
e,j ≤ Cn−K , (S.10)

where the constants C andK depend only on the parameters Θ, andK can be chosen

as large as desired by picking C large enough. Plugging this into (S.9) immediately

yields the statement of Lemma A.2.

We first show that P≤e,j ≤ Cn−K . To do so, we make use of the prediction bound

(1.2) which implies that

1

n

n∑
i=1

{
X>i (β∗ − β̂ 2√

n
γ′)
}2 ≤ 4γ′‖β∗‖1√

n
(S.11)

for any γ′ ≥ γ on the event Sγ. From this, it immediately follows that on Sγ,

∣∣∣∣X>i (β∗ − β̂ 2√
n
γ′)

√
n

∣∣∣∣ ≤ 2
√
γ′‖β∗‖1

n1/4
(S.12)

for all i. Using Markov’s inequality, P≤e,j can be bounded by

P≤e,j = Pe
(∣∣∣ 1

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e≤i

∣∣∣ > an
√
γ′

2

)
≤ Ee exp

(
µ
∣∣∣ 1

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e≤i

∣∣∣)/ exp

(
µan
√
γ′

2

)
≤ Ee exp

(
µ

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e≤i

)/
exp

(
µan
√
γ′

2

)
+ Ee exp

(
− µ

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e≤i

)/
exp

(
µan
√
γ′

2

)
(S.13)

with any µ > 0. We make use of this bound with the particular choice µ =

(4CX
√
γ′‖β∗‖1 log n)−1. Since |µXijX

>
i (β∗ − β̂2γ′/

√
n)e≤i /n

1/4| ≤ 1/2 by condition

(C2) and (S.12) and since exp(x) ≤ 1 + x+ x2 for any |x| ≤ 1/2, we obtain that

Ee exp

(
± µ

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′

)
e≤i

)

=
n∏
i=1

Ee exp

(
±µXij

X>i (β∗ − β̂ 2√
n
γ′)

n1/4
e≤i

)

≤
n∏
i=1

{
1 + µ2X2

ij

(X>i (β∗ − β̂ 2√
n
γ′)

n1/4

)2

E(e≤i )2

}
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≤
n∏
i=1

exp

(
µ2X2

ij

(X>i (β∗ − β̂ 2√
n
γ′)

n1/4

)2

E(e≤i )2

)
≤ exp

(
cµ2

√
n

n∑
i=1

{
X>i (β∗ − β̂ 2√

n
γ′)
}2
)

(S.14)

with a sufficiently large c > 0. Plugging (S.14) into (S.13) and using (S.11) along

with the definition of µ, we arrive at

P≤e,j ≤ 2 exp

(
cµ2

√
n

n∑
i=1

{
X>i (β∗ − β̂ 2√

n
γ′)
}2 − µan

√
γ′

2

)
≤ 2 exp

(
4cµ2γ′‖β∗‖1 −

µan
√
γ′

2

)
≤ 2 exp

(
c

4C2
X(log n)2

− B log n

8CX

)
≤ Cn−K ,

where K can be chosen as large as desired by picking C large enough.

We next verify that P>
e,j ≤ Cn−K . The term P>

e,j can be bounded by P>
e,j ≤

P>
e,j,1 + P>

e,j,2, where

P>
e,j,1 = Pe

(∣∣∣ 1√
n

n∑
i=1

XijX
>
i (β∗ − β̂ 2√

n
γ′)ei 1(|ei| > log n)

∣∣∣ > an
√
γ′

4n1/4

)
P>
e,j,2 = Pe

(∣∣∣ 1√
n

n∑
i=1

XijX
>
i (β∗ − β̂ 2√

n
γ′)E[ei 1(|ei| > log n)]

∣∣∣ > an
√
γ′

4n1/4

)
.

Since the variables ei are standard normal, it holds that

P>
e,j,1 ≤ P

(
|ei| > log n for some 1 ≤ i ≤ n

)
≤

n∑
i=1

P
(
|ei| > log n

)
≤ 2n√

2π log n
exp

(
−(log n)2

2

)
≤ Cn−K (S.15)

for any n > 1, where K > 0 can be chosen as large as desired. Moreover, with the

help of condition (C2) and (S.12), we get that

P>
e,j,2 ≤ Pe

( n∑
i=1

|Xij|
∣∣∣∣X>i (β∗ − β̂ 2√

n
γ′)

√
n

∣∣∣∣E[|ei|1(|ei| > log n)] >
an
√
γ′

4n1/4

)
≤ Pe

(
CX

2
√
γ′‖β∗‖1

n1/4

n∑
i=1

E[|ei|1(|ei| > log n)] >
an
√
γ′

4n1/4

)
≤ Pe

( n∑
i=1

E[|ei|1(|ei| > log n)] >
B(log n)2

8CX

)
= 0 (S.16)
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for n large enough, where the last equality follows from the fact that for any c > 1,

n∑
i=1

E[|ei|1(|ei| > log n)] ≤
n∑
i=1

E
[
|ei| exp(c|ei|)
exp(c log n)

1(|ei| > log n)

]
≤ nE[|ei| exp(c|ei|)]

exp(c log n)
= o(1).

Combining (S.15) and (S.16), we can conclude that P>
e,j ≤ Cn−K , where K can be

picked as large as desired.

Proof of Lemma A.3

The proof is based on standard concentration and maximal inequalities. According

to the Gaussian concentration inequality stated in Theorem 7.1 of Ledoux (2001)

(see also Lemma 7 in Chernozhukov et al. (2015)), it holds that

P
(

max
1≤j≤p

∣∣Gj/σj
∣∣ ≥ E

[
max
1≤j≤p

∣∣Gj/σj
∣∣]+

√
2 log(n ∨ p)

)
≤ 1

n ∨ p
, (S.17)

where we use the notation σ2
j = E[G2

j ]. Combining (S.17) with the maximal in-

equality E[max1≤j≤p |Gj/σj|] ≤
√

2 log(2p) (see e.g. Proposition 1.1.3 in Talagrand

(2003)) and multiplying each term inside the probability of (S.17) with CG = CXCσ

yields

P
(
CG max

1≤j≤p

∣∣Gj/σj
∣∣ ≥ CG

[√
2 log(2p) +

√
2 log(n ∨ p)

])
≤ 1

n ∨ p
. (S.18)

Since σj ≤ CG for any j, it holds that CG max1≤j≤p |Gj/σj| ≥ max1≤j≤p |Gj|. Plug-

ging this into (S.18), we arrive at

P
(

max
1≤j≤p

|Gj| ≥ CG
[√

2 log(2p) +
√

2 log(n ∨ p)
])
≤ 1

n ∨ p
,

which implies that γGα ≤ CG[
√

2 log(2p) +
√

2 log(n ∨ p)] for any α > 1/(n ∨ p).

Proof of Lemma A.7

The proof is by contradiction. Suppose that P(max1≤j≤p Vj ≤ γVα ) > 1 − α, in

particular, P(max1≤j≤p Vj ≤ γVα ) = 1− α + η with some η > 0. By Lemma A.4,

sup
t∈R

P
(∣∣∣ max

1≤j≤p
Vj − t

∣∣∣ ≤ δ

)
≤ b(δ) := Cδ

√
1 ∨ log(p/δ)

7



for any δ > 0, which implies that

P
(

max
1≤j≤p

Vj ≤ γVα − δ
)

= P
(

max
1≤j≤p

Vj ≤ γVα

)
− P

(
γVα − δ < max

1≤j≤p
Vj ≤ γVα

)
≥ P

(
max
1≤j≤p

Vj ≤ γVα

)
− sup

t∈R
P
(∣∣∣ max

1≤j≤p
Vj − t

∣∣∣ ≤ δ

)
≥ 1− α + η − b(δ).

Since b(δ)→ 0 as δ → 0, we can find a specific δ > 0 with b(δ) < η. For this specific

δ, we get that P(max1≤j≤p Vj ≤ γVα − δ) > 1−α, which contradicts the definition of

the quantile γVα according to which γVα = inf{q : P(max1≤j≤p Vj ≤ q) ≥ 1− α}.

Proof of Proposition A.3

We first have a closer look at the statistic Π∗B := ‖(PXB)>u‖∞/
√
n. Without

loss of generality, we let A = {1, . . . , pA} and B = {pA + 1, . . . , pA + pB} with

pA + pB = p, and we write Xi,A = (Xi1, . . . , XipA)> to shorten notation. Moreover,

we define ψ̂jk = n−1
∑n

i=1XijXik and set ψ̂j,A = (ψ̂j1, . . . , ψ̂jpA)> ∈ RpA along

with Ψ̂A = (ψ̂jk : 1 ≤ j, k ≤ pA) ∈ RpA×pA . Similarly, we let ψjk = E[XijXik],

ψj,A = (ψj1, . . . , ψjpA)> and ΨA = (ψjk : 1 ≤ j, k ≤ pA). With this notation, the

statistic Π∗B = ‖(PXB)>u‖∞/
√
n = ‖(PXB)>Pε‖∞/

√
n = ‖(PXB)>ε‖∞/

√
n can

be rewritten as Π∗B = maxj∈B |W ∗
j,B|, where

W ∗
j,B =

1√
n

n∑
i=1

Ẑijεi with Ẑij = Xij − ψ̂>j,AΨ̂−1
A Xi,A,

and W ∗
B = (W ∗

j,B : j ∈ B) is the vector with the elements W ∗
j,B. In contrast

to Xi, the random vectors Ẑi = (Ẑij : j ∈ B) are not independent across i in

general. In order to deal with this complication, we introduce the auxiliary statistic

Π∗∗B = maxj∈B |W ∗∗
j,B|, where W ∗∗

B = (W ∗∗
j,B : j ∈ B) and

W ∗∗
j,B =

1√
n

n∑
i=1

Zijεi with Zij = Xij − ψ>j,AΨ−1
A Xi,A.

The random vectors Zi = (Zij : j ∈ B) have the following properties: (i) Unlike

Ẑi, they are independent across i. (ii) Since |Xij| ≤ CX by (C2) and ΨA is positive

definite by assumption, |Zij| ≤ CZ <∞ with a constant CZ that depends only on the

model parameters Θ′. (iii) Since Zij can be expressed as Zij = Xij−X>i,Aϑ(j) with ϑ(j)

introduced before the formulation of Proposition 4.4, it holds that E[Z2
ij] ≥ c2

Z > 0

with c2
Z = cϑ. We denote the (1 − α)-quantile of Π∗∗B by γ∗∗α,B. In the course of the

proof, we will establish that γ∗∗α,B is close to the quantile γ∗α,B of the statistic Π∗B in

8



a suitable sense.

In addition to the above quantities, we introduce some auxiliary statistics that

parallel those defined in the proof of Theorem 3.1. To start with, let Π̂B(γ, e) =

maxj∈B |Ŵj,B(γ, e)|, where ŴB(γ, e) = (Ŵj,B(γ, e) : j ∈ B) with

Ŵj,B(γ, e) =
1√
n

n∑
i=1

Ẑijû 2√
n
γ,iei,

and let π̂α,B(γ) be the (1− α)-quantile of Π̂B(γ, e) conditionally on X and ε. With

this notation, the estimator γ̂α,B can be expressed as

γ̂α,B = inf
{
γ > 0 : π̂α,B(γ′) ≤ γ′ for all γ′ ≥ γ

}
.

Moreover, let ΠG
B = maxj∈B |Gj|, where GB = (Gj : j ∈ B) is a Gaussian ran-

dom vector with E[GB] = E[W ∗∗
B ] = 0 and E[GBG

>
B] = E[W ∗∗

B (W ∗∗
B )>], and let

γGα,B denote the (1 − α)-quantile of ΠG
B. Finally, define the statistic ΠB(e) =

maxj∈B |Wj,B(e)|, where WB(e) = (Wj,B(e) : j ∈ B) with

Wj,B(e) =
1√
n

n∑
i=1

Zijεiei,

and let γα,B be the (1− α)-quantile of ΠB(e) conditionally on X and ε.

We next define some expressions which play a similar role as the quantity ∆ in

the proof of Theorem 3.1. In particular, we let ∆1 = ‖n−1
∑n

i=1Xi,Aεi‖2 along with

∆2 = max
j∈A

∣∣∣∣ 1n
n∑
i=1

{
X2
ijε

2
i − E[X2

ijε
2
i ]
}∣∣∣∣

∆3 = max
1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

{
XijXik − E[XijXik]

}∣∣∣∣
∆4 = max

j,k∈B

∣∣∣∣ 1n
n∑
i=1

{
ZijZikε

2
i − E[ZijZikε

2
i ]
}∣∣∣∣.

Applying Markov’s inequality, we obtain that

P
(
∆1 > n−

1
2

+ρ
)
≤ Cn−2ρ (S.19)

P
(
∆2 > n−

1
2

+ρ
)
≤ Cn−2ρ, (S.20)

where we choose ρ to be a fixed constant with ρ ∈ (0, 1/2) and C depends only on Θ′.

Moreover, noticing that |Zij| ≤ CZ < ∞ and E[Z2
ij] ≥ c2

Z > 0 under the conditions

of Proposition 4.4, the same arguments as for Lemma A.1 yield the following: there

9



exist positive constants C, D and K depending only on Θ′ such that

P
(
∆3 > D

√
log(n ∨ p)/n

)
≤ Cn−K (S.21)

P
(
∆4 > D

√
log(n ∨ p)/n

)
≤ Cn−K . (S.22)

Taken together, (S.19)–(S.22) imply that the event

A′n :=
{

(∆1 ∨∆2) ≤ n−
1
2

+ρ and (∆3 ∨∆4) ≤ D
√

log(n ∨ p)/n
}

occurs with probability at least 1−O(n−K ∨ n−2ρ).

With the above notation at hand, we now turn to the proof of Proposition A.3.

In a first step, we show that the quantiles of the statistic Π∗B are close to those of

the auxiliary statistic Π∗∗B in the following sense: there exist positive constants C

and K depending only on Θ′ such that

γ∗α+ζn,B ≤ γ∗∗α,B ≤ γ∗α−ζn,B

γ∗∗α+ζn,B ≤ γ∗α,B ≤ γ∗∗α−ζn,B
(S.23)

for any α ∈ (ζn, 1 − ζn) with ζn = Cn−K . The proof of (S.23) is postponed until

the arguments for Proposition A.3 are complete. In the second step, we relate the

quantiles γ∗∗α,B of Π∗∗B to the quantiles γα,B of ΠB(e). Arguments completely analogous

to those for Proposition A.2 yield the following: there exist positive constants C and

K depending only on Θ′ such that on the event A′n,

γα+ξ′n,B ≤ γ∗∗α,B ≤ γα−ξ′n,B

γ∗∗α+ξ′n,B
≤ γα,B ≤ γ∗∗α−ξ′n,B

(S.24)

for any α ∈ (ξ′n, 1− ξ′n) with ξ′n = Cn−K . In the third step, we relate the auxiliary

statistic ΠB(e) to the criterion function Π̂B(γ, e), which underlies the estimator γ̂α,B.

Straightforward calculations show that

Π̂B(γ, e)

≤ ΠB(e) +RB(γ, e)

≥ ΠB(e)−RB(γ, e),
(S.25)

where RB(γ, e) = RB,1(γ, e) +RB,2(e) +RB,3(e) with

RB,1(γ, e) = max
j∈B

∣∣∣∣ 1√
n

n∑
i=1

Ẑij
{
PXB

(
β∗B − β̂B, 2√

n
γ

)}
i
ei

∣∣∣∣
RB,2(e) = max

j∈B

∣∣∣∣ 1√
n

n∑
i=1

(Ẑij − Zij)εiei
∣∣∣∣
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RB,3(e) = max
j∈B

∣∣∣∣ 1√
n

n∑
i=1

Ẑij(εi − ui)ei
∣∣∣∣.

The terms RB,1(γ, e), RB,2(e) and RB,3(e) have the following properties: on the

event S ′γ ∩ A′n,

Pe
(
RB,1(γ′, e) >

D(log n)2
√
‖β∗B‖1γ′

n1/4

)
≤ Cn−K (S.26)

for every γ′ ≥ γ, where the constants C, D and K depend only on Θ′. Moreover,

on the event A′n,

Pe
(
RB,2(e) >

D log1/2(n ∨ p)
n1/2−ρ

)
≤ Cn−2ρ (S.27)

Pe
(
RB,3(e) >

D log(n ∨ p)
n1/2−ρ

)
≤ Cn−K , (S.28)

where ρ ∈ (0, 1/2) has been introduced in (S.19)–(S.20) and the constants C, D and

K depend only on Θ′. The proofs of (S.26)–(S.28) are provided below. With (S.23)–

(S.28) in place, we can now use the same arguments as in the proof of Theorem 3.1

(with minor adjustments) to obtain that γ∗α+ν′n,B
≤ γ̂α,B ≤ γ∗α−ν′n,B on the event

S ′γ∗
α+ν′n,B

∩ A′n.

Proof of (S.23). We prove that

sup
t∈R

∣∣P(Π∗∗B ≤ t)− P(ΠG
B ≤ t)

∣∣ ≤ Cn−K (S.29)

sup
t∈R

∣∣P(Π∗B ≤ t)− P(ΠG
B ≤ t)

∣∣ ≤ Cn−K , (S.30)

where C and K depend only on Θ′. Applying the same arguments as in the proof

of Proposition A.1 to the statements (S.29) and (S.30) yields that

γ∗∗α+Cn−K ,B ≤ γGα,B ≤ γ∗∗α−Cn−K ,B

γGα+Cn−K ,B ≤ γ∗∗α,B ≤ γGα−Cn−K ,B
and

γ∗α+Cn−K ,B ≤ γGα,B ≤ γ∗α−Cn−K ,B

γGα+Cn−K ,B ≤ γ∗α,B ≤ γGα−Cn−K ,B,

from which (S.23) follows immediately.

It remains to prove (S.29) and (S.30). (S.29) is a direct consequence of Lemma

A.6, since 0 < c2
σc

2
Z ≤ n−1

∑n
i=1 E[(Zijεi)

2] ≤ C2
σC

2
Z < ∞ and maxk=1,2{n−1

∑n
i=1

E[|Zijεi|2+k/Ck]} + E[{maxj∈B |Zijεi|/C}4] ≤ 4 for C large enough, where we have

used (C3) and the fact that |Zij| ≤ CZ < ∞ and E[Z2
ij] ≥ c2

Z > 0 under the

11



conditions of Proposition 4.4. For the proof of (S.30), it suffices to show that

sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣ ≤ Cn−K (S.31)

with C and K depending only on Θ′, since by (S.29),

sup
t∈R

∣∣P(Π∗B ≤ t)− P(ΠG
B ≤ t)

∣∣ ≤ sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣

+ sup
t∈R

∣∣P(Π∗∗B ≤ t)− P(ΠG
B ≤ t)

∣∣
≤ sup

t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣+ Cn−K .

To prove (S.31), we fix a constant d ∈ (0, 1/2) and let cn = Dnd
√

log(n ∨ p)/n,

where D is a sufficiently large constant that depends only on Θ′. In the case that

P(Π∗B ≤ t) ≥ P(Π∗∗B ≤ t), the difference P(Π∗B ≤ t)− P(Π∗∗B ≤ t) can be bounded as

follows:

P(Π∗B ≤ t)− P(Π∗∗B ≤ t)

= P(Π∗∗B ≤ t+ Π∗∗B − Π∗B, |Π∗∗B − Π∗B| ≤ cn)

+ P(Π∗∗B ≤ t+ Π∗∗B − Π∗B, |Π∗∗B − Π∗B| > cn)− P(Π∗∗B ≤ t)

≤ P(Π∗∗B ≤ t+ cn)− P(Π∗∗B ≤ t) + P(|Π∗∗B − Π∗B| > cn)

≤
∣∣P(Π∗∗B ≤ t+ cn)− P(ΠG

B ≤ t+ cn)
∣∣+
∣∣P(Π∗∗B ≤ t)− P(ΠG

B ≤ t)
∣∣

+
∣∣P(ΠG

B ≤ t+ cn)− P(ΠG
B ≤ t)

∣∣+ P(|Π∗∗B − Π∗B| > cn)

≤
∣∣P(Π∗∗B ≤ t+ cn)− P(ΠG

B ≤ t+ cn)
∣∣+
∣∣P(Π∗∗B ≤ t)− P(ΠG

B ≤ t)
∣∣

+ P(|ΠG
B − t| ≤ cn) + P(|Π∗∗B − Π∗B| > cn). (S.32)

For the case that P(Π∗B ≤ t) < P(Π∗∗B ≤ t), we similarly get that

P(Π∗∗B ≤ t)− P(Π∗B ≤ t)

≤
∣∣P(Π∗∗B ≤ t)− P(ΠG

B ≤ t)
∣∣+
∣∣P(Π∗∗B ≤ t− cn)− P(ΠG

B ≤ t− cn)
∣∣

+ P(|ΠG
B − t| ≤ cn) + P(|Π∗∗B − Π∗B| > cn). (S.33)

(S.32) and (S.33) immediately yield that

sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣ ≤ 2 sup

t∈R

∣∣P(Π∗∗B ≤ t)− P(ΠG
B ≤ t)

∣∣
+ sup

t∈R
P(|ΠG

B − t| ≤ cn)

+ P(|Π∗∗B − Π∗B| > cn).

12



Since supt∈R |P(Π∗∗B ≤ t) − P(ΠG
B ≤ t)| ≤ Cn−K by (S.29) and supt∈R P(|ΠG

B − t| ≤
cn) ≤ Cn−K by Lemma A.4, we further get that

sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣ ≤ P(|Π∗∗B − Π∗B| > cn) + Cn−K ,

where C and K depend only on Θ′. To complete the proof of (S.31), we thus need

to show that

P(|Π∗∗B − Π∗B| > cn) ≤ Cn−K (S.34)

with C and K depending only on Θ′. To do so, we bound the term |Π∗∗B − Π∗B| by

|Π∗∗B − Π∗B| ≤ max
j∈B

∣∣∣∣ 1√
n

n∑
i=1

(Ẑij − Zij)εi
∣∣∣∣

= max
j∈B

∣∣∣∣{ψ>j,AΨ−1
A − ψ̂

>
j,AΨ̂−1

A }
1√
n

n∑
i=1

Xi,Aεi

∣∣∣∣
≤
{

max
j∈B
‖ψj,A − ψ̂j,A‖2‖Ψ−1

A ‖2

+ max
j∈B
‖ψ̂j,A‖2‖Ψ−1

A − Ψ̂−1
A ‖2

}∥∥∥ 1√
n

n∑
i=1

Xi,Aεi

∥∥∥
2
. (S.35)

From (S.21), it immediately follows that

P
(

max
j∈B
‖ψj,A − ψ̂j,A‖2 > D

√
log(n ∨ p)/n

)
≤ Cn−K (S.36)

P
(
‖ΨA − Ψ̂A‖2 > D

√
log(n ∨ p)/n

)
≤ Cn−K (S.37)

with C, D and K depending only on Θ′. Moreover, it holds that

P
(
‖Ψ−1

A − Ψ̂−1
A ‖2 > D

√
log(n ∨ p)/n

)
≤ Cn−K , (S.38)

which is a consequence of (S.37) and the fact that

‖Q−1 −R−1‖2 ≤
‖R−1‖2

2‖R−Q‖2

1− ‖R−Q‖2‖R−1‖2

(S.39)

for every pair of invertible matrices Q and R that are close enough such that ‖R−
Q‖2‖R−1‖2 < 1. Finally, a simple application of Markov’s inequality yields that

P
(∥∥∥ 1√

n

n∑
i=1

Xi,Aεi

∥∥∥
2
> nd

)
≤ Cn−2d, (S.40)

where C depends only on Θ′. The statement (S.34) follows upon applying the results

13



(S.36)–(S.38) and (S.40) to the bound (S.35).

Proof of (S.26). To start with, we bound RB,1(γ, e) by

RB,1(γ, e) ≤
{

1 +
√
pA max

j∈B
‖ψ̂>j,AΨ̂−1

A ‖2

}
× max

1≤j≤p

∣∣∣∣ 1√
n

n∑
i=1

Xij

{
PXB

(
β∗B − β̂B, 2√

n
γ

)}
i
ei

∣∣∣∣. (S.41)

The same arguments as in the proof of Lemma A.2 yield that on the event S ′γ,

Pe
(

max
1≤j≤p

∣∣∣∣ 1√
n

n∑
i=1

Xij

{
PXB

(
β∗B − β̂B, 2√

n
γ′

)}
i
ei

∣∣∣∣
>
D(log n)2

√
‖β∗B‖1γ′

n1/4

)
≤ Cn−K (S.42)

for every γ′ ≥ γ, where C, D and K depend only on Θ′. Moreover, on the event A′n,

max
j∈B
‖ψ̂j,A − ψj,A‖2 ≤ C

√
log(n ∨ p)/n (S.43)

‖Ψ̂A −ΨA‖2 ≤ C
√

log(n ∨ p)/n (S.44)

‖Ψ̂−1
A −Ψ−1

A ‖2 ≤ C
√

log(n ∨ p)/n, (S.45)

where C is a sufficiently large constant that depends only on Θ′, and (S.45) is a

simple consequence of (S.44) and (S.39). To complete the proof, we apply (S.42)–

(S.45) to the bound (S.41), taking into account that ‖Ψ−1
A ‖2 ≤ C < ∞ and

maxj∈B ‖ψj,A‖2 ≤ C <∞.

Proof of (S.27). We have the bound

RB,2(e) ≤ max
j∈B

∥∥ψ̂>j,AΨ̂−1
A − ψ

>
j,AΨ−1

A

∥∥
2

∥∥∥ 1√
n

n∑
i=1

Xi,Aεiei

∥∥∥
2
. (S.46)

On the event A′n,

Pe
(∣∣∣ 1√

n

n∑
i=1

Xijεiei

∣∣∣ > nρ
)
≤ n−2ρ

{ 1

n

n∑
i=1

X2
ijε

2
i

}
≤ n−2ρ

{
E[X2

ijε
2
i ] + ∆2

}
≤ n−2ρ

{
C2
XC

2
σ + n−

1
2

+ρ
}

for every j ∈ A, which implies that Pe(‖n−1/2
∑n

i=1 Xi,Aεiei‖2 > nρ) ≤ Cn−2ρ with

C depending only on Θ′. To complete the proof, we apply this, (S.43)–(S.45) and the

fact that ‖Ψ−1
A ‖2 ≤ C <∞ and maxj∈B ‖ψj,A‖2 ≤ C <∞ to the bound (S.46).
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Proof of (S.28). Let dn = D log(n ∨ p)/n1/2−ρ and define

e≤i = ei 1(|ei| ≤ log n)− E[ei 1(|ei| ≤ log n)]

e>i = ei 1(|ei| > log n)− E[ei 1(|ei| > log n)].

It holds that

Pe
(
RB,3(e) > dn

)
≤
∑
j∈B

Pe
(∣∣∣ 1√

n

n∑
i=1

Ẑij(εi − ui)ei
∣∣∣ > dn

)
≤
∑
j∈B

{
P≤e,j + P>

e,j

}
, (S.47)

where

P≤e,j = Pe
(∣∣∣ 1√

n

n∑
i=1

Ẑij(εi − ui)e≤i
∣∣∣ > dn

2

)
P>
e,j = Pe

(∣∣∣ 1√
n

n∑
i=1

Ẑij(εi − ui)e>i
∣∣∣ > dn

2

)
.

We first analyze the term P≤e,j. With the help of (S.43)–(S.45), we obtain that

on the event A′n,

|Ẑij| = |Xij − ψ̂>j,AΨ̂−1
A Xi,A| ≤ {1 + ‖ψ̂j,A‖2‖Ψ̂−1

A ‖2
√
pA}CX ≤ C

|εi − ui| =
∣∣{XA(X>AXA)−1X>Aε}i

∣∣ =

∣∣∣∣X>i,AΨ̂−1
A

{ 1

n

n∑
`=1

X`,Aε`

}∣∣∣∣
≤ √pACX‖Ψ̂−1

A ‖2

∥∥∥ 1

n

n∑
`=1

X`,Aε`

∥∥∥
2
≤ C

n1/2−ρ ,

which implies that |Ẑij(εi−ui)e≤i | ≤ C log n/n1/2−ρ. Using Markov’s inequality, P≤e,j
can be bounded by

P≤e,j ≤ Ee exp

(
µ
∣∣∣ 1√
n

n∑
i=1

Ẑij(εi − ui)e≤i
∣∣∣)/ exp

(µdn
2

)
≤
{
Ee exp

(
µ√
n

n∑
i=1

Ẑij(εi − ui)e≤i
)

+ Ee exp

(
− µ√

n

n∑
i=1

Ẑij(εi − ui)e≤i
)}/

exp
(µdn

2

)
, (S.48)

where we choose µ = cµn
1/2−ρ with cµ > 0 so small that µ|Ẑij(εi−ui)e≤i |/

√
n ≤ 1/2.
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Since exp(x) ≤ 1 + x+ x2 for |x| ≤ 1/2, we further get that

Ee exp

(
± µ√

n

n∑
i=1

Ẑij(εi − ui)e≤i
)

=
n∏
i=1

Ee exp

(
±µẐij(εi − ui)e

≤
i√

n

)

≤
n∏
i=1

{
1 +

µ2Ẑ2
ij(εi − ui)2E(e≤i )2

n

}

≤
n∏
i=1

exp

(
µ2Ẑ2

ij(εi − ui)2E(e≤i )2

n

)
= exp

(
µ2

n

n∑
i=1

Ẑ2
ij(εi − ui)2E(e≤i )2

)
≤ exp(c)

with a sufficiently large constant c that depends only on Θ′. Plugging this into

(S.48) yields that

P≤e,j ≤ 2 exp
(
c− cµD log(n ∨ p)

2

)
≤ Cn−K , (S.49)

where K can be made as large as desired.

We next have a closer look at the term P>
e,j. Since maxj∈B |

∑n
i=1 Ẑij(εi − ui)| =

‖(PXB)>(ε− Pε)‖∞ = 0, it holds that

1√
n

n∑
i=1

Ẑij(εi − ui)e>i =
1√
n

n∑
i=1

Ẑij(εi − ui)ei 1(|ei| > log n),

and thus, as already proven in (S.15),

P>
e,j ≤ Pe

(
|ei| > log n for some 1 ≤ i ≤ n

)
≤ Cn−K , (S.50)

where K can be made as large as desired. To complete the proof, we insert equations

(S.49) and (S.50) into (S.47) and invoke condition (C4).

Proof of (3.4)

Let G1, . . . , Gp be independent normal random variables with E[Gj] = 0 for all j

and suppose w.l.o.g. that E[G2
j ] = 1 for all j. By Lemma A.7,

P
(

max
1≤j≤p

|Gj| ≤ γGα

)
= 1− α. (S.51)

Moreover, standard arguments from classic extreme value theory show that

P
(

max
1≤j≤p

|Gj| ≤
x

ap
+ bp

)
→ e−2e−x
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as p→∞ with ap =
√

2 log p and bp =
√

2 log p−{log log p+ log(4π)}/{2
√

2 log p},
which in particular implies that for any fixed δ > 0,

P
(

max
1≤j≤p

|Gj| ≤
xα±δ
ap

+ bp

)
→ 1− {α± δ} (S.52)

with xα±δ = − log(− log(1−{α± δ})/2). From (S.51) and (S.52), it follows that for

any null sequence of positive numbers ηp,

xα+δ

ap
+ bp ≤ γGα+ηp ≤ γGα−ηp ≤

xα−δ
ap

+ bp

for p sufficiently large. We thus arrive at

|γGα−ηp − γ
G
α+ηp | ≤

xα−δ − xα+δ√
2 log p

≤ C√
2 log p

with some sufficiently large constant C.
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S.2 Robustness checks

Choice of α for tuning parameter calibration

Our estimates of the quantiles of the effective noise can be used for different tasks,

with inference and tuning parameter calibration as two examples. In inference, the

choice of α is determined by the significance level. In tuning parameter calibration,

in contrast, α can be chosen freely. In what follows, we examine how our tuning

parameter calibration is influenced by the choice of α. To do so, we repeat the

simulation exercises from Section 5.2 (with κ = 0.25) for three different values of α,

namely α = 0.01, 0.05, 0.1. Choosing α in the range between 0.01 and 0.1 in practice

is sensible for the following reasons: The constraint α ≤ 0.1 makes sure that the

finite sample guarantees for tuning parameter calibration from Section 4.1 hold with

reasonably high probability (≈ 90% or higher). The constraint α ≥ 0.01, on the

other hand, ensures that the bias of the lasso does not get overly strong. We thus

restrict attention to α ∈ [0.01, 0.1], which is also the range of typical significance

levels in testing.

Figure S.1 reports the results for the Hamming loss. The grey-shaded area in each

panel depicts the histogram of the Hamming distances ∆H(β̂, β∗) that are produced

by our estimator β̂ over the N = 1000 simulation runs when α is set to 0.05, the red

line depicts the histogram for α = 0.01, and the blue line the histogram for α = 0.1.

In addition, the histogram of the cross-validated estimator is shown as a dotted

line. Notice that the grey-shaded histograms in Figure S.1 are the same as those in

Figure 3a. Figures S.2–S.4 present the results for the `1-, `∞- and prediction loss

in an analogous way. Inspecting the plots, we conclude that the precise choice of α

only has a minor effect on tuning parameter calibration with our method.
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Figure S.1: Histograms of the Hamming loss for different values of α.
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Figure S.2: Histograms of the `1-loss for different values of α.
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Figure S.3: Histograms of the `∞-loss for different values of α.

(n, p) = (500, 250)

0.00 0.10 0.20 0.30

0
50

10
0

15
0

prediction loss

# 
si

m
ul

at
io

ns

(n, p) = (500, 500)

0.00 0.10 0.20 0.30

0
50

10
0

15
0

prediction loss

# 
si

m
ul

at
io

ns

(n, p) = (500, 1000)

0.00 0.10 0.20 0.30

0
50

10
0

15
0

prediction loss

# 
si

m
ul

at
io

ns

Figure S.4: Histograms of the prediction loss for different values of α.
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Different distributions of the noise and the design

In this section, we investigate how our simulation results are influenced by the

distribution of the noise εi and the design Xi. In order to do so, we repeat the

simulation exercises from Sections 5.1–5.3 with non-normal noise variables εi and

design vectors Xi. Specifically, we sample εi independently from a t-distribution

with d degrees of freedom and variance normalized to 1. Moreover, Xi is drawn

from a multivariate t-distribution with the same number of degrees of freedom,

where the covariance matrix is the same as in Section 5 (in particular, it is given

by (1− κ)I + κE with κ = 0.25). We consider three different choices of d, namely

d ∈ {5, 10, 30}. For small d, the t-distribution differs substantially from the standard

normal law, having much heavier tails. (Note in particular that d = 5 is the smallest

integer for which the t-distribution has θ > 4 moments as required by condition

(C3).) As d increases, the t-distribution becomes less heavy-tailed and more akin to

a standard normal law.

We start with the simulations from Section 5.1, which concern the approximation

quality of our estimator λ̂α. To see how the quality of λ̂α depends on the distribution

of the noise and the design, we reproduce Figure 2 for the case of t-distributed errors

and design vectors with d ∈ {5, 10, 30}. The results are reported in Figure S.5. As

can be seen, the precision of our estimator diminishes somewhat as d gets smaller.

Nevertheless, even for the case d = 5, we obtain quite precise results.

We now turn to the simulations on tuning parameter calibration from Section 5.2.

We reproduce Figures 3a, 4, 5 and 6, which correspond to the four different losses

under consideration, for the case of t-distributed noise terms and design vectors with

d ∈ {5, 10, 30}. The results are presented in Figures S.6–S.9. The format is the same

as in Figures 3a, 4, 5 and 6: the grey-shaded areas correspond to the histograms

produced by our estimator, the black lines correspond to the histograms of the oracle

method, and the dotted lines correspond to the histograms of the cross-validated

lasso. In all of the considered cases, the histograms of our estimator are extremely

close to those of the oracle. Moreover, the histograms are very similar to those of

Figures 3a, 4, 5 and 6 for the Gaussian case.

We finally revisit the inference results from Section 5.3. As before, we repeat

the simulations with t-distributed noise and design vectors for d ∈ {5, 10, 30}. The

results are given in Tables S.1–S.3. For all considered values of d, the size of the test

under the null is close to the target α. Moreover, the power of the test is comparable

to that in the Gaussian case, even though it gets a bit lower for smaller d.

To summarize, the results demonstrate that our method does not require normally

distributed noise and design, which supports our general theory in the main part of

the paper.
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(a) histograms for t-distributed noise and design with d = 5
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.5: Histograms of the estimates λ̂α for t-distributed noise variables and design
vectors with d ∈ {5, 10, 30}.
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(a) histograms for t-distributed noise and design with d = 5
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.6: Histograms of the Hamming loss for t-distributed noise variables and design
vectors with d ∈ {5, 10, 30}.
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(a) histograms for t-distributed noise and design with d = 5
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.7: Histograms of the `1-loss for t-distributed noise variables and design vectors
with d ∈ {5, 10, 30}.
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(a) histograms for t-distributed noise and design with d = 5

(n, p) = (500, 250)

0.05 0.15 0.25 0.35

0
40

80
12

0

L∞ loss

# 
si

m
ul

at
io

ns

(n, p) = (500, 500)

0.05 0.15 0.25 0.35

0
40

80
12

0

L∞ loss

# 
si

m
ul

at
io

ns

(n, p) = (500, 1000)

0.05 0.15 0.25 0.35

0
40

80
12

0

L∞ loss

# 
si

m
ul

at
io

ns

(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.8: Histograms of the `∞-loss for t-distributed noise variables and design vectors
with d ∈ {5, 10, 30}.
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(a) histograms for t-distributed noise and design with d = 5
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.9: Histograms of the prediction loss for t-distributed noise variables and design
vectors with d ∈ {5, 10, 30}.
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Table S.1: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 5.

(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.011 0.033 0.080 0.009 0.058 0.105
(n, p) = (500, 500) 0.009 0.036 0.078 0.013 0.054 0.094
(n, p) = (500, 1000) 0.007 0.028 0.067 0.018 0.061 0.095

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.092 0.220 0.346 0.060 0.247 0.360
(n, p) = (500, 500) 0.100 0.247 0.401 0.107 0.298 0.419
(n, p) = (500, 1000) 0.085 0.223 0.365 0.139 0.309 0.397

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.471 0.741 0.856 0.602 0.836 0.917
(n, p) = (500, 500) 0.510 0.762 0.874 0.617 0.865 0.929
(n, p) = (500, 1000) 0.453 0.725 0.852 0.656 0.843 0.908
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Table S.2: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 10.

(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.012 0.054 0.087 0.011 0.045 0.095
(n, p) = (500, 500) 0.012 0.047 0.100 0.004 0.053 0.102
(n, p) = (500, 1000) 0.005 0.033 0.080 0.005 0.041 0.084

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.111 0.260 0.403 0.109 0.279 0.399
(n, p) = (500, 500) 0.119 0.270 0.393 0.096 0.297 0.418
(n, p) = (500, 1000) 0.106 0.247 0.374 0.088 0.262 0.376

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.607 0.822 0.922 0.649 0.860 0.938
(n, p) = (500, 500) 0.578 0.790 0.891 0.592 0.832 0.910
(n, p) = (500, 1000) 0.556 0.806 0.895 0.567 0.851 0.909
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Table S.3: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 30.

(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.012 0.057 0.111 0.007 0.056 0.105
(n, p) = (500, 500) 0.019 0.057 0.099 0.012 0.070 0.115
(n, p) = (500, 1000) 0.011 0.044 0.082 0.004 0.055 0.101

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.120 0.275 0.421 0.113 0.288 0.417
(n, p) = (500, 500) 0.130 0.278 0.391 0.129 0.335 0.437
(n, p) = (500, 1000) 0.140 0.287 0.407 0.119 0.327 0.446

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.629 0.824 0.908 0.653 0.855 0.922
(n, p) = (500, 500) 0.605 0.823 0.905 0.660 0.892 0.935
(n, p) = (500, 1000) 0.619 0.831 0.906 0.620 0.854 0.935
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Choice of L and M

When implementing our method, we need to choose the number of bootstrap it-

erations L as well as the grid size M for computing the lasso estimates. We have

experimented with different choices of L and M and found that they have little

effect on the simulation results. To illustrate this, we consider the same simula-

tion setting as in Section 5.1 and produce N = 1000 estimates of λ̂α for different

choices of (L,M). In addition to the choice (L,M) = (100, 100) which is used in

Section 5, we consider the choices (L,M) = (200, 200) and (L,M) = (300, 300).

Figure S.10 reports the results. In each panel, the grey-shaded area is the his-

togram of the N = 1000 estimates of λ̂α for the choice (L,M) = (100, 100), the

blue line is the histogram for (L,M) = (200, 200), and the red line is the histogram

for (L,M) = (300, 300). As one can see, the histograms are very similar across the

different choices of (L,M), which suggests that the precise choice of L and M has

little effect on our method.
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Figure S.10: Histograms of the estimates λ̂α for different choices of (L,M).
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