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In this paper, we study a nonparametric additive regression model suitable for
a wide range of time series applications. Our model includes a periodic com-
ponent, a deterministic time trend, various component functions of stochastic
explanatory variables, and an AR(p) error process that accounts for serial cor-
relation in the regression error. We propose an estimation procedure for the
nonparametric component functions and the parameters of the error process
based on smooth backfitting and quasi-maximum likelihood methods. Our
theory establishes convergence rates as well as asymptotic normality of our
estimators. Moreover, we are able to derive an oracle type result for the es-
timators of the AR parameters: Under fairly mild conditions, the limiting
distribution of our parameter estimators is the same as when the nonpara-
metric component functions are known. Finally, we illustrate our estimation
procedure by applying it to a sample of climate and ozone data collected on
the Antarctic Peninsula.
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1 Introduction

In many time series applications, the data at hand exhibit seasonal fluctuations as

well as a trending behaviour. A common way to incorporate these features is to

assume that the data generating process can be written as the sum of a seasonal

part, a deterministic time trend and a stationary stochastic process. In general,

the structure of these three components is largely unknown. This necessitates the

development of flexible semi- and nonparametric methods in order to estimate them.
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Let {Yt,T : t = 1, . . . , T} be the time series under investigation. A general semipara-

metric framework which decomposes Yt,T into a seasonal, a trend and a stationary

stochastic component is given by the regression model

Yt,T = mθ(t) +m0

( t
T

)
+m(Xt) + εt for t = 1, . . . , T (1)

with E[εt|Xt] = 0. Here, mθ is a periodic function with a known period θ and m0

is a deterministic time trend. The stochastic component consists of the residual εt

and of the term m(Xt) which captures the influence of the d-dimensional stationary

covariate vector Xt = (X1
t , . . . , X

d
t ). We do not impose any parametric restrictions

on the component functions mθ, m0 and m. Moreover, we allow for correlation in

the error terms εt which are modelled as a stationary AR(p) process. Note that, as

usual in nonparametric regression, the time argument of the trend function m0 is

rescaled to the unit interval.

Two special cases of model (1) have been considered in the literature. The fixed

design setting Yt,T = m0( t
T

) + εt has been analyzed for example in Truong [19],

Altman [2], Hall & van Keilegom [5], and Shao [18] who provide a variety of methods

to estimate the nonparametric trend function m0 and the AR parameters of the error

term. Interestingly, they establish an oracle type result for the estimation of the AR

parameters. In particular, they show that the limiting distribution of the parameter

estimators is unaffected by the need to estimate the nonparametric function m0. A

second special case of model (1) is the setting Yt = m(Xt) + εt. The problem of

estimating the AR parameters in this setup has been studied under the restriction

that {Xt} is independent of the error process {εt}. Truong & Stone [20], Schick

[17] and Lin et al. [11] show that under this restriction an oracle type result for the

parameter estimators holds analogous to that in the fixed design setting.

In this paper, we study estimation of the parametric and nonparametric components

in the general model (1). We allow Xt and εt to be dependent, thus dispensing with

the very restrictive assumption that the covariate process is independent of the

errors. In order to circumvent the well-known curse of dimensionality we assume

the function m to be additive with component functions mj for j = 1, . . . , d, thus

yielding

Yt,T = mθ(t) +m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + εt for t = 1, . . . , T. (2)

A full description of model (2) together with a discussion of its components is given

in Section 2.

Our estimation procedure is introduced in Section 3. The nonparametric compo-

nents mθ and m0, . . . ,md are estimated by extending the smooth backfitting ap-

proach of Mammen et al. [12], who derived its asymptotic properties in a strictly
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stationary setup. Due to the inclusion of the periodic and the deterministic trend

components our model dynamics are no longer stationary. In Subsections 3.1 and

3.2, we describe how to incorporate this type of nonstationarity into the smooth

backfitting procedure. Given our estimates m̃θ and m̃0, . . . , m̃d of the functions mθ

and m0, . . . ,md, we can construct approximate expressions ε̃t of εt. Using these, the

parameters of the AR(p) error process are estimated via a quasi-maximum likelihood

based method, the details of which are given in Subsection 3.3.

Section 4 contains our results on the asymptotic properties of our estimators. In

Subsections 4.2 and 4.3, we provide the convergence rates of the nonparametric esti-

mators m̃θ and m̃0, . . . , m̃d as well as their Gaussian limit distribution. The asymp-

totic behaviour of the parameter estimators of the AR(p) error process is studied in

Subsection 4.4. There, we show that the parameter estimators are asymptotically

normal. Deriving the limit distribution of the parameter estimators is by far the

most difficult part of the theory developed in the paper. To do so, we need to es-

tablish a higher-order stochastic expansion of the first derivative of the likelihood

function. This requires substantially different and much more intricate techniques

than in the analysis of the special cases previously discussed in the literature.

It will also be seen that the oracle type result concerning the estimation of the

error parameters does not hold without imposing some conditions on the the de-

pendence structure between the covariates Xt and the errors εt. In general, the

asymptotic distribution of our parameter estimators differs from that of the oracle

estimators constructed under the assumption that the additive component func-

tions are known. Thus, the additional uncertainty which stems from estimating the

component functions does have an impact on the asymptotic distribution of our

parameter estimators. However, the limiting distribution will coincide with that

of the oracle estimators if E[εt|Xt+k] = 0 for all k = −p, . . . , p, which is evidently

much weaker than imposing independence between {Xt} and {εt} as in the simpler

settings discussed above. Our theory thus generalizes the previously found oracle

type results.

We illustrate our estimation procedure by appyling it to monthly minimum temper-

ature and ozone data from the Faraday/Vernadsky research station on the Antarctic

Peninsula in Section 5. The nice thing about this application is that Hughes et al.

[10] used a parametric regression model setup with AR errors to analyse the same

data. Hence, our analysis can be regarded as a semiparametric extension to their

study and we can get an impression of what can be gained by using our more flexible

specification in this setting.
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2 Model

Before we introduce our estimation procedure, we take a closer look at model (2)

and comment on some of its features. We observe a sample of variables {Yt,T , Xt}
for t = 1, . . . , T , where Yt,T is real-valued and Xt = (X1

t , . . . , X
d
t ) is a strictly

stationary Rd-valued random vector. As already noted in the introduction, the data

are assumed to follow the process

Yt,T = mθ(t) +m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + εt for t = 1, . . . , T (3)

with E[εt|Xt] = 0, where mθ is a periodic component with some known integer-

valued period θ, m0 is a deterministic trend, and mj are nonparametric functions of

the regressors Xj
t for j = 1, . . . , d. Moreover, {εt} is a stationary AR(p) process of

the form

εt =

p∑
i=1

φ∗i εt−i + ηt for all t ∈ Z,

where φ∗ = (φ∗1, . . . , φ
∗
p) is the vector of parameters and the residuals ηt are assumed

to be a martingale difference.

The additive functions in model (3) are only identified up to an additive constant. To

identify them, we assume that the constant is absorbed into the periodic component

and the remaining components have zero mean, i.e.∫ 1

0

m0(x0)dx0 = 0 and

∫
mj(xj)pj(xj)dxj = 0 for j = 1, . . . , d, (4)

where pj is the marginal density of Xj
t . The covariates Xj

t are assumed to take

values in a bounded interval which without loss of generality is taken to be [0, 1] for

each j = 1, . . . , d. Throughout the paper, the symbol x0 is used to denote a point

in rescaled time. Moreover, we write x = (x0, x−0) with x−0 = (x1, . . . , xd).

To be able to do reasonable asymptotics, we let the trend function m0 in model (3)

depend on rescaled time t
T

rather than on real time t. If we defined m0 in terms of

real time, we would not get additional information on the structure of m0 locally

around a fixed time point t as the sample size increases. Within the framework of

rescaled time, in contrast, the function m0 is observed on a finer and finer grid of

rescaled time points on the unit interval as T grows. Thus, we obtain more and

more information on the local structure of m0 around each point in rescaled time.

This is the reason why we can make reasonable asymptotic considerations within

this framework.

In contrast to m0, we let the periodic component mθ in model (3) be a function of

real time t. This allows us to exploit its periodic character when doing asymptotics:
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Assume we want to estimate mθ at a time point tθ ∈ {1, . . . , θ}. As mθ is periodic,

it has the same value at tθ, tθ + θ, tθ + 2θ, tθ + 3θ, and so on. Hence, if mθ depends

on real time t, the number of time points in our sample at which mθ has the value

mθ(tθ) increases as the sample size grows. This gives us more and more information

about the value mθ(tθ) and thus allows us to do asymptotics.

3 Estimation Procedure

We now describe how the various components of model (3) are estimated. Our

procedure consists of three steps. In the first step, the periodic model component mθ

is estimated. The estimation of the nonparametric functions m0, . . . ,md is addressed

in the second step. Finally, we use the estimates of the additive component functions

to construct estimators of the AR parameters.

3.1 Estimation of mθ

For any time point t = 1, . . . , T , let tθ = t − b t−1
θ
cθ with bxc denoting the largest

integer, smaller than or equal to x. Our estimate of the periodic component mθ is

defined as

m̃θ(t) =
1

Ktθ,T

Ktθ,T∑
k=1

Ytθ+(k−1)θ,T for t = 1, . . . , T, (5)

where Ktθ,T = 1 + bT−tθ
θ
c is the number of observations that satisfy t = tθ + kθ for

some k ∈ N. The estimate has a very simple structure. It is the empirical mean of

observations that are separated by a multiple of θ periods. Later on, we will show

that m̃θ is asymptotically normal. Note that this result is robust to the presence of

the deterministic trend function m0. In particular, we will see that the effect of the

unknown time trend m0 on the estimate m̃θ can be asymptotically neglected.

3.2 Estimation of m0, . . . ,md

We next introduce the estimates of the functions m0, . . . ,md. For the time being let

us assume that the periodic component mθ is known. Later on, mθ will be replaced

by its estimate m̃θ. Given that mθ is known, Zt,T = Yt,T −mθ(t) is observable. This

allows us to rewrite model (3) as

Zt,T = m0

( t
T

)
+

d∑
j=1

mj(X
j
t ) + εt. (6)

In order to estimate the functions m0, . . . ,md in (6), we extend the smooth backfit-

ting approach of Mammen et al. [12]. The asymptotic properties of this approach
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are well understood in a strictly stationary setup. Our setting, however, involves a

deterministic time-trend component which makes the model dynamics nonstation-

ary. In what follows, we describe how to extend the smooth backfitting procedure

to allow for the nonstationarities present in our setting.

To do so, we first introduce the auxiliary estimates

q̂(x) =
1

T

T∑
t=1

Kh

(
x0,

t

T

) d∏
k=1

Kh(xk, X
k
t )

m̂(x) =
1

T

T∑
t=1

Kh

(
x0,

t

T

) d∏
k=1

Kh(xk, X
k
t )Zt,T

/
q̂(x).

q̂(x) is a kernel estimate of the density q(x) := I(x0 ∈ [0, 1])p(x−0) with p being

the joint density of the regressors Xt = (X1
t , . . . , X

d
t ). Moreover, m̂(x) is a (d+ 1)-

dimensional Nadaraya-Watson estimate of the regression function m(x) = m0(x0) +

. . .+md(xd). In these definitions,

Kh(v, w) =
Kh(v − w)∫ 1

0
Kh(s− w)ds

is a modified kernel weight, where Kh(v) = 1
h
K( v

h
) and the kernel function K(·)

integrates to one. These weights have the property that
∫ 1

0
Kh(v, w)dv = 1 for all

w, which is needed to derive the asymptotic results for the backfitting estimates.

Given the smoothers q̂ and m̂, we define the smooth backfitting estimates m̃0, . . . , m̃d

as the minimizers of the criterion∫
[0,1]d+1

(
m̂(x)− g0(x0)− . . .− gd(xd)

)2
q̂(x)dx, (7)

where the minimization runs over all additive functions g(x) = g0(x0) + · · ·+ gd(xd)

whose components satisfy
∫ 1

0
gj(xj)p̂j(xj)dxj = 0 for j = 0, . . . , d. Here, p̂j is a

kernel estimator of pj for j = 0, . . . , d, where we define p0(x0) = I(x0 ∈ [0, 1]).

Explicit expressions for these estimators are given below in (9) and (12).

According to the definition in (7), the backfitting estimate m̃ = m̃0 + . . . + m̃d is

an L2-projection of the (d+ 1)-dimensional Nadaraya-Watson smoother m̂ onto the

space of additive functions with respect to the density q̂. Rescaled time is treated

as an additional component in this projection. In particular, note that q̂ estimates

the product of a uniform density over [0, 1] and the density p of the regressors Xt.

This shows that rescaled time is treated in a similar way to an additional stochastic

regressor which is uniformly distributed over [0, 1] and independent of the variables

Xt. The heuristic idea behind this is the following: Firstly, as the variables Xt are

strictly stationary, their distribution is time-invariant. In this sense their stochastic

behaviour is independent of rescaled time t
T

. Thus rescaled time behaves similarly to
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an additional stochastic variable that is independent of Xt. Secondly, as the points
t
T

are evenly spaced over the unit interval, a variable with a uniform distribution

closely replicates the pattern of rescaled time.

By differentiation, we can show that the solution to the projection problem (7) is

characterized by the system of integral equations

m̃j(xj) = m̂j(xj)−
∑
k 6=j

∫ 1

0

m̃k(xk)
p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃c (8)

with
∫ 1

0
m̃j(xj)p̂j(xj)dxj = 0 for j = 0, . . . , d. As we do not observe the variables

Zt,T = Yt,T −mθ(t), we define the kernel estimates in (8) in terms of the approxi-

mations Z̃t,T = Yt,T − m̃θ(t). In particular, we let

p̂j(xj) =
1

T

T∑
t=1

Kh(xj, X
j
t ) (9)

p̂j,k(xj, xk) =
1

T

T∑
t=1

Kh(xj, X
j
t )Kh(xk, X

k
t ) (10)

m̂j(xj) =
1

T

T∑
t=1

Kh(xj, X
j
t )Z̃t,T/p̂j(xj) (11)

for j, k = 1, . . . , d with j 6= k, where p̂j is the one-dimensional kernel density esti-

mator of the marginal density pj of Xj
t , p̂j,k is the two-dimensional kernel density

estimate of the joint density pj,k of (Xj
t , X

k
t ), and m̂j is a one-dimensional Nadaraya-

Watson smoother. Moreover,

p̂0(x0) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
(12)

p̂0,k(x0, xk) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
Kh(xk, X

k
t ) (13)

m̂0(x0) =
1

T

T∑
t=1

Kh

(
x0,

t

T

)
Z̃t,T/p̂0(x0) (14)

for k = 1, . . . , d and m̃c = 1
T

∑T
t=1 Z̃t,T . Note that it would be more natural to

define p̂0(x0) = I(x0 ∈ [0, 1]), as we already know the “true density” of rescaled

time. However, for technical reasons, we set p̂0(x0) = 1
T

∑T
t=1Kh(x0,

t
T

). This

creates a behaviour of the estimate p̂0 in the boundary region of the support [0, 1]

analogous to that of p̂j at the boundary.4

4Alternatively, we could define p̂0(x0) =
∫ 1

0
Kh(x0, v)dv. (Note that

∫ 1

0
Kh(x0, v)dv = 1 for x0 ∈

[2C1h, 1 − 2C1h], where [−C1, C1] is the support of the kernel function K.) Moreover, we could

set p̂0,k(x0, xk) = p̂0(x0)p̂k(xk), thereby exploiting the “independence” of rescaled time and the

other regressors.
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In our theoretical analysis, we work with the smooth backfitting estimators charac-

terized as the solution to the system of integral equations (8). Note however that in

general, the system of equations (8) cannot be solved analytically. Nevertheless, the

solution can be approximated by an iterative projection algorithm which converges

for arbitrary starting values; see Mammen et al. [12], who establish the asymptotic

properties of this algorithm under very general high order conditions. Our technical

arguments will show that these high order conditions are satisfied in our framework.

3.3 Estimation of the AR Parameters

To motivate the third step in our estimation procedure, we shall initially con-

sider an infeasible estimator of the model parameters. Suppose that the functions

mθ,m0, . . . ,md were known. In this situation, the AR(p) error process εt would be

observable, since

εt = Yt,T −mθ(t)−m0

( t
T

)
−

d∑
j=1

mj(X
j
t ). (15)

The parameters φ∗ := (φ∗1, . . . , φ
∗
p) of the error process could thus be estimated by

standard maximum likelihood methods. In particular, we could use a conditional

maximum likelihood estimator of the form

φ̂ = arg max
φ∈Φ

lT (φ), (16)

where Φ is a compact parameter space and lT is the conditional log-likelihood given

by

lT (φ) = −
T∑

t=p+1

(
εt − εt(φ)

)2
(17)

with εt(φ) =
∑p

i=1 φiεt−i. Note that φ̂ has a closed form solution which is identical

to the usual least squares estimate. We will, however, not work with this closed

form solution in what follows. Instead we will formulate our proofs in terms of

the likelihood function. This makes it easier to apply our arguments to other error

structures such as ARCH processes. We give some comments on how to extend our

approach in this direction in Section 6.

As the functions mθ,m0, . . . ,md are not observed, we cannot use the standard ap-

proach from above directly. However, given the estimates m̃θ, m̃0, . . . , m̃d from the

previous estimation steps, we can replace εt by the estimates

ε̃t = Yt,T − m̃θ(t)− m̃0

( t
T

)
−

d∑
j=1

m̃j(X
j
t ) (18)
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and use these as approximations to εt in the maximum likelihood estimation. The

log-likelihood then becomes

l̃T (φ) = −
T∑

t=p+1

(
ε̃t − ε̃t(φ)

)2
(19)

with ε̃t(φ) =
∑p

i=1 φiε̃t−i. Our estimator φ̃ of the true parameter values φ∗ is now

defined as

φ̃ = arg max
φ∈Φ

l̃T (φ). (20)

4 Asymptotics

In this section, we analyze the asymptotic properties of our estimators. The first

subsection lists the assumptions required for our analysis. The following subsections

describe the main asymptotic results, with each subsection dealing with a separate

step of our estimation procedure.

4.1 Assumptions

To derive the asymptotic properties of the estimators m̃θ, m̃0, . . . , m̃d, the following

assumptions are needed.

(C1) The process {Xt, εt} is strictly stationary and strongly mixing with mixing

coefficients α satisfying α(k) ≤ ak for some 0 < a < 1.

(C2) The variables Xt have compact support, say [0, 1]d. The density p of Xt and the

densities p(0,l) of (Xt, Xt+l), l = 1, 2, . . . , are uniformly bounded. Furthermore,

p is bounded away from zero on [0, 1]d.

(C3) The functions m0 and mj (j = 1, . . . , d) are twice differentiable with Lipschitz

continuous second derivatives. The first partial derivatives of p exist and are

continuous.

(C4) The kernel K is bounded, symmetric about zero and has compact support

([−C1, C1], say). Moreover, it fulfills the Lipschitz condition that there ex-

ists a positive constant L with |K(u)−K(v)| ≤ L|u− v|.

(C5) There exists a real constant C and a natural number l∗ such that E[|εt|ρ|Xt] ≤
C for some ρ > 8

3
and E[|εtεt+l||Xt, Xt+l] ≤ C for all l ≥ l∗.

(C6) The bandwidth h satisfies either of the following:

(a) T
1
5h→ ch for some constant ch > 0.
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(b) T
1
4

+δh→ ch for some constant ch > 0 and some small δ > 0.

Note that the above assumptions are very similar to the standard smoothing con-

ditions for smooth backfitting estimators to be found e.g. in Mammen et al. [12],

Mammen & Park [14] or Yu et al. [23]. It should also be mentioned that we do not

necessarily require exponentially decaying mixing rates as assumed in (C1). These

could alternatively be replaced by sufficiently high polynomial rates. We neverthe-

less make the stronger assumption (C1) to keep the notation and structure of the

proofs as clear as possible.

In order to show that the estimators of the AR parameters are consistent and asymp-

totically normal, we additionally require the following assumptions.

(C7) The parameter space Φ is a compact subset of {φ ∈ Rp | φ(z) = 1 − φ1z −
. . .−φpzp 6= 0 for all complex z with |z| ≤ 1 and φp 6= 0}. The true parameter

vector φ∗ = (φ∗1, . . . , φ
∗
p) is an interior point of Φ.

(C8) E[ε4+δ
t ] <∞, for some δ > 0.

(C9) There exists a real constant C and a natural number l∗ such that E[|εt||Xt+k] ≤
C and E[|εtεt+l||Xt+k, Xt+l] ≤ C for all l with |l| ≥ l∗ and k = −p, . . . , p.

The compactness assumption in (C7) is required for the proof of consistency. (C8)

and (C9) are technical assumptions needed to show asymptotic normality.

4.2 Asymptotics for m̃θ

We start by considering the asymptotic behaviour of the estimate m̃θ. The next

theorem shows that it is asymptotically normal.

Theorem 4.1. Assume that E|εt|ρ < ∞ for some ρ > 2 and let (C1) be fulfilled.

Then √
T (m̃θ(t)−mθ(t))

d−→ N(0, Vθ)

for all t = 1, . . . , T , where

Vθ = θ
∞∑

k=−∞

Cov(W0,Wkθ)

with Wt = Yt,T −mθ(t)−m0( t
T

) =
∑d

j=1mj(X
j
t ) + εt.

As m̃θ and mθ are periodic, this trivially implies that

sup
t=1,...,T

|m̃θ(t)−mθ(t)| = sup
t=1,...,θ

|m̃θ(t)−mθ(t)| = Op

( 1√
T

)
.
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The proof of Theorem 4.1 is straightforward: We have

m̃θ(t)−mθ(t) =
1

Ktθ,T

Ktθ,T∑
k=1

m0

(tθ + (k − 1)θ

T

)
+

1

Ktθ,T

Ktθ,T∑
k=1

Wtθ+(k−1)θ

=: (A) + (B).

The term (A) approximates the integral
∫ 1

0
m0(u)du. It is easily seen that the

convergence rate is O( 1
T

). As
∫ 1

0
m0(u)du = 0 by the normalization in (4), we

obtain that (A) is of the order O( 1
T

) and can thus be asymptotically neglected.

Noting that {Wt} is mixing by (C1) and has mean zero by our normalization, we

can now apply a central limit theorem for mixing variables to the term (B) to get

the normality result of Theorem 4.1.

4.3 Asymptotics for m̃0, . . . , m̃d

The main result of this subsection characterizes the limiting behaviour of the smooth

backfitting estimates m̃0, . . . , m̃d. It shows that the estimators converge uniformly to

the true component functions at the one-dimensional nonparametric rates no matter

how large the dimension d of the full regression function. Moreover, it characterizes

the asymptotic distribution of the estimators.

Theorem 4.2. Suppose that conditions (C1) – (C5) hold.

(a) Assume that the bandwidth h satisfies (C6a) or (C6b). Then, for Ih = [2C1h, 1−
2C1h] and Ich = [0, 2C1h) ∪ (1− 2C1h, 1],

sup
xj∈Ih

∣∣m̃j(xj)−mj(xj)
∣∣ = Op

(√ log T

Th

)
(21)

sup
xj∈Ich

∣∣m̃j(xj)−mj(xj)
∣∣ = Op(h) (22)

for all j = 0, . . . , d.

(b) Assume that the bandwidth h satisfies (C6a). Then, for any x0, . . . , xd ∈ (0, 1),

T
2
5

 m̃0(x0)−m0(x0)
...

m̃d(xd)−md(xd)

 d−→ N(B(x), V (x))

with the bias term B(x) = [c2
h(β0(x0)− γ0), . . . , c2

h(βd(xd)− γd)]′ and the covari-

ance matrix V (x) = diag(v0(x0), . . . , vd(xd)). Here, v0(x0) = c−1
h cK

∑∞
l=−∞ γε(l)

and vj(xj) = c−1
h cKσ

2
j (xj)/pj(xj) for j = 1, . . . , d with γε(l) = Cov(εt, εt+l),

σ2
j (xj) = Var(εt|Xj

t = xj) and the constants ch = limT→∞ T
1/5h and cK =

11



∫
K2(u)du. Furthermore, the functions βj are the components of the L2(q)-

projection of the function β defined in Lemma A3 of Appendix A onto the space

of additive functions. Finally, the constants γj can be characterized by the equa-

tion
∫ 1

0
αT,j(xj)p̂j(xj)dxj = h2γj + op(h

2) for j = 0, . . . , d, with αT,j also given

in Lemma A3 of Appendix A.

As described in Subsection 3.2, rescaled time t
T

behaves similarly to an additional

uniformly distributed regressor that is independent of the other regressors. This

consideration allows us to derive the above result by extending the proving strategy

of Mammen et al. [12]. The details are given in Appendix B.

4.4 Asymptotics for the AR Parameter Estimates

We finally establish the asymptotic properties of our estimator φ̃ of the AR parame-

ters φ∗. The technical details can be found in Appendix C. The first theorem shows

that φ̃ is consistent.

Theorem 4.3. Suppose that the bandwidth h satisfies (C6a) or (C6b). In addition,

let assumptions (C1) – (C5) and (C7) be fulfilled. Then φ̃ is a consistent estimator

of φ∗, i.e. φ̃
P−→ φ∗.

The central result of our theory specifies the limiting distribution of φ̃.

Theorem 4.4. Suppose that the bandwidth h satifies (C6b) and let assumptions

(C1) – (C5) together with (C7) – (C9) be fulfilled. Then it holds that

√
T (φ̃− φ∗) d−→ N(0, V ∗)

with

V ∗ = Γ−1
p (W + Ω)Γ−1

p .

Here, Γp is the autocovariance matrix of the AR(p) process {εt}, i.e. Γp = (γ(i −
j))i,j=1,...,p with γ(i − j) = E[ε0εi−j]. Moreover, W = (E[η2

0ε−iε−j])i,j=1,...,p and the

matrix Ω is defined in equation (61) of Appendix C.

Consider for a moment the case in which the functions mθ and m0, . . . ,md are

known. In this case, we can use the “oracle” estimator φ̂ defined in (16) to estimate

the AR parameters φ∗. Standard theory tells us that φ̂ is asymptotically normal with

asymptotic variance Γ−1
p WΓ−1

p . Theorem 4.4 thus shows that in general the limiting

distribution of our estimator φ̃ differs from that of the oracle estimator. There is

however a wide range of cases where φ̃ has the same asymptotic distribution as φ̂.

This oracle type result is stated in the following corollary.

12



Corollary 4.1. Suppose that all the assumptions of Theorem 4.4 are fulfilled and

that E[εt|Xt+k] = 0 for all k = −p, . . . , p. Then

√
T (φ̃− φ∗) d−→ N(0,Γ−1

p WΓ−1
p ).

Corollary 4.1 follows directly from the proof of Theorem 4.4: Inspecting the func-

tions defined in Lemma C1 and realizing that they are constantly zero under the

assumptions of the corollary, the matrix Ω is immediately seen to be equal to zero

as well. The corollary shows that the oracle result holds under fairly mild conditions

on the dependence structure between Xt and εt, in particular under much weaker

conditions than independence of the processes {Xt} and {εt}. To give an example

where the conditions of the corollary are satisfied but where the processes {Xt} and

{εt} are not independent, consider the following: Let the AR residuals be given by

εt =
∑p

i=1 φ
∗
i εt−i + ηt with ηt = σ(Xt)ξt, where σ is a continuous volatility function

and {ξt} is a process of zero-mean i.i.d. variables that is independent of {Xt}. A

simple argument shows that E[εt|{Xt}] = 0 in this case, i.e. the assumptions of the

corollary are satisfied. Moreover, it is easily seen that the processes {Xt} and {εt}
are not independent given that the function σ is non-constant.

Note that our theory also reestablishes the oracle result derived in the simpler setup

without stochastic covariates, i.e. in the model

Yt,T = mθ(t) +m0

( t
T

)
+ εt for t = 1, . . . , T (23)

with E[εt] = 0. In this case, the periodic component can be estimated as described

in Subsection 3.1. Moreover, we can use a Nadaraya-Watson smoother of the form

(14) to approximate the trend component m0. A vastly simplified version of the

proof for Theorem 4.4 shows that the limiting distribution of the AR parameter

estimates is identical to that of the oracle estimates in this setting. In particular,

the stochastic higher-order expansion derived in Lemma C1 is not required any more.

The arguments of the much simpler Lemma C2 are sufficient to derive the result. To

understand the main technical reasons why the argument simplifies so substantially,

we refer the reader to the remarks given after the proof of Lemma C2 in Appendix

C.

The normality results of Theorem 4.4 and Corollary 4.1 enable us to calculate con-

fidence bands for the AR parameter estimators and to conduct inference based on

these. To do so, we need a consistent estimator of the asymptotic variance of φ̃.

Whereas such an estimator is easily obtained under the conditions of Corollary 4.1,

it is not at all trivial to derive a consistent estimator of V ∗ in Theorem 4.4. This

is due to the very complicated structure of the matrix Ω which involves functions

obtained from a higher-order expansion of the stochastic part of the backfitting es-

timates (see Theorem B1 in Appendix B). To circumvent these difficulties, one may

13



try to set up a bootstrap approach to estimate confidence bands and to do testing.

The normality result of Theorem 4.4 could be used as a starting point to derive con-

sistency results for such a bootstrap procedure. However, this is beyond the scope

of the present paper and a substantial project in itself.

5 Application

In this section we apply our estimation procedure to a set of monthly tempera-

ture and ozone data from the Faraday/Vernadsky research station on the Antarctic

Peninsula.5 A strong warming trend has been identified on the whole peninsula

during the past 50 years. In particular, the monthly mean temperatures at Faraday

station have considerably increased over this time (cf. Turner et al. [21], [22]).
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Figure 1: The upper panel shows the monthly minimum near-surface temperatures (in
◦C), the lower one the monthly stratospheric ozone concentrations (in Dobson units) at

Faraday station.

We will closely follow the analysis of Hughes et al. [10] as our model can be seen as

a semiparametric extension to their approach. According to Hughes et al. [10], the

rise of the mean monthly temperature is mostly due to an increase in the minimum

monthly temperature. They argue that to understand and quantify the warming on

5The data can be downloaded from the webpage of Suhasini Subba Rao http://www.stat.

tamu.edu/~suhasini/data.html. Alternatively, it is available on request from the British

Antarctic Survey, Cambridge.
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the peninsula an appropriate statistical model of the minimum temperature is called

for. Following their lead we will focus on modelling the minimum temperature and

consider stratospheric ozone as a potential explanatory variable.

The data used in our analysis is plotted in Figure 1. The upper panel contains the

monthly minimum near-surface temperatures at Faraday station from September

1957 to December 2004, whilst the lower shows the monthly level of stratospheric

ozone concentration measured in Dobson units over the same period. For more

information on the data consult Hughes et al. [10], where a detailed description of

them can be found.

Hughes et al. [10] propose a parametric model with a linear trend and a parametri-

cally specified periodic component with a period of 12 months to fit the temperature

and ozone data. Their baseline model is given by the equation

Yt = a0 + a1 sin
(2π

12
t
)

+ a2 cos
(2π

12
t
)

+ a3t+ εt, (24)

where Yt denotes the minimum monthly temperature and a = (a1, . . . , a3) is a vector

of parameters. In addition, they consider the extended model

Yt = a0 + a1 sin
(2π

12
t
)

+ a2 cos
(2π

12
t
)

+ a3t+ a4Xt−1 + εt, (25)

where the covariate Xt−1, denoting the lagged detrended and deseasonalized ozone

concentration, enters linearly. In their analysis, they find a strong linear upward

trend in the minimum monthly temperature. Moreover, they observe considerable

autocorrelation in the residuals εt and propose an AR process to model them. Using

an order selection criterion, they find an AR(1) model to be most suitable, which

also fits nicely with the preference for AR(1) errors when using discrete time series

to model climate data as mentioned in Mudelsee [16].

We now introduce a framework that can be regarded as a semiparametric extension

to the parametric models (24) and (25). Our baseline model is given by

Yt,T = mθ(t) +m0

( t
T

)
+ εt for t = 1, . . . , T, (26)

where Yt,T are minimum monthly temperatures, mθ is a seasonal component and

m0 is a nonparametric time trend. We additionally consider an extended version of

(26) having the form

Yt,T = mθ(t) +m0

( t
T

)
+m1(Xt−1) + εt for t = 1, . . . , T, (27)

where as before, the variables Xt−1 denote lagged monthly stratospheric ozone con-

centration levels that have been detrended and deseasonalized as in Hughes et al.

[10]. The additive functions mθ, m0, and m1 in the above two models are normal-

ized as described in (4). Following Hughes et al. [10], we assume the variables εt to

15



have an AR(1) structure and allow for the minimum monthly temperature to have

a 12-month cycle by setting θ = 12.

Before giving our estimates we will provide the preferred fits of the models (24) and

(25) given in Hughes et al. [10] in order to compare our estimates to theirs. Their

models are fitted using observations up until and including December 2003. For the

model (24) their preferred fit is

Yt = 6.25 sin
(2π

12
t
)

+ 6.95 cos
(2π

12
t
)

+ 0.0105t+ εt, (28)

with εt = 0.566εt−1 + ηt and ηt distributed as a conv GEV(-0.109,-5.71,3.65). 6

Their preferred fit for the model in (25) is

Yt = 6.61 sin
(2π

12
t
)

+ 7.22 cos
(2π

12
t
)

+ 0.0091t− 0.0267Xt−1 + εt, (29)

with εt = 0.562εt−1 + ηt and ηt a conv GEV(-0.0969,-5.67,3.59).

We now turn to the estimation of our models (26) and (27). To maintain compara-

bility to Hughes et al. [10] we will also estimate our models using the observed data

up until December 2003. Using our three step procedure outlined in Section 3, we

can estimate the additive component functions of (26) and (27) together with the

AR parameter of the error term.

The estimate of the periodic component mθ is given by the circles in Figure 2.

The vertical dashed lines illustrate the estimated 95% confidence intervals. Using

the dashed line we have superimposed the estimated periodic function from the

parametric model (29). Two differences between our periodic component estimate

and the parametric estimate given in (29) become apparent immediately. Firstly,

our periodic component gives the lowest estimated monthly effect in the southern

hemisphere winter month of August, whereas the lowest estimated monthly effect

is in July and August, when using the parametric model. Secondly, in contrast to

the parametric component our estimate is not symmetric: The fall in the minimum

temperature from January to August is more gradual than the increase from August

until January. Interestingly, the median monthly minimum temperature also follows

this pattern as can be seen in the boxplot of the monthly minimum temperatures

provided in Figure 1(b) of Hughes et al. [10].

6The conv GEV stands for converse Generalized Extreme Value. A conv GEV(γ, µ, σ random

variable Z has a distribution function

P (Z ≤ z) = 1− exp

{[
1 +

γ

σ
(µ− z)

]− 1
γ

}
.
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Figure 2: The circles represent the demeaned estimates of the seasonal component mθ of

models (26) and (27) along with the estimated 95% pointwise confidence intervals (dashed

vertical lines). The dotted line is 6.61 sin
(

2π
12 t
)

+ 7.22 cos
(

2π
12 t
)

, the estimate of the

seasonal component from the fitted parametric model in (29) obtained by Hughes et al.

[10].

In Figure 3 the smooth backfitting estimates of the additive functions m0 and m1 in

model (27) are given by the solid lines along with their corresponding estimated 95%

pointwise confidence bands given by the dotted lines. The dashed lines are fits from

the parametric model (29). As the Nadaraya-Watson estimate of m0 in the simpler

model (26) is very similar to the estimate in (27), we do not plot it separately. For

the estimation of the functions m0 and m1, we have used an Epanechnikov kernel

and bandwidths selected by a simple plug-in rule. To check the robustness of our

results, we have additionally repeated our analysis for a wide range of different

bandwidths. As the results are very similar, we only report the findings for the

bandwidths chosen by the plug-in rule.

From the shape of m̃0 together with the rather tight 95% confidence bands in the

left hand panel of Figure 3, there seems to be a strongly nonlinear upward moving

trend in the minimum monthly temperature. Not only is the linear parametric

trend in (29) not capable of capturing the nonlinear pattern, we can also see that it

overestimates the overall trend increase in the monthly minimum temperature over

the entire estimation period. The estimate m̃1 in the right hand panel of Figure

3 suggests that the lagged ozone concentration level has a negative effect on the

minimum monthly temperature. Although the effect appears to be nonlinear again,

the deviation from linearity does not seem to be as severe as for m̃0.
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Figure 3: Estimation results for model (27). The solid lines are the smooth backfitting

estimates m̃0 and m̃1, the dotted lines are pointwise 95% confidence bands. The dashed

lines are the estimates from the fitted parametric model in (29) obtained by Hughes et al.

[10].

From the third step of our estimation procedure, we obtain estimated AR parameters

of 0.57 and 0.58 for the models (26) and (27) respectively. These are essentially

identical to the estimates obtained by Hughes et al. [10] in the parametric models

(28) and (29). As discussed in Subsection 4.4, it is straightforward to calculate

confidence intervals for the parameter estimate in the simple model (26), whereas

this is extremely involved in the extended model (27) if we are not willing to make

the assumptions of Corollary 4.1. Here, we shall be content with giving the 95%

confidence band in the simple model (26), which is [0.49, 0.67]. Comparing this to

the corresponding estimated band of [0.51, 0.62] for the simple parametric model

(28), we see that the parameter uncertainty is fairly similar although the estimated

95% confidence band for the parametric model (28) is slightly narrower than the

one for our simple model (26) and asymmetric due to the assumed converse GEV

innovations. To summarize, it seems like the residual process displays significant

positive persistence which is a common phenomenon for climate data (see Mudelsee

[16]).

Finally, we compare the forecasting abilities of our models versus those of Hughes et

al. [10] by repeating their forecasting exercise, i.e. we compute the one-step ahead

forecasts of the minimum monthly temperatures for the twelve months from January

to December 2004. The one-step ahead forecast for time point t0 + 1 is obtained by
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estimating the model using observations at t = 1, . . . , t0 and constantly extrapolating

the estimated trend function m̃0 into the future. The resulting forecasts for our

model and the actual minimum monthly temperature of the forecasting period are

given in Figure 4. The estimated mean squared error (MSE) of the forecasts based

on model (27) is 10.27, whereas for the simple model (26) it amounts to 9.70. The

prediction MSE for (28) and (29) are reported as 11.09 and 10.14. This suggests

that for this forecasting exercise at least our simple model (26) is best at forecasting.

Contrary to the finding in Hughes et al. [10] we do not seem to gain in terms of

forecasting performance from including lagged stratospheric ozone as an additional

covariate.
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Figure 4: Forecasting results for the period from January 2004 to December 2004. The

solid line shows the actual minimum temperatures in 2004, the dashed line gives the one-

step ahead forecasts based on the extended model (27), and the dotted line depicts the

corresponding forecasts based on the simple model (26).

6 Concluding Remarks

Our theory can be extended to allow for other error structures as mentioned in

Subsection 3.3. An important example is the case in which we suspect the residuals

to be heteroskedastic and model them via an ARCH(p) process. Going along the

lines of the proofs for Theorems 4.3 and 4.4, the ARCH parameter estimators can

be shown to be consistent and asymptotically normal. The only difference to the

AR case is that the conditional likelihood has a more complicated form, making it

more tedious to derive the expansion of the first derivative of the likelihood function

in the normality proof.
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Our proving strategy may also be applied to ARMA(p, q) and GARCH(p, q) resid-

uals. This is most easily seen for a causal and invertible ARMA(1, 1) process {εt}
which satisfies the equation

εt − φ∗εt−1 = ηt + θ∗ηt−1

for some white noise residuals ηt. In this case, the conditional likelihood can be

written as

lT (φ, θ) = −
T∑
t=1

(
εt − εt(φ, θ)

)2
with εt(φ, θ) =

t−1∑
k=1

(−θ)k−1(φ+ θ)εt−k,

which has a very similar structure to the likelihood function of the AR(p) case. The

only notable difference is that the sum over k in the definition of εt(φ, θ) now has

t − 1 elements rather than only a fixed number p. As the elements of the sum are

weighted by the coefficients (−θ)k−1(φ + θ) which decay exponentially fast to zero,

this does however not cause any major problems in the proofs. In particular, we

can truncate the sum at min{t−1, C log T} for a sufficiently large C, the remainder

being asymptotically negligible. After this truncation, the arguments of the AR(p)

case apply more or less unchanged.

In the general ARMA(p, q) setup, the structure of the likelihood function becomes

much more complicated. It is thus convenient to base the estimation of the param-

eters on a criterion function which is a bit simpler to handle. In particular, consider

a causal and invertible ARMA(p, q) process {εt} of the form

εt −
p∑
i=1

φ∗i εt−i = ηt +

q∑
j=1

θ∗jηt−j

and write φ∗ = (φ∗1, . . . , φ
∗
p) as well as θ∗ = (θ∗1, . . . , θ

∗
q). As 1 +

∑q
j=1 θ

∗
j z
j 6= 0 for all

complex |z| ≤ 1, there exist coefficients ρ∗k = ρk(θ
∗) with

(
1 +

q∑
j=1

θ∗j z
j
)−1

=
∞∑
k=0

ρ∗kz
k

for all |z| ≤ 1. Using this, we obtain that

∞∑
k=0

ρ∗k

(
εt−k −

p∑
i=1

φ∗i εt−k−i

)
= ηt.

Truncating the infinite sum on the left-hand side, we now define the expressions

ηt(φ, θ) =

t−p−1∑
k=0

ρk(θ)
(
εt−k −

p∑
i=1

φiεt−k−i

)
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and estimate the ARMA coefficients φ∗ and θ∗ by minimizing the least squares

criterion

lT (φ, θ) =
T∑
t=1

ηt(φ, θ)
2.

This criterion function again has a very similar structure to that of the AR(p)

setup. In particular, setting ρ0(θ) = 1 and ρk(θ) = 0 for k > 0 yields the conditional

likelihood of the AR(p) case. As the coefficients ρk(θ) (as well as their derivatives

with respect to θ) decay exponentially fast to zero, a truncation argument as in the

ARMA(1, 1) case allows us to adapt the proving strategy of Theorems 4.3 and 4.4

to the setup at hand.

Appendix A - Auxiliary Results

Before considering the proof of our main results, we will state and sketch the proofs

of some auxiliary results. These will be needed at several parts of the main proofs

later on, in particular for Theorem 4.2. The first auxiliary result concerns the

uniform convergence of the kernel density estimators p̂j and p̂j,k. The extensions

from the i.i.d. setting to dependent data are given for example in Bosq [3], Masry

[15] or Hansen [6]. Using the notation p0(x0) = I(x0 ∈ (0, 1]), we have the following

result.

Lemma A1. Suppose that (C1) – (C5) hold and that the bandwidth h satisfies (C6a)

or (C6b). Then

sup
xj∈Ih

∣∣p̂j(xj)− pj(xj)∣∣ = Op

(√ log T

Th

)
+ o(h) (30)

sup
0≤xj≤1

∣∣p̂j(xj)− κ0(xj)pj(xj)
∣∣ = Op

(√ log T

Th

)
+O(h) (31)

sup
xj ,xk∈Ih

∣∣p̂j,k(xj, xk)− pj,k(xj, xk)∣∣ = Op

(√ log T

Th2

)
+ o(h) (32)

sup
0≤xj ,xk≤1

∣∣p̂j,k(xj, xk)− κ0(xj)κ0(xk)pj,k(xj, xk)
∣∣ = Op

(√ log T

Th2

)
+O(h) (33)

for j, k = 0, . . . , d with j 6= k, where κ0(v) =
∫ 1

0
Kh(v, w)dw and Ih = [2C1h, 1 −

2C1h].

We next consider the convergence behaviour of the one-dimensional Nadaraya-

Watson smoothers m̂j defined in (11) and (14). For the stochastic part m̂A
j , we

have
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Lemma A2. Under (C1) – (C5) together with (C6a) or (C6b),

sup
xj∈[0,1]

∣∣m̂A
j (xj)

∣∣ = Op

(√ log T

Th

)
(34)

for all j = 0, . . . , d.

Proof of Lemma A2. Starting with the definition of m̂A
j (xj) using the uniform

convergence results for the kernel density estimator, the Borel-Cantelli lemma can

be used to show that

sup
xj∈[0,1]

∣∣m̂A
j (xj)

∣∣ = sup
xj∈[0,1]

∣∣ 1

T

T∑
t=1

Kh(xj, X
j
t )εtI(εt ≤ τT )

∣∣+ op

(√ log T

Th

)
for a suitably chosen truncation sequence τT . The result is then established using a

covering argument, an exponential inequality and the mixing conditions.

For the bias part m̂B
j , we have the following expansion:

Lemma A3. Under (C1) – (C5) together with (C6a) or (C6b),

sup
xj∈Ih

∣∣m̂B
j (xj)− µ̂T,0 − µ̂T,j(xj)

∣∣ = op(h
2) (35)

sup
xj∈Ich

∣∣m̂B
j (xj)− µ̂T,0 − µ̂T,j(xj)

∣∣ = Op(h
2) (36)

for all j = 0, . . . , d, where

µ̂T,0 = − 1

T

T∑
t=1

( d∑
j=1

mj(X
j
t ) + εt

)
µ̂T,j(xj) = αT,0 + αT,j(xj) +

∑
k 6=j

∫ 1

0

αT,k(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk + h2

∫
β(x)

q(x)

pj(xj)
dx−j.

Here, αT,0 = 0 and

αT,k(xk) = mk(xk) +m′k(xk)
hκ1(xk)

κ0(xk)

β(x) =
d∑

k=0

∫
u2K(u)du

(∂ log q(x)

∂xk
m′k(xk) +

1

2
m′′k(xk)

)
with κ0(xk) =

∫ 1

0
Kh(xk, w)dw and κ1(xk) =

∫ 1

0
Kh(xk, w)(w−xk

h
)dw.

Lemma A3 can be proven by going along the lines of the arguments for Theorem 4

in Mammen et al. [12]. To see that

µ̂T,0 = − 1

T

T∑
t=1

( d∑
j=1

mj(X
j
t ) + εt

)
, (37)
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note that

m̂B
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )
(
mθ(t)− m̃θ(t)

)/
p̂j(xj)

+
1

T

T∑
t=1

Kh(xj, X
j
t )
[
m0

( t
T

)
+

d∑
k=1

mk(X
k
t )
]/
p̂j(xj)

for j = 0, . . . , d with X0
t = t

T
. Moreover,

1

T

T∑
t=1

Kh(xj, X
j
t )
(
mθ(t)− m̃θ(t)

)/
p̂j(xj)

=
θ∑

tθ=1

(
mθ(tθ)− m̃θ(tθ)

) 1

T

Ktθ,T∑
k=1

Kh(xj, X
j
tθ+(k−1)θ)

/
p̂j(xj)

=
1

θ

θ∑
tθ=1

(
mθ(tθ)− m̃θ(tθ)

) 1

Ktθ,T

Ktθ,T∑
k=1

Kh(xj, X
j
tθ+(k−1)θ)︸ ︷︷ ︸

P−→κ0(xj)pj(xj) uniformly in xj

/
p̂j(xj) + op(h

2)

=
1

θ

θ∑
tθ=1

(
mθ(tθ)− m̃θ(tθ)

)
+ op(h

2)

uniformly in xj and

1

θ

θ∑
tθ=1

(
mθ(tθ)− m̃θ(tθ)

)
= −1

θ

θ∑
tθ=1

1

Ktθ,T

Ktθ,T∑
k=1

(
m0

(tθ + (k − 1)θ

T

)
+

d∑
j=1

mj(X
j
tθ+(k−1)θ) + εtθ+(k−1)θ

)

= −1

θ

θ∑
tθ=1

1

Ktθ,T

Ktθ,T∑
k=1

( d∑
j=1

mj(X
j
tθ+(k−1)θ) + εtθ+(k−1)θ

)
+ op(h

2)

= − 1

T

T∑
t=1

( d∑
j=1

mj(X
j
t ) + εt

)
+ op(h

2).

Combining the above calculations with the arguments from the proof of Theorem 4

in [12] yields formula (37) for µ̂T,0.

Appendix B - Proof of Theorem 4.2

In this appendix, we prove Theorem 4.2, which describes the asymptotic behaviour

of our smooth backfitting estimates. For the proof, we split up the estimates into a
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“stochastic” part and a “bias” part. In Theorem B1, we provide a uniform expansion

of the stochastic part. This result is an extension of a related expansion given in

Mammen & Park [13] in the context of bandwidth selection in additive models. The

bias part is treated in Theorem B2. The proof of both theorems requires the uniform

convergence results summarized in Appendix A for the kernel smoothers that enter

the backfitting procedure as pilot estimates. Note that the two theorems B1 and B2

are not only needed for the second estimation step but also for the derivation of the

asymptotics of the AR estimates in the third step. Throughout the appendix, we

use the symbol C to denote a finite real constant which may take a different value

on each occurrence.

Proof of Theorem 4.2

We decompose the backfitting estimates m̃j into a stochastic part m̃A
j and a bias

part m̃B
j according to

m̃j(xj) = m̃A
j (xj) + m̃B

j (xj).

The two components are defined by

m̃S
j (xj) = m̂S

j (xj)−
∑
k 6=j

∫ 1

0

m̃S
k (xk)

p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃S

c (38)

for S = A, B. Here, m̂A
k and m̂B

k denote the stochastic part and the bias part of the

Nadaraya-Watson pilote estimates defined as

m̂A
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )εt/p̂j(xj) (39)

m̂B
j (xj) =

1

T

T∑
t=1

Kh(xj, X
j
t )
[
(mθ(t)− m̃θ(t))

+m0

( t
T

)
+

d∑
k=1

mk(X
k
t )
]
/p̂j(xj) (40)

for j = 0, . . . , d, where we set X0
t = t

T
to shorten the notation. Furthermore,

m̃A
c = 1

T

∑T
t=1 εt and m̃B

c = 1
T

∑T
t=1{(mθ(t)− m̃θ(t)) +m0( t

T
) +
∑d

k=1mk(X
k
t )}. We

now analyse the convergence behaviour of m̃A
j and m̃B

j separately.

We first provide a higher-order expansion of the stochastic part m̃A
j . The following

result extends Theorem 6.1 in Mammen & Park [13] (in particular their equation

(6.3)) to our setting.

Theorem B1. Suppose that assumptions (C1) – (C5) apply and that the bandwidth

h satisfies (C6a) or (C6b). Then

sup
xj∈[0,1]

∣∣∣m̃A
j (xj)− m̂A

j (xj)−
1

T

T∑
t=1

rj,t(xj)εt

∣∣∣ = op

( 1√
T

)
,
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where rj,t(·) := rj(
t
T
, Xt, ·) are absolutely uniformly bounded functions with

|rj,t(x′j)− rj,t(xj)| ≤ C|x′j − xj|

for a constant C > 0.

Proof. As Mammen & Park [13] work in an i.i.d. setting, we cannot apply their

Theorem 6.1 directly. In what follows, we outline the arguments needed to extend

their proof to our framework. For an additive function g(x) = g0(x0) + . . .+ gd(xd),

let

ψ̂jg(x) = g0(x0) + . . .+ gj−1(xj−1) + g∗j (xj) + gj+1(xj+1) + . . .+ gd(xd)

with

g∗j (xj) = −
∑
k 6=j

∫ 1

0

gk(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk +

d∑
k=0

∫ 1

0

gk(xk)p̂k(xk)dxk.

Using the uniform convergence results from Appendix A and exploiting our model

assumptions, we can show that Lemma 3 in Mammen et al. [12] applies in our case.

For m̃A(x) = m̃A
0 (x0) + . . .+ m̃A

d (xd), we therefore have the expansion

m̃A(x) =
∞∑
r=0

Ŝrτ̂(x),

where Ŝ = ψ̂d · · · ψ̂0 and τ̂(x) = ψ̂d · · · ψ̂1[m̂A
0 (x0) − m̂A

c,0] + . . . + ψ̂d[m̂
A
d−1(xd−1) −

m̂A
c,d−1] + [m̂A

d (xd)− m̂A
c,d] with m̂A

c,j =
∫ 1

0
m̂A
j (xj)p̂j(xj)dxj. Now decompose m̃A(x)

according to

m̃A(x) = m̂A(x)− m̂A
c +

∞∑
r=0

Ŝr(τ̂(x)− (m̂A(x)− m̂A
c )) +

∞∑
r=1

Ŝr(m̂A(x)− m̂A
c )

with m̂A(x) = m̂A
0 (x0) + ... + m̂A

d (xd) and m̂A
c = m̂A

c,0 + . . . + m̂A
c,d. We show that

there exist absolutely bounded functions at(x) with |at(x) − at(y)| ≤ C‖x − y‖ for

a constant C s.t.

∞∑
r=1

Ŝr(m̂A(x)− m̂A
c ) =

1

T

T∑
t=1

at(x)εt + op

( 1√
T

)
(41)

uniformly in x. A similar claim holds for the term
∑∞

r=0 Ŝ
r(τ̂(x)− (m̂A(x)− m̂A

c )).

As m̂A
c = (d+ 1) 1

T

∑T
t=1 εt, this implies the result.

The idea behind the proof of (41) is as follows: From the definition of the operators

ψ̂j, it can be seen that

Ŝ(m̂A(x)− m̂A
c ) =

d−1∑
j=0

ψ̂d · · · ψ̂j+1

( d∑
k=j+1

Sj,k(xj)
)

(42)
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with

Sj,k(xj) = −
∫ 1

0

p̂j,k(xj, xk)

p̂j(xj)
(m̂A

k (xk)− m̂A
c,k)dxk.

In what follows, we show that the terms Sj,k(xj) have the representation

Sj,k(xj) = − 1

T

T∑
t=1

( pj,k(xj, X
k
t )

pj(xj)pk(Xk
t )
− 1
)
εt + op

( 1√
T

)
(43)

uniformly in xj. Thus, they essentially have the desired form 1
T

∑
twt,k(xj)εt with

some weights wt,k. This allows us to infer that

Ŝ(m̂A(x)− m̂A
c ) =

1

T

T∑
t=1

bt(x)εt + op

( 1√
T

)
(44)

uniformly in x with some absolutely bounded functions bt satisfying |bt(x)−bt(y)| ≤
C‖x − y‖ for some C > 0. Moreover, using the uniform convergence results from

Appendix A, it can be shown that

∞∑
r=0

Ŝr(m̂A(x)− m̂A
c ) =

∞∑
r=0

Sr−1Ŝ(m̂A(x)− m̂A
c ) + op

( 1√
T

)
(45)

uniformly in x, where S is defined analogously to Ŝ with the density estimates

replaced by the true densities. Combining (44) and (45) completes the proof.

To show (43), we exploit the mixing behaviour of the variables Xt. Plugging the

definition of m̂A
k into the term Sj,k, we can write

Sj,k(xj) = − 1

T

T∑
t=1

(∫ 1

0

p̂j,k(xj, xk)

p̂j(xj)p̂k(xk)
Kh(xk, X

k
t )dxk − 1

)
εt.

Then applying the uniform convergence results from Appendix A, we can replace

the density estimates in the above expression by the true densities. This yields

Sj,k(xj) = − 1

T

T∑
t=1

(∫ 1

0

pj,k(xj, xk)

pj(xj)pk(xk)
Kh(xk, X

k
t )dxk − 1

)
εt + op

( 1√
T

)
=: S∗j,k(xj) + op

( 1√
T

)
uniformly for xj ∈ [0, 1]. In the final step, we show that

S∗j,k(xj) = − 1

T

T∑
t=1

( pj,k(xj, X
k
t )

pj(xj)pk(Xk
t )
− 1
)
εt + op

( 1√
T

)
again uniformly in xj. This is done by applying a covering argument together with

an exponential inequality for mixing variables. The employed techniques are similar

to those used to establish the results of Appendix A.

We now turn to the bias part m̃B
j .
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Theorem B2. Suppose that (C1) – (C5) hold. If the bandwidth h satisfies (C6a),

then

sup
xj∈Ih

|m̃B
j (xj)−mj(xj)| = Op(h

2) (46)

sup
xj∈Ich

|m̃B
j (xj)−mj(xj)| = Op(h) (47)

for j = 0, . . . , d. If the bandwidth satisfies (C6b), we have

sup
xj∈Ih

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h
2) (48)

sup
xj∈Ich

∣∣∣m̃B
j (xj) +

1

T

T∑
t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h) (49)

for j = 0, . . . , d.

Proof. The result follows from Theorem 3 in Mammen et al. [12]. To make sure

that the latter theorem applies in our case, we have to show that the high-order

conditions (A1) – (A5), (A8), and (A9) from [12] are fulfilled in our setting.7 This

can be achieved by using the results from Appendix A, in particular the expansion of

m̂B
j given in Lemma A3, and by following the arguments for the proof of Theorem 4 in

[12]. To see that (46) – (47) have to be replaced by (48) – (49) in the undersmoothing

case with h = O(T−( 1
4

+δ)), note that∫ 1

0

αT,j(xj)p̂j(xj)dxj =
1

T

T∑
t=1

mj(X
j
t ) +Op(h

2)

with 1
T

∑T
t=1mj(X

j
t ) = Op(

1√
T

), where αT,j(xj) is defined in Lemma A3. Using this

in the proof of Theorem 3 of [12] instead of
∫ 1

0
αT,j(xj)p̂j(xj)dxj = γT,j +op(h

2) with

γT,j = O(h2) gives (48) – (49).

By combining Theorems B1 and B2, it is now straightforward to complete the proof

of Theorem 4.2.

Appendix C - Proof of Theorems 4.3 and 4.4

This appendix contains the proofs of Theorems 4.3 and 4.4, which show consistency

and asymptotic normality of the AR estimates. By far the most difficult part is

the proof of asymptotic normality. After giving some auxiliary results and proving

consistency, we run through the main steps of the normality proof postponing the

7Note that (A6) is not needed for the proof of Theorem 3 as opposed to the statement in [12].
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major technical difficulties to a series of lemmas. The main challenge of the proof

is to derive a stochastic expansion of 1√
T

∂l̃T (φ∗)
∂φ

. This expansion is given in Lemmas

C1 – C4. Note that as in Appendix B, C denotes a finite real constant which may

take a different value on each occurrence.

Auxiliary Results

Before we come to the proofs, we list some simple facts that are frequently used

throughout this appendix. For ease of notation, we work with the likelihood func-

tions

lT (φ) = −
T∑
t=1

(εt − εt(φ)
)2

l̃T (φ) = −
T∑
t=1

(ε̃t − ε̃t(φ)
)2
,

where εt(φ) =
∑p

i=1 φiεt−i and ε̃t(φ) =
∑p

i=1 φiε̃t−i. These differ from the functions

defined in (17) and (19) only in that the sum over t starts at the time point t = 1

rather than at t = p+ 1. Trivially, the error resulting from this modification can be

neglected in the proofs.

To bound the distance between lT and l̃T , the following facts are useful: From the

convergence results on the estimates m̃θ, m̃0, . . . , m̃d, it is easily seen that

max
t=1,...,T

|εt − ε̃t| = Op(h). (R1)

Using (R1), we can immediately infer that

max
t=1,...,T

sup
φ∈Φ
|εt(φ)− ε̃t(φ)| = Op(h). (R2)

Moreover, noting that ∂εt(φ)
∂φi

= εt−i and analogously ∂ε̃t(φ)
∂φi

= ε̃t−i, we get

max
t=1,...,T

sup
φ∈Φ

∣∣∣∂εt(φ)

∂φi
− ∂ε̃t(φ)

∂φi

∣∣∣ = Op(h). (R3)

Proof of Theorem 4.3

Let lT (φ) and l̃T (φ) be the likelihood functions introduced in the previous subsection.

We show that

sup
φ∈Φ

∣∣∣ 1

T
l̃T (φ)− 1

T
lT (φ)

∣∣∣ = op(1). (50)
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This together with standard arguments yields consistency of φ̃. In order to prove

(50), we decompose 1
T
l̃T (φ)− 1

T
lT (φ) into

1

T
l̃T (φ)− 1

T
lT (φ) =

1

T

T∑
t=1

(
ε2
t − ε̃2

t

)
+

2

T

T∑
t=1

(
ε̃t − εt

)
ε̃t(φ)

+
2

T

T∑
t=1

εt
(
ε̃t(φ)− εt(φ)

)
+

1

T

T∑
t=1

(
ε2
t (φ)− ε̃2

t (φ)
)
.

Using (R1) – (R3), it is straightforward to show that the four terms on the right-hand

side of the above equation are all op(1) uniformly in φ. This shows (50).

Proof of Theorem 4.4

By the usual Taylor expansion argument, we obtain

0 =
1

T

∂l̃T (φ̃)

∂φ
=

1

T

∂l̃T (φ∗)

∂φ
+

1

T
H̃T (φ̃, φ∗)(φ̃− φ∗)

with H̃T (φ̃, φ∗) the p× p matrix, whose ith row is given by

∂2l̃T (φ̄[i])

∂φi∂φT

for some intermediate point φ̄[i] between φ∗ and φ̃. Rearranging and premultiplying

by
√
T yields

√
T (φ̃− φ∗) = −

( 1

T
H̃T (φ̃, φ∗)

)−1 1√
T

∂l̃T (φ∗)

∂φ
.

In what follows, we show that

1

T
H̃T (φ̃, φ∗)

P−→ H (51)

1√
T

∂l̃T (φ∗)

∂φ

d−→ N(0,Ψ) (52)

with Ψ = 4W + 4Ω and H = −2Γp, where Γp is the autocovariance matrix of the

AR process {εt}, W = (E[η2
0ε−iε−j])i,j=1,...,p and Ω is given in (61). This completes

the proof.

Proof of (51). By straightforward calculations it can be seen that

sup
φ∈Φ

∣∣∣∣∣∣ 1

T

∂2l̃T (φ)

∂φ∂φT
− 1

T

∂2lT (φ)

∂φ∂φT

∣∣∣∣∣∣ = op(1).

Defininig the p× p matrix HT (φ̃, φ∗) analogously to H̃T (φ̃, φ∗) with l̃T replaced by

lT it is easy to show that 1
T
HT (φ̃, φ∗)

P−→ H, yielding (51).
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Proof of (52). We write

1√
T

∂l̃T (φ∗)

∂φi
=

1√
T

∂lT (φ∗)

∂φi
+
( 1√

T

∂l̃T (φ∗)

∂φi
− 1√

T

∂lT (φ∗)

∂φi

)
.

Introducing the notation φ∗0 = −1, we obtain that

1√
T

∂l̃T (φ∗)

∂φi
− 1√

T

∂lT (φ∗)

∂φi
=

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−k − ε̃t−k)εt−i
)

+

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−i − ε̃t−i)ε̃t−k
)

=

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−k − ε̃t−k)εt−i
)

+

p∑
k=0

2φ∗k

( 1√
T

T∑
t=1

(εt−i − ε̃t−i)εt−k
)

+ op(1), (53)

where the last equality follows from the fact that (εt−i−ε̃t−i)(ε̃t−k−εt−k) = Op(h
2) =

op(
√
T ) uniformly in t, k, and i by (R1). In what follows, we derive a stochastic

expansion of the terms

QT = Q
[k,i]
T :=

1√
T

T∑
t=1

(εt−k − ε̃t−k)εt−i.

By symmetry this also gives us an expansion for Q
[i,k]
T and thus by (53) also for the

difference 1√
T

∂l̃T (φ∗)
∂φi

− 1√
T

∂lT (φ∗)
∂φi

.

Introducing the shorthand X0
t = t

T
, we have

εt − ε̃t =
(
m̃θ(t)−mθ(t)

)
+

d∑
j=0

(
m̃j(X

j
t )−mj(X

j
t )
)
.

From Appendix B, we know that the backfitting estimates m̃j(xj) can be decomposed

into a stochastic part m̃A
j (xj) and a bias part m̃B

j (xj). This allows us to rewrite the

term QT as

QT = QT,θ +
d∑
j=0

QT,V,j +
d∑
j=0

QT,B,j (54)

with

QT,θ =
1√
T

T∑
t=1

εt−i

[
m̃θ(t− k)−mθ(t− k)−

d∑
j=0

1

T

T∑
s=1

mj(X
j
s )
]

QT,V,j =
1√
T

T∑
t=1

εt−im̃
A
j (Xj

t−k)

QT,B,j =
1√
T

T∑
t=1

εt−i

[
m̃B
j (Xj

t−k) +
1

T

T∑
s=1

mj(X
j
s )−mj(X

j
t−k)

]
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for j = 0, . . . , d. In Lemmas C3 and C4, we will show that

QT,θ = op(1) (55)

QT,B,j = op(1) for j = 0, . . . , d. (56)

Moreover, Lemmas C1 and C2 establish that

QT,V,0 = op(1) (57)

QT,V,j =
1√
T

T∑
t=1

gj

( t
T
,Xt

)
εt + op(1) for j = 1, . . . , d, (58)

where gj = g
[k,i]
j are deterministic functions whose exact forms are given in the

statement of Lemma C1. These functions are easily seen to be absolutely bounded

by a constant independent of T . Inserting the above results in (54), we obtain

QT =
1√
T

T∑
t=1

[ d∑
j=1

gj

( t
T
,Xt

)]
εt + op(1).

Using this together with (53) now yields

1√
T

∂l̃T (φ∗)

∂φi
− 1√

T

∂lT (φ∗)

∂φi
=

1√
T

T∑
t=1

hi

( t
T
,Xt

)
εt + op(1) (59)

with the absolutely bounded function

hi

( t
T
,Xt

)
=

d∑
j=1

p∑
k=0

2φ∗k

[
g

[k,i]
j

( t
T
,Xt

)
+ g

[i,k]
j

( t
T
,Xt

)]
, (60)

where we suppress the dependence of hi on the parameter vector φ∗ in the notation.

As a result,

1√
T

∂l̃T (φ∗)

∂φi
=

1√
T

∂lT (φ∗)

∂φi
+

1√
T

T∑
t=1

hi

( t
T
,Xt

)
εt + op(1)

=
1√
T

T∑
t=1

[
2ηtεt−i + hi

( t
T
,Xt

)
εt

]
+ op(1)

=:
1√
T

T∑
t=1

Ut,T + op(1),

i.e. the term of interest can be written as a normalized sum of random variables

Ut,T plus a term which is asymptotically negligible. Using the mixing assumptions

in (C1), it is straightforward to see that the variables {Ut,T , t = 1, . . . , T} form an

31



α-mixing array with mixing coefficients that decay exponentially fast to zero. We

can thus apply a central limit theorem for mixing arrays to obtain that

1√
T

∂l̃T (φ∗)

∂φi

d−→ N(0, ψii)

with ψii = limT→∞ E( 1√
T

∑T
t=1 Ut,T )2. Using the Cramer-Wold device, it is now easy

to show that
1√
T

∂l̃T (φ∗)

∂φ

d−→ N(0,Ψ)

with Ψ = (ψij)i,j=1,...,p, where Ψ = 4W + 4Ω and Ω = (ωij)i,j=1,...,p with

ωij =
1

2

∞∑
l=−∞

E
[
η0ε−iεl

∫ 1

0

hj(u,Xl)du
]

+
1

2

∞∑
l=−∞

E
[
η0ε−jεl

∫ 1

0

hi(u,Xl)du
]

+
1

4

∞∑
l=−∞

E
[
ε0εl

∫ 1

0

hi(u,X0)hj(u,Xl)du
]
. (61)

In order to complete the proof of asymptotic normality, we still need to show that

equations (55) – (58) are fulfilled for the terms QT,θ, QT,V,j, and QT,B,j. We begin

with the expansion of the variance components QT,V,j for j = 1, . . . , d, as this is the

technically most interesting part.

Lemma C1. It holds that

QT,V,j =
1√
T

T∑
s=1

gj

( s
T
,Xs

)
εs + op(1)

for j = 1, . . . , d. The functions gj are given by

gj

( s
T
,Xs

)
= gNWj (Xj

s ) + gSBFj

( s
T
,Xs

)
with

gNWj (Xj
s ) = E−s

[ Kh(X
j
−k, X

j
s )ε−i∫ 1

0
Kh(X

j
−k, w)dw pj(X

j
−k)

]
gSBFj

( s
T
,Xs

)
= E−s[rj,s(Xj

−k)ε−i],

where E−s[ · ] is the expectation with respect to all variables except for those depend-

ing on the index s and the functions rj,s(·) = rj(
s
T
, Xs, ·) are defined in Theorem B1

of Appendix B.
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Proof. By Theorem B1, the stochastic part m̃A
j of the smooth backfitting estimate

m̃j has the expansion

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑
s=1

rj,s(xj)εs + op

( 1√
T

)
uniformly in xj, where m̂A

j is the stochastic part of the Nadaraya-Watson pilot

estimate and rj,s(·) = rj(
s
T
, Xs, ·) is Lipschitz continuous and absolutely bounded.

With this result, we can decompose QT,V,j as follows:

QT,V,j =
1√
T

T∑
t=1

εt−im̂
A
j (Xj

t−k) +
1√
T

T∑
t=1

εt−i

[ 1

T

T∑
s=1

rj,s(X
j
t−k)εs

]
+ op(1)

=: QNW
T,V,j +QSBF

T,V,j + op(1).

In the following, we will give the arguments needed to treat QNW
T,V,j. The line of

argument for QSBF
T,V,j is essentially identical although some of the steps are easier due

to the properties of the rj,s functions.

Plugging the definition (39) of the estimate m̂A
j (xj) into the term QNW

T,V,j, we get

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )

1
T

∑T
v=1 Kh(X

j
t−k, X

j
v)
εt−i

)
εs. (62)

In a first step, we show that

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )µt

)
εs + op(1), (63)

where µt := q−1
j (Xj

t−k)εt−i with qj(xj) =
∫ 1

0
Kh(xj, w)dw pj(xj). To do so, decom-

pose 1
T

∑T
v=1Kh(xj, X

j
v) as 1

T

∑T
v=1 Kh(xj, X

j
v) = qj(xj) +Bj(xj) + Vj(xj) with

Bj(xj) =
1

T

T∑
v=1

E[Kh(xj, X
j
v)]− qj(xj)

Vj(xj) =
1

T

T∑
v=1

(
Kh(xj, X

j
v)− E[Kh(xj, X

j
v)]
)
.

Notice that supxj∈[0,1] |Bj(xj)| = Op(h) and supxj∈[0,1] |Vj(xj)| = Op(
√

log T/Th).

Using a second order Taylor expansion of f(z) = (1 + z)−1 we arrive at

1
1
T

∑T
v=1Kh(xj, X

j
v)

=
1

qj(xj)

(
1 +

Bj(xj) + Vj(xj)

qj(xj)

)−1

=
1

qj(xj)

(
1− Bj(xj) + Vj(xj)

qj(xj)
+Op(h

2)
)
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uniformly in xj. Plugging this decomposition into (62), we obtain

QNW
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )

qj(X
j
t−k)

εt−iεs −QNW,B
T,V,j −Q

NW,V
T,V,j + op(1)

with

QNW,B
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )
Bj(X

j
t−k)

q2
j (X

j
t−k)

εt−iεs

QNW,V
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )
Vj(X

j
t−k)

q2
j (X

j
t−k)

εt−iεs.

All that is required to establish (63) is to show that both QNW,B
T,V,j and QNW,V

T,V,j are

op(1). As supxj∈Ih |Bj(xj)| = Op(h
2) and supxj∈Ich |Bj(xj)| = Op(h), we can use

Markov’s inequality together with (C9) to get that QNW,B
T,V,j = op(1). In order to show

that QNW,V
T,V,j = op(1), let Ev[·] denote the expectation with respect to the variables

indexed by v. Then

∣∣QNW,V
T,V,j

∣∣ =
∣∣∣ 1√
T

T∑
s=1

1

T

T∑
t=1

Kh(X
j
t−k, X

j
s )

q2
j (X

j
t−k)

εt−i

×
( 1

T

T∑
v=1

(Kh(X
j
t−k, X

j
v)− Ev[Kh(X

j
t−k, X

j
v)])
)
εs

∣∣∣
≤ 1√

T

T∑
t=1

|εt−i|
q2
j (X

j
t−k)

sup
xj∈[0,1]

∣∣∣ 1

T

T∑
s=1

Kh(xj, X
j
s )εs

∣∣∣
× sup

xj∈[0,1]

∣∣∣ 1

T

T∑
v=1

(Kh(xj, X
j
v)− Ev[Kh(xj, X

j
v)])
∣∣∣

= Op

( log T

Th

)( 1√
T

T∑
t=1

|εt−i|
q2
j (X

j
t−k)

)
= Op

( log T

Th

√
T
)

= op(1),

as 1√
T

∑T
t=1 |εt−i| q

−2
j (Xj

t−k) = Op(
√
T ) by Markov’s inequality.

In the next step, we replace the inner sum over t in (63) by a deterministic function

that only depends on Xj
s and show that the resulting error can be asymptotically

neglected. Define

ψt,s = Kh(X
j
t−k, X

j
s )µt − E−s[Kh(X

j
t−k, X

j
s )µt],

where E−s[·] is the expectation with respect to all variables except for those de-

pending on the index s. With the above notation at hand, we can rewrite (63)

as

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

E−s[Kh(X
j
t−k, X

j
s )µt]

)
εs +RNW

T,V,j + op(1),
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where

RNW
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

ψt,sεs. (64)

Once we show that RNW
T,V,j = op(1), we are left with

QNW
T,V,j =

1√
T

T∑
s=1

( 1

T

T∑
t=1

E−s[Kh(X
j
t−k, X

j
s )µt]

)
εs + op(1)

=
1√
T

T∑
s=1

E−s[Kh(X
j
−k, X

j
s )µ0]εs + op(1)

=:
1√
T

T∑
s=1

gNWj (Xj
s )εs + op(1)

with µ0 = q−1
j (Xj

−k)ε−i and qj(X
j
−k) =

∫ 1

0
Kh(X

j
−k, w)dw pj(X

j
−k).

Thus it remains to prove that RNW
T,V,j = op(1). To do so, define

P := P
(∣∣∣ 1√

T

T∑
s=1

1

T

T∑
t=1

ψt,sεs

∣∣∣ > δ
)

for a fixed δ > 0. Then by Chebychev’s inequality

P ≤ 1

T 3δ2

T∑
s,s′=1

T∑
t,t′=1

E
[
ψt,sεsψt′,s′εs′

]
=

1

T 3δ2

∑
(s,s′,t,t′)∈S

E
[
ψt,sεsψt′,s′εs′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈Sc

E
[
ψt,sεsψt′,s′εs′

]
=: PS + PSc ,

where S is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′, t, t′ ≤ T such that (at least) one

index is separated from the others and Sc is its complement. We say that an index,

for instance t, is separated from the others if min{|t− t′|, |t− s|, |t− s′|} > C2 log T ,

i.e. if it is further away from the other indices than C2 log T for a constant C2 to be

chosen later on. We now analyse PS and PSc separately.

(a) First consider PSc . If a tuple (s, s′, t, t′) is an element of Sc, then no index is

separated from the others. Since the index t is not separated, there exists an

index, say t′, such that |t − t′| ≤ C2 log T . Now take an index different from

t and t′, for instance s. Then by the same argument, there exists an index,

say s′, such that |s − s′| ≤ C2 log T . As a consequence, the number of tuples

(s, s′, t, t′) ∈ Sc is smaller than CT 2(log T )2 for some constant C. Using (C8),

this suffices to infer that∣∣PSc∣∣ ≤ 1

T 3δ2

∑
(s,s′,t,t′)∈Sc

C

h2
≤ C

δ2

(log T )2

Th2
→ 0.
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(b) The term PS is more difficult to handle. First note that S can be written as the

union of the disjoint sets

S1 = {(s, s′, t, t′) ∈ S | the index t is separated}
S2 = {(s, s′, t, t′) ∈ S | (s, s′, t, t′) /∈ S1 and the index s is separated}
S3 = {(s, s′, t, t′) ∈ S | (s, s′, t, t′) /∈ S1 ∪ S2 and the index t′ is separated}
S4 = {(s, s′, t, t′) ∈ S | (s, s′, t, t′) /∈ S1 ∪ S2 ∪ S3 and the index s′ is separated}.

Thus, PS = PS1 + PS2 + PS3 + PS4 with

PSr =
1

T 3δ2

∑
(s,s′,t,t′)∈Sr

E
[
ψt,sεsψt′,s′εs′

]
.

for r = 1, . . . , 4. In what follows, we show that PSr → 0 for r = 1, . . . , 4. As the

four terms can be treated in exactly the same way, we restrict attention to the

analysis of PS1 .

We start by taking a cover {Im}MT
m=1 of the compact support [0, 1] of Xj

t−k.

The elements Im are intervals of length 1/MT given by Im = [m−1
MT

, m
MT

) for

m = 1, . . . ,MT − 1 and IMT
= [1 − 1

MT
, 1]. The midpoint of the interval Im is

denoted by xm. With this, we can write

Kh(X
j
t−k, X

j
s ) =

MT∑
m=1

I(Xj
t−k ∈ Im)

×
[
Kh(xm, X

j
s ) + (Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))
]
. (65)

Using (65), we can further write

ψt,s =

MT∑
m=1

{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µt

− E−s[I(Xj
t−k ∈ Im)Kh(xm, X

j
s )µt]

}
+

MT∑
m=1

{
I(Xj

t−k ∈ Im)(Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s ))µt

− E−s[I(Xj
t−k ∈ Im)(Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))µt]

}
=: ψAt,s + ψBt,s

and

PS1 =
1

T 3δ2

∑
(s,s′,t,t′)∈S1

E
[
ψAt,sεsψt′,s′εs′

]
+

1

T 3δ2

∑
(s,s′,t,t′)∈S1

E
[
ψBt,sεsψt′,s′εs′

]
=: PA

S1
+ PB

S1
.
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We first consider PB
S1

. Set MT = CT (log T )h−3 and exploit the Lipschitz conti-

nuity of the kernel K to get that |Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s )| ≤ C

h2
|Xj

t−k−xm|.
This gives us

∣∣ψBt,s∣∣ ≤ C

h2

MT∑
m=1

(
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

|µt|

+ E
[
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

|µt|
])
≤ C

MTh2

(
|µt|+ E|µt|

)
.

Plugging this into the expression for PB
S1

, we arrive at∣∣PB
S1

∣∣ ≤ 1

T 3δ2

C

MTh2

∑
(s,s′,t,t′)∈S1

E
[
(|µt|+ E|µt|)|εsψt′,s′εs′|

]︸ ︷︷ ︸
≤Ch−1

≤ C

δ2 log T
→ 0.

We next turn to PA
S1

. Write

PA
S1

=
1

T 3δ2

∑
(s,s′,t,t′)∈S1

( MT∑
m=1

γm

)
with

γm = E
[{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µt

− E−s[I(Xj
t−k ∈ Im)Kh(xm, X

j
s )µt]

}
εsψt′,s′εs′

]
.

By Davydov’s inequality, it holds that

γm = Cov
(
I(Xj

t−k ∈ Im)µt − E[I(Xj
t−k ∈ Im)µt], Kh(xm, X

j
s )εsψt′,s′εs′

)
≤ C

h2

(
α(C2 log T )

)1− 1
q
− 1
r ≤ C

h2

(
aC2 log T

)1− 1
q
− 1
r ≤ C

h2
T−C3

with some C3 > 0, where q and r are chosen slightly larger than 4
3

and 4,

respectively. Note that we can make C3 arbitrarily large by choosing C2 large

enough. From this, it is easily seen that PA
S1
→ 0.

Combining (a) and (b) yields that P → 0 for each fixed δ > 0. As a result,

RNW,V
T,V,j = op(1),

which completes the proof for the term QNW
T,V,j. As stated at the beginning of the

proof, exactly the same arguments can be used to analyze the term QSBF
T,V,j.

Lemma C2. It holds that

QT,V,0 = op(1).
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Proof. As in Lemma C1, we can write

QT,V,0 =
1√
T

T∑
t=1

εt−im̂
A
0

(t− k
T

)
+

1√
T

T∑
t=1

εt−i

[ 1

T

T∑
s=1

r0,s

(t− k
T

)
εs

]
+ op(1)

=: QNW
T,V,0 +QSBF

T,V,0 + op(1).

We again restrict attention to the arguments for QNW
T,V,0, those for QSBF

T,V,0 being es-

sentially the same. Plugging the definition of m̂A
0 (x0) into the term QNW

T,V,0 yields

QNW
T,V,0 =

1√
T

T∑
s=1

1

T

T∑
t=1

wt,sεt−iεs

with wt,s = Kh(
t−k
T
, s
T

)/ 1
T

∑T
v=1Kh(

t−k
T
, v
T

). Now let {ρT} be some sequence that

slowly converges to zero, e.g. ρT = (log T )−1. By Chebychev’s inequality,

P
(∣∣QNW

T,V,0| > CρT
)
≤ C

E(QNW
T,V,0)2

ρ2
T

with

E(QNW
T,V,j)

2 =
1

T 3

T∑
s,s′,t,t′=1

wt,swt′,s′E[εt−iεsεt′−iεs′ ].

The moments E[εt−iεsεt′−iεs′ ] can be written as covariances if one of the indices

s, s′, t, t′ is different from the others. Exploiting our mixing assumptions, these

covariances can be bounded by Davydov’s inequality. With the help of the resulting

bounds, it is straightforward to show that E(QNW
T,V,j)

2/ρ2
T goes to zero, which in turn

yields that QNW
T,V,j = op(1).

Note that the above argument for QT,V,0 is much easier than that for QT,V,j presented

in Lemma C1. The main reason is that the weights wt,s and wt′,s′ are determinis-

tic allowing us to separate the expectations E[εt−iεsεt′−iεs′ ] from the weights. In

contrast, in Lemma C1 we have the situation that

QNW
T,V,j =

1√
T

T∑
s=1

1

T

T∑
t=1

wt,sεt−iεs

with wt,s = Kh(X
j
t−k, X

j
s )/

1
T

∑T
v=1Kh(X

j
t−k, X

j
v). In this case,

E(QNW
T,V,j)

2 =
1

T 3

T∑
s,s′,t,t′=1

E[wt,swt′,s′εt−iεsεt′−iεs′ ]. (66)

If the covariate process {Xt} is independent of {εt}, then E[wt,swt′,s′εt−iεsεt′−iεs′ ] =

E[wt,swt′,s′ ]E[εt−iεsεt′−iεs′ ] and similar arguments as those for the term QNW
T,V,0 yield
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that QNW
T,V,j = op(1). However, if we allow Xt and εt to be dependent, then the ex-

pectations in (66) do not split up into two separate parts any more. Moreover, since

the weights wt,s and wt′,s′ depend on all the Xj
t for t = 1, . . . , T , applying covariance

inequalities like Davydov’s inequality to the expressions E[wt,swt′,s′εt−iεsεt′−iεs′ ] is

of no use any more. This necessitates the much more subtle arguments of Lemma

C1 to exploit the covariance structure of the processes {Xt} and {εt}.
We finally turn to the analysis of the terms QT,θ and QT,B,j.

Lemma C3. It holds that

QT,θ = op(1).

Proof. We write

QT,θ =
1√
T

T∑
t=1

εt−i
[
m̃θ(t− k)−mθ(t− k)

]
− 1√

T

T∑
t=1

εt−i

[ d∑
j=0

1

T

T∑
s=1

mj(X
j
s )
]

=: QT,θ,a +QT,θ,b

and consider the two terms QT,θ,a and QT,θ,b separately. For QT,θ,a, we have

QT,θ,a =
θ∑

tθ=1

1√
T

Ktθ,T∑
r=1

εtθ+(r−1)θ−i
(
m̃θ(tθ − k)−mθ(tθ − k)

)
=

θ∑
tθ=1

(
m̃θ(tθ − k)−mθ(tθ − k)

)︸ ︷︷ ︸
=op(1)

( 1√
T

Ktθ,T∑
r=1

εtθ+(r−1)θ−i

)
︸ ︷︷ ︸

=Op(1)

= op(1).

Recalling the normalization of the functions mj in (4), a similar argument yields

that QT,θ,b = op(1) as well.

Lemma C4. It holds that

QT,B,j = op(1)

for j = 0, . . . , d.

Proof. We start by considering the case j 6= 0: Let Ih = [2C1h, 1− 2C1h] and Ich =

[0, 2C1h) ∪ (1− 2C1h, 1] as defined in Theorem 4.2. Using the uniform convergence

rates from Theorem B2, we get

|QT,B,j| =
∣∣∣ 1√
T

T∑
t=1

εt−i

[
m̃B
j (Xj

t−k) +
1

T

T∑
s=1

mj(X
j
s )−mj(X

j
t−k)

]∣∣∣
≤ Op(h

2)
1√
T

T∑
t=1

|εt−i|I(Xj
t−k ∈ Ih) +Op(h)

1√
T

T∑
t=1

|εt−i|I(Xj
t−k /∈ Ih).
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By Markov’s inequality, the first term on the right-hand side is Op(h
2
√
T ) = op(1).

Recognizing that by (C9), E[|εt−i|I(Xj
t−k /∈ Ih)] ≤ Ch for a sufficiently large constant

C, another appeal to Markov’s inequality yields that the second term is Op(h
2
√
T ) =

op(1) as well. This completes the proof for j 6= 0.

The proof for j = 0 is essentially the same: We have

|QT,B,0| =
∣∣∣ 1√
T

T∑
t=1

εt−i

[
m̃B

0

(t− k
T

)
+

1

T

T∑
s=1

m0

( s
T

)
−m0

(t− k
T

)]∣∣∣
≤ Op(h

2)
1√
T

T∑
t=1

|εt−i|I
(t− k

T
∈ Ih

)
+Op(h)

1√
T

T∑
t=1

|εt−i|I
(t− k

T
∈ Ich

)
= Op(h

2
√
T ) +Op(h)

1√
T

T∑
t=1

|εt−i|I
(t− k

T
∈ Ich

)
.

As
∑T

t=1 I( t−k
T
∈ Ich) ≤ CTh for a sufficiently large constant C, Markov’s inequality

yields that the second term on the right-hand side is Op(h
2
√
T ) = op(1) as well.

References

[1] Altman, N. S. (1990). Kernel smoothing of data with correlated errors. Journal

of the American Statistical Association 85 749-759.

[2] Altman, N. S. (1993). Estimating error correlation in nonparametric regression.

Statistics & Probability Letters 18 213-218.

[3] Bosq, D. (1998). Nonparametric statistics for stochastic processes: estimation

and prediction, 2nd ed. Springer, New York.
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