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In this supplement, we provide the technical details omitted in the paper. In Sec-
tion S.1, we prove Proposition 2.1 which concerns identification of the functions
m;. Sections S.2 and S.3 contain some auxiliary results needed for the proof of
Theorem 6.1. In Section S.2, we in particular derive a general uniform conver-
gence result which is applied to the kernel smoothers m;; in Section S.3. The
final Section S.4 contains the proof of Theorem 6.1. Throughout the supplement,
we use the following notation: The symbol C' denotes a universal real constant
which may take a different value on each occurrence. In addition, the sym-
bols Cy, C4, ... are used to denote specific real constants that are defined in the
course of the supplement. Unless stated differently, the constants C, Cy, C1, ...
depend neither on the dimensions n and 7', nor on the indices ¢ € {1,...,n} and
t € {1,...,T}, nor on the location-bandwidth points (x, h) € Gp. To emphasize
that the constants C,Cy, C1, ... do not depend on any of these parameters, we
refer to them as absolute constants in many places.

S.1  Proof of Proposition 2.1
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Let Y, YE) and Y be the sample averages introduced in (3.1), that is,
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Define 7, 2" and £ analogously and set m; = T~ S mi(Xe), MY = (n—1)7!

Z?:Lj;éi m;(X,;:) and mY = ({n — 1}7)7! Z?:L#i Zthl m;(Xji). Straightforward
calculations yield that
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Hence, by adding/subtracting the sample averages Y, 7,@ and ?(Z) from Y;;, we can
eliminate the fixed effects «; and 7; from the model equation (2.5). We now consider the
transformed model equation (S.1) for arbitrary but fixed indices ¢ and ¢ and examine
the following two cases separately: (a) n = n(T) — oo as T — oo, and (b) n = n(T)

remains bounded as T — oo.



(a) Under the normalization constraint (2.6) and the assumptions of Proposition
2.1, it holds that for any fixed i and ¢, & = O,(T~Y?) and m; = O,(T~Y?),
) = 0,(nY2) and m” = 0,(n"Y/2) as well as g9 = O,({nT}7%?) and
m = O,({nT}~%/?). Using these facts in equation (S.1) for a fixed pair of

indices ¢ and t, we obtain that
Y;too = ml(th) + & a.s., (SZ)

~ — —m) =0
where Y° denotes the limit of Y; =Y, — Y, — YE '+Y " in probability, that is,
Vi N Y2°. From (S.2), it follows that E[Y°| X ;] = m;(X;:) almost surely, which
identifies m;.

(b) Now suppose that n = n(T) remains bounded as T' — oo. Let us assume for
simplicity that n = n(7T") is non-decreasing in 7', implying that n is a fixed number
for sufficiently large 7. (Without this assumption, we would have to consider a
subsequence of time series lengths T) for k& = 1,2,... such that n(7}) is non-
decreasing.) Similar to the previous case, we have that &, = O,(T~'/2) and m; =
O,(T71/?) as well as g9 = O,(T~/?) and m = O,(T~1/?). Using these facts in

equation (S.1), we arrive at

where Y;° is defined as before and, slightly abusing notation, we let aﬁ") = (N —
D7 e and myY = (N = 1) Y oy (Xe) with N = limg o n(T).
Since E[g\"|X;] = EEY] = 0 and Em”|X;] = Em”] = 0 under the nor-
malization constraint (2.6) and the assumptions of Proposition 2.1, we get that

E[Y:°| Xi] = mi(Xi) almost surely, which once again identifies m;.

S.2 A general result on uniform convergence

In this and the subsequent section, we derive some uniform convergence results needed
for the proof of Theorem 6.1. The multiscale statistics d;; are composed of kernel

estimators whose building blocks are kernel averages of the form

1 & X — o\ *
o, (z, h):TZKh(Xit—:c)< - )ZM, (S.4)
t=1

where /¢ is a fixed natural number and X;; are the regressor variables from model
(2.1). Moreover, Z; 1 are general real-valued random variables that may depend on
the sample size parameter 7. For each 4, the variables (Z;; 7, X;;) form a triangular
array A; = {A;r}72,, where A; 7 = {(Zix1, Xit) - 1 <t < T}. We make the following



assumptions on the random variables (Z; 1, X;t):

(P1) For each i and 7', the collection of random variables A; r is strongly mixing. The
mixing coefficients o, r(¢) of A; 1 are such that a; 7(¢) < na(¢) for all 4, T and

¢, where the coefficients () decay exponentially fast to zero as £ — oc.

(P2) There exist a real number 6 > 2 and a natural number ¢* such that for any ¢ € Z

with [¢| > ¢* and some absolute constant C' < oo,

max max sup ]E[|Zit,T]9|Xit = x] <(C<x
1<IST 1< 4e (g 1)

/
max max sup EUZ“,TZI-H@,THXZ% =2, Xjppo = ac} < (C < .
1<t<T lgzgnxx/e[o 1]

The following lemma characterizes the convergence behaviour of the kernel average

®;(x, h) uniformly over i,  and h.

Proposition S.1. Let (P1) and (P2) be satisfied. Moreover, assume that (C2) and
(C7)-(C9) are fulfilled. Then it holds that

P(max max VTh|®;(z, h) — Ed;(x, h)| > 00\/%7) — o(1),

1<i<n (z,h)eGr

where v, r = logn +logT and Cy is a sufficiently large absolute constant.

Proof of Proposition S.1. To prove the proposition, we modify standard arguments
to derive uniform convergence rates for kernel estimators, which can be found e.g.
in Masry (1996), Bosq (1998) or Hansen (2008). These arguments were originally
designed to derive the convergence rates of kernel averages such as ®;(x, h) —E®;(x, h)
uniformly over x but pointwise in h and 7. In contrast to this, we aim to derive the
convergence rate of ®;(z,h) — E®;(x, h) uniformly over z, h and i. Related results
can be found e.g. in Einmahl and Mason (2005) and Vogt and Linton (2017) (see in
particular Lemma S.1 therein).

We now turn to the proof of the proposition. For simplicity of notation, we let
¢ =01in (S.4), the arguments being completely analogous for ¢ # 0. To start with, we
define

1

Zi%,T = Zit.T 1(|Zit7T| < (nT)e;T)
Zip = Zig V(| Za| > (nT)ﬁ)’

)

where 6 > 0 is an absolute constant that can be chosen as small as desired. Moreover,

we write

\/ﬁ{@l(x, h) - Eq)i(xv h)} = Z ZiT(l‘, h) + ZZ;,T('I? h)’

t=1 t=1
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where

Zislonh) = {1 (Z ) 2 — B[R (F57) 0]}

zinte) = (K54 2 o[ (S5 22,

With this notation at hand, we get that

IP’( max max VTh|®;(x, h) — Ed;(x, h)| >co\/m) < PS4 P>,

1<i<n (z,h)€GT

where

Ps = IP’( max max
1<i<n (z,h)€Gr

Z thh’ 020\/'771_7T>

P = IP’( max max
1<i<n (z,h)€Gr

Zz;Txh’ C\/—>.

In what follows, we show that P< = o(1) and P~ = o(1), which implies the statement
of Proposition S.1.

We first have a closer look at P~. It holds that

P> < ZIP’( max

(z,h)EGT

T
C
ZZ;,T(LUJ h)‘ > 70\/7%71) < P1> + P2>7
t=1

where

n T
Xi—=x C()
P> = P( _ K( it >Z> > 20 A )
1 21 Jmax |~ ; ) Zir| >
n T X C
Py =3 B( mux | Y B[K(T4) 2] | > Qva)
2 ; (xril%éT z:: n aT|| > 1 Yn,T

With the help of (P2), we obtain that

Py < 3 B(|Zigrl > (0T)7 for some 1 <t < T)

< EH:XT:POZit,ﬂ > (nT)ﬁ)

=1 t=1

< C(nT)/(nT)7s

=o(1).



Once again exploiting (P2), we can further infer that

o SR ()] = SRt el
V_ Th/(nT)7=
o(\Anr)

which immediately implies that Py = 0 for sufficiently large 7. Putting everything

| /\

0’)

| /\

together, we arrive at the result that P~ = o(1).

We now turn to the analysis of P<. In what follows, we show that

max max ]P’() ZZth T h)‘ > %\/%_T> <CT7, (S.5)

1<i<n (z,h)€GT

where the constant r > 0 can be chosen as large as desired. From (S.5), it immediately
follows that P< = o(1), since

P<<Z S ]P’(’Z Fre )| > C;O\/%—T)

i=1 (z,h)€GT

To complete the proof of Proposition S.1, it thus remains to verify (S.5). To do so, we

split the term 3., ZZ%T(L h) into blocks as follows:

T [Nr] [N |

> Z5p(xh) = 23251+2325
t=1

with
min{sLy,T}

B, =Bi(x,h) = Y Z5p(z.h),
t=(s—1)Lp+1
where Ly = Ly, = \/W(nT)_l/(e_‘” is the block length and 2N with Np =
[T/L7]/2 is the number of blocks. Note that under condition (6.1), it holds that
T < Ly < CTY for any h with Ay < h < A and some sufficiently small
¢ > 0, where ¢, C' and £ are absolute constants that in particular do not depend on h.
With this notation at hand, we obtain that

(|32 ziste] > 2w <2(| 3 B > S
[NT]

+IP<’ Z Byy| >

S mr). (56



As the two terms on the right-hand side of (S.6) can be treated analogously, we focus
attention to the first one. By Bradley’s strong approximation theorem (see Theorem
3 in Bradley (1983)), we can construct a sequence of random variables By, Bj, ...
such that (i) Bf, Bj,... are independent, (ii) Bss—1 and Bj, ; have the same dis-
tribution for each s, and (iii) for 0 < g < ||Ba2s_1lloo, P(|Bss 1 — Bas_1| > p) <
18(|| Bas—1lloo/)?n a( Ly). With the variables Bj, ,, we can construct the bound

(35>

mn—T) <P+ P (8.7)

where

[N7]
(‘ Z B25 1

fNT]

= P(‘ z; (Bas—1 — B;s—l)’ > %\/’W>

C’\/%_T)

Using (iii) together with the fact that the mixing coefficients «(-) decay to zero ex-
ponentially fast, it is not difficult to see that Py < CT~", where the constant » > 0
can be picked as large as desired. To deal with P, we make use of the following three

facts:

(a) For a real-valued random variable B and A > 0, Markov’s inequality yields that
P(£B > 6) < Eexp(£AB)/ exp(A9).

(b) Since |Bys_1| < {CLyp(nT)Y =} /y\/Th, it holds that A, r|Bas 1| < 1/2, where
we set A\, = VTh/{2CLp(nT)/=9}. As exp(r) < 1+ x + 22 for |2 < 1/2, we
get that

E[exp ( + /\n,TB2sfl)i| <1+ >\317TE[(B2371)2} < exp ()\i,TE[(B%fl)QD

along with
E[exp (+ )\n,TB;‘s_l)] <exp (A2 7E[(Bs,_1)?]).

(c) Standard calculations for kernel estimators yield that Z[Nﬂ E[(Bs,_1)*] < Cs.
Using (a)—(c), we obtain that

[Nr] [Nr]

* * C
Py SP(232371>§0 VnT> ( 2323 1>_v7n7T>7



where

[N7] Co
P(£3 Bi > v/
s=1
o [NT]
< exp ( - g)\n,T\/’Yn,T) E[GXP (i An,T Z B, 1)}
Co [NT]
<exp| — g)\n T\/”YnT) H E[GXP ( + \rB5, 1)}
|—NT-|

=S hnaviia) [T e (VaBl(B5.7)

[Nr]

)\nT\/m> exp < Z E[(B;s—l)zw

s=1

|/\
"O
oo|<9

G
8

C
S exp < — go)\n’jn /Vn,T + Cg/\i’T>.

From the definition of A, 7, it follows that A\, 7 = C3, /7.7 with some absolute constant
C3 > 0. Hence,

C
Pl* S 23Xp<_ §0>\nT\/7nT+CZ>\iT>
CVO 3

= 2exp ( {logn +log T} + CoC2{logn + log T}) <CT™,

where the constant » > 0 can be made arbitrarily large by picking Cj large enough.
To summarize, we have shown that P < CT~" and Py < CT~" with some arbitrarily
large r > 0. This together with the bounds from (S.7) and (S.6) yields (S.5), which in
turn completes the proof. O

S.3 Auxiliary results on uniform convergence

We now use Proposition S.1 from the previous section to derive the uniform conver-
gence rates of some kernel estimators of interest. To start with, we consider the kernel

averages

Sie(z,h) = ZKh i — (X“h_‘”)g (S.8)

Xi—l‘K
Siy(x,h) = ZKh i« — ‘ = ‘ (S.9)

ZK’L i — ) <X2th_x)€5¢t (S.10)



G ) = 5 3 KX - ) (P22 i (X) — @)} (S11)

for 0 < /¢ < 3.

Lemma S.2. Under (C1), (C2) and (C5)-(C9), it holds that

max max VT |Szg x,h) — IE[SM(x,h)H =0,

1<i<n (z,h)E€Gr

max max V7T |5’;} (x,h) — [S:E(:E,h)” =0,

1<i<n (z,h)eGr

(S.12)

(S.13)

1<i<n (z,h)€GT

(V)
(V)

max max \/_| eI h‘ Op( %;p) (S.14)
(V)

max max \/_| —EJ[ i,é(l',h)” =0,

1<i<n (z,h)€Gr

(S.15)

with v, 7 = logn +logT'.

Proof of Lemma S.2. The terms S;,(z, h) and S ,(z, h) can be written in the form
71 Zthl Kn( Xy — 2){(Xi — x)/h} Zyy 7 with Zyp =1 and Zyr = &, respectively.
In addition, SJ(z,h) can be expressed as S7}(x,h) = T~ S K (X — 2){(Xa —

) /WY Zit g —mi(2) T™ 32y KXo —2){(Xie —2) [0} Z 7 with Zijz = mi(Xi) and
Z% = 1. Hence, the statements (S.12), (S.14) and (S.15) are simple consequences of
Proposition S.1. Moreover, it is trivial to modify the proof of Proposition S.1 to apply
to the expression S;,(x, h) and thus to derive statement (S.13). O

The terms S;¢(z,h), S;,(z,h) and S}(x, h) are the building blocks of the local

linear kernel averages

1 T
== ZWit(x, h) (S.16)
Q% (x, h) ZW,t z,h)eqy (S.17)
Q" (x, h) ZWM z, h){mi(Xy) — mi(x)}. (S.18)

In particular, it holds that

The uniform convergence rates of Q;(x, h), Q5(x, h) and Q" (z, h) can be easily derived



with the help of Lemma S.2 and some additional straightforward arguments. Defining

Q
*
Q)
=
I
=
5
no
&
=
=

[Si0(z, )] — E[S; 1 (x, h)]?
Q7" (, h) = E[Sia(x, W)]E[S[H(x, h)] — E[Si1 (2, h)E[S]) (z, h)],

we in particular obtain the following result.

Lemma S.3. Under (C1), (C2) and (C5)-(C9), it holds that
max max VTh|Qi(, k) - Qi (x, )] = Op(v )

max max \/T_h‘Qf(l’, h)‘ = Op(\/’Yn,T)

1<i<n (z,h)eGr

max max VTh ‘an(x, h) — Q" (z, h)‘ = Op( 7n7T)

1<i<n (z,h)E€Gr t

with v, = logn +logT.
In addition to Q;(z, h), Q5(x,h) and Q7' (x, h), we consider the kernel average

1 T

QF(e,h) = 7 S Wala, h){z” +m},
t=1
whose uniform convergence rate is specified by the following lemma.
Lemma S.4. Under (C1), (C2) and (C5)-(C9), it holds that
max max VTh|QF(z,h)| = 0,(y/logn+1logT).

1<i<n (¢,h)€Gr

Proof of Lemma S.4. Defining

T
St = L3 KX - ) (K0 2,

t=1

(S.19)
(S.20)

(S.21)

with Zyr = 2 4m? we can write Q% (z, h) = Sio(x, h)S(x, h)—Si(x, h)SE (x, h).
From (C1) and Theorem 5.1(a) in Bradley (2005), it follows that the collection of
random variables A; 7 = {(Xu, Ziur) : 1 <t < T} is strongly mixing for any ¢ and

T. In particular, the mixing coefficients a; 1(¢) of A; r are such that a; r(¢) < na(f),

where the coefficients «(¢) are defined in (C1) and decay exponentially fast to zero.

According to this, the variables (Z;; 7, X;;) satisfy condition (P1). Since the collection
of random variables {Z; r : 1 <t < T} is independent from {X;; : 1 <t < T} for
any ¢ under (C1), it is straightforward to verify that the variables (Z; r, X;;) fulfill

condition (P2) as well. Hence, we can apply Proposition S.1 to get that

max max VTh|S{(z, h)| = O,(y/logn+1logT).

1<i<n (z,h)€Gr



With this and Lemma S.2, it is straightforward to complete the proof. n

With the help of the kernel averages defined and analyzed above, the local linear

kernel smoothers m; 5 can be expressed as

_ Qf(xv h’) + Q;n('ra h) B Qfe(a:a h)

msp(x) — m;(z) — T E) + {ﬁ(i) +§(¢)}'

We now use this formulation to derive two different uniform expansions of the term
VTh{m;n(x) —m;(x)}, which are required to prove different parts of Theorem 6.1.

Proposition S.5. Let the conditions of Theorem 6.1 be satisfied. Then it holds that

VTh{i,(x) — mi(x)} = \/ﬁ% + R (x, h),

where the remainder Rl(a) (x,h) has the property that

max max ‘Rga)(:p,h)‘:Op(\/logn+logT).

1<i<n (z,h)€Gr

Proposition S.6. Under the conditions of Theorem 6.1, it holds that
h)m!
VTh{p(x) — mi(z)} = \/TMM + RO (2. h),

where we use the shorthand k(x, h) = {ka(x, h)*>—k1(x, h)k3(x, h)}/{Kk2(z, h)Kko(z, h)—

w1 (x, h)*} with ke(z, h) = f,(zz)/h u'K (u)du and the remainder Rgb) (x,h) is such that

max max |R§b) (z,h)| = O,(v/logn +log T + \/Thl,,).

1<i<n (z,h)€Gr
Proof of Proposition S.5. Simple algebra yields that

VTh{,(x) — mi(x)} = \/ﬁ% + R (x, h),

where R\ (z, h) = Rgi)(x, h)+ ...+ RE%)(x, h) with

(a) - o ! - !
Ry (z,h) = VThQ} (a, h){Qi(JS, h) @iz, h)}

(a) _ Q7' (x,h) — Q" (x, h)
Foz (b = V== )

(a) Q5 ()
Ris(e.h) = VTh Qi(x, h)

() Q@ h)
Ry (x,h) = VTh—Qz‘(I, n

10



as well as Rg:?(a:, h) = —vTh{m;+;} and Rl(?ﬁ) (x,h) =V Th{ﬁ(i)vL?(i)}. To complete
the proof, we show that

max max ‘REZ)(:E, h)| = O,(y/logn + log T) (S.22)

1<i<n (z,h)eGr

for 1 < ¢ < 6: By standard bias calculations, we obtain that

max max |Q;""(z,h)| = O(hmax) (S.23)

1<i<n (z,h)eGr

max (x{%?éT Qi (. h) — {ka(z, h)ko(z, k) — K1z, h)*} 7 (2)] = O(hmax),  (S.24)
where under our assumptions, the term Q:*(z, h) = {ka(z, h)ko(z, h) — k1 (z, h)?} f2(2)
is bounded away from zero and infinity uniformly over i and (z,h), that is, 0 <
c < Qi (x,h) < C < oo with some constants ¢ and C' that are independent of
i and (x,h). With the help of these observations and Lemmas S.3 and S.4, it is
straightforward to derive (S.22) for 1 < ¢ < 4. Next, note that max;<;<, ]ﬁ(i)] <
maxi<i<n [M;] and maxi<;<, |§(i)| < maxi<;<p |€i]. Arguments similar to but simpler
than those for Proposition S.1 yield that max;<i<, [m:| = O,(y/{logn +logT}/T)
and max<;<, |gi| = O,(y/{logn +logT}/T). From this, (S.22) immediately follows
for ¢ =5 and ¢ = 6. O

Proof of Proposition S.6. Straightforward calculations yield that
h)m/
VIR{i, () — mifa)} = VIR, g0 gy

where R\ (z, h) = RE’? (x,h)+ ...+ beg(x, h) with

() _ Qi'(z,h)  ,k(z, h)m](z)
R (x, h) _\/ﬁ{ o ‘ }

and Rz(be) (x,h) = REZ)H(“’? h) for 2 < ¢ < 5. In order to prove Proposition S.6, it suffices
to show that

max (x%agéT ‘Rl(bl)(x, h)| = Op(\/Thl.) + op(v/logn +logT) (S.25)
Rg’g)(sc, h)| = O,(\/logn +logT) (S.26)

for 2 < ¢ < 5. (S.26) has already been verified in the proof of Proposition S.5. To

prove (S.25), we make use of the following two facts:

max max ‘
1<i<n (¢,h)€Gr

11



(a)

From Lemma S.3 and (S.24), it follows that

max max VTh|Qi(z,h) — Q;*(z,h)| = O,(\/logn +logT + \/Th3 ) (S.27)

1<i<n (z,h)eGr

with QF*(x, h) = {ka(x, h)ko(x, h) — k1 (x, h)*} f2(z). As already noted in the proof
of Proposition S.5, the term @Q*(x,h) is bounded away from zero and infinity

uniformly over i and (z, h).

A second-order Taylor expansion of m; yields that
VThQ! (z,h) = VThQ;"™ (x,h) + R"(x, h), (S.28)

where

QI (x, h) = hw [ka(@, h)? = k1 (2, B)ks(, )]

(2

The remainder term R{"(x,h) has the form Rj*(x,h) = R%(x,h) + RiY(z,h),

where

o |

= YT S KX =) [ ) — (K2 50,0

< () —mi()y (P10

with &; denoting an intermediate point between X;; and x. By Lemma S.2 and

standard bias calculations, we obtain that

m _ 2 7
max max |RT (2, h)| = Op(hia\/logn +log T + \/ThL,,). (S.29)
As mj is Lipschitz continuous by (C6), we further get that |R%(x, h)| < CVTh'
{Sia(x,h)* + Sfi(x,h)S;5(x,h)}. Applying Lemma S.2 together with standard

bias calculations to this upper bound, we can infer that

max max |R(z,h)| = O,(hd . \/logn +logT + /Thl,,). (S.30)

1<i<n (z,h)€Gr max

Finally, by combining (S.29) and (S.30), the remainder term R!"(x, h) is seen to
have the property that

max max |R"(z,h)| = Op(hku\/logn +log T + \/ThL,.). (S.31)

1<i<n (w,h)€GT

12



We now proceed as follows: Simple algebra yields that

Qr'(z,h) QI (x,h)
*/ﬁ(czi(x h) ©Q(x,h) )

—Qi<x’h> HVIRQ! (o ){Qz( h) Q;-**(x,h)}'

Since Q)" (z,h)/QF* (x, h) = h?k(z, h)m!(x)/2, this implies that

Rzm@’h) Mk 1 L
R,Sf’l)(x,h)zm + VThQ™ (z, ){Ql(xh) Q;-k*(x,h)}'

Using this representation of Rl(bl) (x,h) together with (S.27), (S.31) and the fact that
QF*(z,h) is bounded away from zero and infinity uniformly over i and (z,h), it is
straightforward to verify (S.25). O

The final result of this section is concerned with the normalization term

~2 ~2
~ . Tih 9jn
Vij(l’, h) —\= + = 3(377 h)? <832)
fin(x)  fin(z)

Wheres :U h {f i/}f " K2 [52('1'7 h)_/'il(x?h)u]Qdu}/{’%O(mah)"QZ(:m h>_"€1(x> h)2}2
with k¢(x, h) = f( /h)/h u' K (u)du for 0 < £ < 2, ﬁh(x) = {ro(x, )T} 'S0 Kn(Xy—
z) and 62, = T~ 321 {Yii — it (Xir) }2.

Proposition S.7. Let the conditions of Theorem 6.1 be satisfied. Then there exist
absolute constants 0 < ¢, < C,, < 0o such that

min ~ min /7;(x,h) > ¢, + 0,(1
1<i<j<n (x,h)€Gr

max max /V;j(x, h) < C,+op(1
1<i<j<n (z,h)€Gr

Proof of Proposition S.7. The proposition is a straightforward consequence of the

following three observations:

(a) Under our conditions, the term s(x,h) is bounded away from zero and infinity
uniformly over (z,h), that is, 0 < ¢; < s(z,h) < Cy < oo for some absolute

constants ¢, and C,.

(b) It holds that

‘ ( logn + logT
B Thmin

max max ‘fz h
1<i<n (z,h)€Gr

+ P )

where the densities f; are uniformly bounded away from zero and infinity by (C2).
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(c) Tt holds that

0, =0, +b] + R}, with max max |R{,|=0,(1),
1<i<n {hi(z,h)€Gr}y
where b7 = E[(m"” +£\")2] and the error variances o2 are uniformly bounded away
from zero and infinity according to (C3). Note that 0 < b7 < C, < oo for some
sufficiently large absolute constant C, and that max;<;<, b = o(1) in the case

that n tends to infinity as T — oo.

Observation (a) can be seen by straightforward arguments and (b) follows from Lemma
S.2 together with standard bias calculations. In order to prove (c), we write 77, =
o2 + b7 + R7, with RY, = RY, | + ...+ R, 5, where

Th1 = Z{

Ryyo = _Z{mt +&") _Engi)ﬂngi))Q]}

1~
hs = T Z {An(Xi) — (M +5) + (m" + & ))}
t=1
2 o
Tha =T 2 (A + & HAn(Xa) — (i +2) + @ +57)}
t=1

N[

o —
i,h,5

T
> ei{ Bin(Xa) — (s +2) — (A +27) + (@ +57)}
t=1

with the shorthand ﬁi,h(X,-t) = m;(Xit)—m; n(Xit). A simplified version of Proposition

S.1 yields that
1 < logn + log T
TZ{&Z—E[&?J}‘ - op(,/%). (5.33)
t=1

By (C1) and Theorem 5.1(a) in Bradley (2005), the collection of random variables
Air = {(emei ),_(l)) : 1 <t < T} is strongly mixing for any ¢ and T, where the

max
1<i<n

mixing coefficients «; r(¢) of A; 7 are such that a; 7(¢) < na(f) with a(f) decaying to
zero exponentially fast. For this reason, we can once again apply a simplified version

of Proposition S.1 to obtain that

Zen D4l ’7 (”W) (S.34)

14

max
1<i<n




max
1<i<n

T
%Z {(mf) +2N? —E[m" + )7 H = Op<\ / %). (S.35)

Moreover, slightly modifying the proof of Proposition S.6, we can infer that

(S.36)

max max {ﬁlh(x)’ =0,

Thmin max) *

Finally, as already seen in the proof of Proposition S.5,

o logn + logT
max M+ 5| = Op<\/ T) (S.37)
—@) | =) _ logn + log T>
max }m +€ | = OI,(\/ — ) (S.38)

With the help of (S.33)—(S.38), it is not difficult to infer that

max  max |R7, | = o0y(1) (S.39)

1<i<n {hi(z,h)€Gr}

for 1 < ¢ <5, which implies (c). O

S.4 Proof of Theorem 6.1

Proof of (6.2). From Proposition S.5, it follows that
\Y Th{ﬁ@z,h(x) — ’ﬁljﬁ(l‘)}
= VTh{m;(z) — m;(z)}

Q" (x, h) Q;n*(x, h)
+ \/T_h{ Q (. h) - Q;(l‘, R } + Ri;(z, h),

where maxi<;<j<n, Max(y pegy | Rij(x, h)| = O,(vIogn +1logT). Since Q;""(x,h) =

Q7" (x,h) and Q;(x,h) = Qj(x, h) for any two time series i and j in the same group

G, under our conditions, this implies that

max max max VTh|m,(z) — mju(z)| = O,(y/logn +logT). (S.40)

1<k<Ko 1,j€G} (z,h)EGT

Moreover, by Proposition S.7,

Jun | min \/ Vij(x,h) > ¢, + 0p(1),
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where ¢, > 0 is a sufficiently small absolute constant. As a result, we arrive at

max max d;; < max max { max |¢;;(x, h)|}
1<k<Ko 1,j€G) 1<k<Ko 1,j€Gk \ (x,h)€GT
max max max VTh|m,(z) — My (z)]
1<k<Ko 1,j€G) (z,h)€Gr

min ~ min /7;(z, h)
1<i<j<n (z,h)eGr

= Op(\/logn + logT),

which completes the proof. O]

Proof of (6.3). By Proposition S.6, it holds that

\/ﬁ{ﬁ%h(I) - Tﬁj,h(x)}
— VTh{mi(z) — m;(z)}

+ W@{m; (z) —mf(x)} + Rij(x, h),

where maxi<j<j<, MaX( pyegy |Rij(x, h)| = Op(v/logn +logT + \/Thi,,.). With the

help of this expansion, we can infer that

I <heR s F nggl’;Ikl (m%agéT i (2) = (@)
7€G

> min  min max VTh|m;(z) —m;(z)|
1<k<k'<Ko i€Gk, (z,h)€Gr

]GGk/
— max max VTh® M |m’-’(x) — m’.’(x)‘
1<i<j<n (x,h)€Gr 2 t J

— max max |Rj(z,h)|
1<i<j<n (x,h)eGr

= min  min max VTh|m(z) —m;(z)|
1<k<k'<Ko ?Egk, (z,h)EGT
1€y

+ Oy (V/Thi, + V/1ogn +log T)

> ¢\/Thax + 0p (VT hiax)

where ¢ > 0 is a sufficiently small absolute constant. Moreover, by Proposition S.7,

. <
151%};1 (xl’r%ae}éT \/Vij(z,h) < C, + 0,(1)

with €}, > 0 being an absolute constant that is chosen sufficiently large. As a conse-
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quence, we get that

min  min {(max W”(ﬁ h)|}

1<k<k/<Ky i€Gy, z,h)EGT
JEG
min min  max VT |m7, e mj7h($)|

1<k<k’<Ky ZGGk,]EGk/ (:l? h)EQ’T

max max 4/V;(z,h)
1<i<j<n (x,h)€Gr

> oV Thaax + 0p (/T hunax) (S.41)

with some sufficiently small absolute constant cy. Since A(2hmin) = O(y/logT) by the
conditions on the bandwidth A, in (C8), we finally obtain that

min  min d >  min  min { max |ww(:1; h)|} — AM2hmin)

1<k<k'’<Kj i€Gy, 1<k<k’<Kj i€Gy, (x h)EgT
JEG JEG
_ : ; log T
min o min { e (90, 0)| } + O(IogT)
jGGk/
Z CovV Thmax + Op( Thmax)a
the last line following from (S.41). O
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