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In this supplement, we provide the technical details omitted in the paper. In Sec-
tion S.1, we prove Proposition 2.1 which concerns identification of the functions
mi. Sections S.2 and S.3 contain some auxiliary results needed for the proof of
Theorem 6.1. In Section S.2, we in particular derive a general uniform conver-
gence result which is applied to the kernel smoothers m̂i,h in Section S.3. The
final Section S.4 contains the proof of Theorem 6.1. Throughout the supplement,
we use the following notation: The symbol C denotes a universal real constant
which may take a different value on each occurrence. In addition, the sym-
bols C0, C1, . . . are used to denote specific real constants that are defined in the
course of the supplement. Unless stated differently, the constants C,C0, C1, . . .
depend neither on the dimensions n and T , nor on the indices i ∈ {1, . . . , n} and
t ∈ {1, . . . , T}, nor on the location-bandwidth points (x, h) ∈ GT . To emphasize
that the constants C,C0, C1, . . . do not depend on any of these parameters, we
refer to them as absolute constants in many places.

S.1 Proof of Proposition 2.1

Let Y i, Y
(i)

t and Y
(i)

be the sample averages introduced in (3.1), that is,

Y i =
1

T

T∑
t=1

Yit, Y
(i)

t =
1

n− 1

n∑
j=1
j 6=i

Yjt and Y
(i)

=
1

(n− 1)T

n∑
j=1
j 6=i

T∑
t=1

Yjt.

Define εi, ε
(i)
t and ε

(i)
analogously and set mi = T−1

∑T
t=1mi(Xit), m

(i)
t = (n − 1)−1∑n

j=1,j 6=imj(Xjt) and m
(i)

= ({n − 1}T )−1
∑n

j=1,j 6=i
∑T

t=1mj(Xjt). Straightforward

calculations yield that

Yit − Y i − Y
(i)

t + Y
(i)

= mi(Xit)−mi −m(i)
t +m

(i)

+ εit − εi − ε(i)t + ε
(i)
. (S.1)

Hence, by adding/subtracting the sample averages Y i, Y
(i)

t and Y
(i)

from Yit, we can

eliminate the fixed effects αi and γt from the model equation (2.5). We now consider the

transformed model equation (S.1) for arbitrary but fixed indices i and t and examine

the following two cases separately: (a) n = n(T ) → ∞ as T → ∞, and (b) n = n(T )

remains bounded as T →∞.
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(a) Under the normalization constraint (2.6) and the assumptions of Proposition

2.1, it holds that for any fixed i and t, εi = Op(T
−1/2) and mi = Op(T

−1/2),

ε
(i)
t = Op(n

−1/2) and m
(i)
t = Op(n

−1/2) as well as ε
(i)

= Op({nT}−1/2) and

m
(i)

= Op({nT}−1/2). Using these facts in equation (S.1) for a fixed pair of

indices i and t, we obtain that

Y ∞it = mi(Xit) + εit a.s., (S.2)

where Y ∞it denotes the limit of Ŷ ∗it = Yit − Y i − Y
(i)

t + Y
(i)

in probability, that is,

Ŷ ∗it
P−→ Y ∞it . From (S.2), it follows that E[Y ∞it |Xit] = mi(Xit) almost surely, which

identifies mi.

(b) Now suppose that n = n(T ) remains bounded as T → ∞. Let us assume for

simplicity that n = n(T ) is non-decreasing in T , implying that n is a fixed number

for sufficiently large T . (Without this assumption, we would have to consider a

subsequence of time series lengths Tk for k = 1, 2, . . . such that n(Tk) is non-

decreasing.) Similar to the previous case, we have that εi = Op(T
−1/2) and mi =

Op(T
−1/2) as well as ε

(i)
= Op(T

−1/2) and m
(i)

= Op(T
−1/2). Using these facts in

equation (S.1), we arrive at

Y ∞it = mi(Xit) + εit −
{
m

(i)
t + ε

(i)
t

}
a.s., (S.3)

where Y ∞it is defined as before and, slightly abusing notation, we let ε
(i)
t = (N −

1)−1
∑N

j=1,j 6=i εjt and m
(i)
t = (N − 1)−1

∑N
j=1,j 6=imj(Xjt) with N = limT→∞ n(T ).

Since E[ε
(i)
t |Xit] = E[ε

(i)
t ] = 0 and E[m

(i)
t |Xit] = E[m

(i)
t ] = 0 under the nor-

malization constraint (2.6) and the assumptions of Proposition 2.1, we get that

E[Y ∞it |Xit] = mi(Xit) almost surely, which once again identifies mi.

S.2 A general result on uniform convergence

In this and the subsequent section, we derive some uniform convergence results needed

for the proof of Theorem 6.1. The multiscale statistics d̂ij are composed of kernel

estimators whose building blocks are kernel averages of the form

Φi(x, h) =
1

T

T∑
t=1

Kh(Xit − x)
(Xit − x

h

)`
Zit,T , (S.4)

where ` is a fixed natural number and Xit are the regressor variables from model

(2.1). Moreover, Zit,T are general real-valued random variables that may depend on

the sample size parameter T . For each i, the variables (Zit,T , Xit) form a triangular

array Ai = {Ai,T}∞T=1, where Ai,T = {(Zit,T , Xit) : 1 ≤ t ≤ T}. We make the following
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assumptions on the random variables (Zit,T , Xit):

(P1) For each i and T , the collection of random variables Ai,T is strongly mixing. The

mixing coefficients αi,T (`) of Ai,T are such that αi,T (`) ≤ nα(`) for all i, T and

`, where the coefficients α(`) decay exponentially fast to zero as `→∞.

(P2) There exist a real number θ > 2 and a natural number `∗ such that for any ` ∈ Z
with |`| ≥ `∗ and some absolute constant C <∞,

max
1≤t≤T

max
1≤i≤n

sup
x∈[0,1]

E
[
|Zit,T |θ

∣∣Xit = x
]
≤ C <∞

max
1≤t≤T

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|Zit,TZit+`,T |

∣∣Xit = x,Xit+` = x′
]
≤ C <∞.

The following lemma characterizes the convergence behaviour of the kernel average

Φi(x, h) uniformly over i, x and h.

Proposition S.1. Let (P1) and (P2) be satisfied. Moreover, assume that (C2) and

(C7)–(C9) are fulfilled. Then it holds that

P
(

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Φi(x, h)− EΦi(x, h)

∣∣ > C0
√
γn,T

)
= o(1),

where γn,T = log n+ log T and C0 is a sufficiently large absolute constant.

Proof of Proposition S.1. To prove the proposition, we modify standard arguments

to derive uniform convergence rates for kernel estimators, which can be found e.g.

in Masry (1996), Bosq (1998) or Hansen (2008). These arguments were originally

designed to derive the convergence rates of kernel averages such as Φi(x, h)−EΦi(x, h)

uniformly over x but pointwise in h and i. In contrast to this, we aim to derive the

convergence rate of Φi(x, h) − EΦi(x, h) uniformly over x, h and i. Related results

can be found e.g. in Einmahl and Mason (2005) and Vogt and Linton (2017) (see in

particular Lemma S.1 therein).

We now turn to the proof of the proposition. For simplicity of notation, we let

` = 0 in (S.4), the arguments being completely analogous for ` 6= 0. To start with, we

define

Z≤it,T = Zit,T 1
(
|Zit,T | ≤ (nT )

1
θ−δ
)

Z>
it,T = Zit,T 1

(
|Zit,T | > (nT )

1
θ−δ
)
,

where δ > 0 is an absolute constant that can be chosen as small as desired. Moreover,

we write

√
Th
{

Φi(x, h)− EΦi(x, h)
}

=
T∑
t=1

Z≤it,T (x, h) +
T∑
t=1

Z>it,T (x, h),
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where

Z≤it,T (x, h) =
1√
Th

{
K
(Xit − x

h

)
Z≤it,T − E

[
K
(Xit − x

h

)
Z≤it,T

]}
Z>it,T (x, h) =

1√
Th

{
K
(Xit − x

h

)
Z>
it,T − E

[
K
(Xit − x

h

)
Z>
it,T

]}
.

With this notation at hand, we get that

P
(

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Φi(x, h)− EΦi(x, h)

∣∣ > C0
√
γn,T

)
≤ P≤ + P>,

where

P≤ = P
(

max
1≤i≤n

max
(x,h)∈GT

∣∣∣ T∑
t=1

Z≤it,T (x, h)
∣∣∣ > C0

2

√
γn,T

)
P> = P

(
max
1≤i≤n

max
(x,h)∈GT

∣∣∣ T∑
t=1

Z>it,T (x, h)
∣∣∣ > C0

2

√
γn,T

)
.

In what follows, we show that P≤ = o(1) and P> = o(1), which implies the statement

of Proposition S.1.

We first have a closer look at P>. It holds that

P> ≤
n∑
i=1

P
(

max
(x,h)∈GT

∣∣∣ T∑
t=1

Z>it,T (x, h)
∣∣∣ > C0

2

√
γn,T

)
≤ P>

1 + P>
2 ,

where

P>
1 =

n∑
i=1

P
(

max
(x,h)∈GT

∣∣∣ 1√
Th

T∑
t=1

K
(Xit − x

h

)
Z>
it,T

∣∣∣ > C0

4

√
γn,T

)
P>
2 =

n∑
i=1

P
(

max
(x,h)∈GT

∣∣∣ 1√
Th

T∑
t=1

E
[
K
(Xit − x

h

)
Z>
it,T

]∣∣∣ > C0

4

√
γn,T

)
.

With the help of (P2), we obtain that

P>
1 ≤

n∑
i=1

P
(
|Zit,T | > (nT )

1
θ−δ for some 1 ≤ t ≤ T

)
≤

n∑
i=1

T∑
t=1

P
(
|Zit,T | > (nT )

1
θ−δ

)
≤ C(nT )

/
(nT )

θ
θ−δ

= o(1).
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Once again exploiting (P2), we can further infer that

∣∣∣ 1√
Th

T∑
t=1

E
[
K
(Xit − x

h

)
Z>
it,T

]∣∣∣ ≤ 1√
Th

T∑
t=1

E
[
K
(Xit − x

h

) |Zit,T |θ
(nT )

θ−1
θ−δ

]
≤ C
√
Th
/

(nT )
θ−1
θ−δ

= o
(√

γn,T
)
,

which immediately implies that P>
2 = 0 for sufficiently large T . Putting everything

together, we arrive at the result that P> = o(1).

We now turn to the analysis of P≤. In what follows, we show that

max
1≤i≤n

max
(x,h)∈GT

P
(∣∣∣ T∑

t=1

Z≤it,T (x, h)
∣∣∣ > C0

2

√
γn,T

)
≤ CT−r, (S.5)

where the constant r > 0 can be chosen as large as desired. From (S.5), it immediately

follows that P≤ = o(1), since

P≤ ≤
n∑
i=1

∑
(x,h)∈GT

P
(∣∣∣ T∑

t=1

Z≤it,T (x, h)
∣∣∣ > C0

2

√
γn,T

)
.

To complete the proof of Proposition S.1, it thus remains to verify (S.5). To do so, we

split the term
∑T

t=1Z
≤
it,T (x, h) into blocks as follows:

T∑
t=1

Z≤it,T (x, h) =

dNT e∑
s=1

B2s−1 +

bNT c∑
s=1

B2s

with

Bs = Bis(x, h) =

min{sLT ,T}∑
t=(s−1)LT+1

Z≤it,T (x, h),

where LT = LT,h =
√
Th/γn,T (nT )−1/(θ−δ) is the block length and 2NT with NT =

dT/LT e/2 is the number of blocks. Note that under condition (6.1), it holds that

cT ξ ≤ LT,h ≤ CT 1−ξ for any h with hmin ≤ h ≤ hmax and some sufficiently small

ξ > 0, where c, C and ξ are absolute constants that in particular do not depend on h.

With this notation at hand, we obtain that

P
(∣∣∣ T∑

t=1

Z≤it,T (x, h)
∣∣∣ > C0

2

√
γn,T

)
≤ P

(∣∣∣ dNT e∑
s=1

B2s−1

∣∣∣ > C0

4

√
γn,T

)
+ P

(∣∣∣ bNT c∑
s=1

B2s

∣∣∣ > C0

4

√
γn,T

)
. (S.6)
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As the two terms on the right-hand side of (S.6) can be treated analogously, we focus

attention to the first one. By Bradley’s strong approximation theorem (see Theorem

3 in Bradley (1983)), we can construct a sequence of random variables B∗1 , B
∗
3 , . . .

such that (i) B∗1 , B
∗
3 , . . . are independent, (ii) B2s−1 and B∗2s−1 have the same dis-

tribution for each s, and (iii) for 0 < µ ≤ ‖B2s−1‖∞, P(|B∗2s−1 − B2s−1| > µ) ≤
18(‖B2s−1‖∞/µ)1/2nα(LT ). With the variables B∗2s−1, we can construct the bound

P
(∣∣∣ dNT e∑

s=1

B2s−1

∣∣∣ > C0

4

√
γn,T

)
≤ P ∗1 + P ∗2 , (S.7)

where

P ∗1 = P
(∣∣∣ dNT e∑

s=1

B∗2s−1

∣∣∣ > C0

8

√
γn,T

)
P ∗2 = P

(∣∣∣ dNT e∑
s=1

(
B2s−1 −B∗2s−1

)∣∣∣ > C0

8

√
γn,T

)
.

Using (iii) together with the fact that the mixing coefficients α(·) decay to zero ex-

ponentially fast, it is not difficult to see that P ∗2 ≤ CT−r, where the constant r > 0

can be picked as large as desired. To deal with P ∗1 , we make use of the following three

facts:

(a) For a real-valued random variable B and λ > 0, Markov’s inequality yields that

P(±B > δ) ≤ E exp(±λB)/ exp(λδ).

(b) Since |B2s−1| ≤ {CLT (nT )1/(θ−δ)}/
√
Th, it holds that λn,T |B2s−1| ≤ 1/2, where

we set λn,T =
√
Th/{2CLT (nT )1/(θ−δ)}. As exp(x) ≤ 1 + x+ x2 for |x| ≤ 1/2, we

get that

E
[

exp
(
± λn,TB2s−1

)]
≤ 1 + λ2n,TE

[
(B2s−1)

2
]
≤ exp

(
λ2n,TE

[
(B2s−1)

2
])

along with

E
[

exp
(
± λn,TB∗2s−1

)]
≤ exp

(
λ2n,TE

[
(B∗2s−1)

2
])
.

(c) Standard calculations for kernel estimators yield that
∑dNT e

s=1 E
[
(B∗2s−1)

2
]
≤ C2.

Using (a)–(c), we obtain that

P ∗1 ≤ P
( dNT e∑

s=1

B∗2s−1 >
C0

8

√
γn,T

)
+ P

(
−
dNT e∑
s=1

B∗2s−1 >
C0

8

√
γn,T

)
,
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where

P
(
±
dNT e∑
s=1

B∗2s−1 >
C0

8

√
γn,T

)
≤ exp

(
− C0

8
λn,T
√
γn,T

)
E
[

exp
(
± λn,T

dNT e∑
s=1

B∗2s−1

)]
≤ exp

(
− C0

8
λn,T
√
γn,T

) dNT e∏
s=1

E
[

exp
(
± λn,TB∗2s−1

)]
≤ exp

(
− C0

8
λn,T
√
γn,T

) dNT e∏
s=1

exp
(
λ2n,TE

[
(B∗2s−1)

2
])

= exp
(
− C0

8
λn,T
√
γn,T

)
exp

(
λ2n,T

dNT e∑
s=1

E
[
(B∗2s−1)

2
])

≤ exp
(
− C0

8
λn,T
√
γn,T + C2λ

2
n,T

)
.

From the definition of λn,T , it follows that λn,T = C3
√
γn,T with some absolute constant

C3 > 0. Hence,

P ∗1 ≤ 2 exp
(
− C0

8
λn,T
√
γn,T + C2λ

2
n,T

)
= 2 exp

(
− C0C3

8
{log n+ log T}+ C2C

2
3{log n+ log T}

)
≤ CT−r,

where the constant r > 0 can be made arbitrarily large by picking C0 large enough.

To summarize, we have shown that P ∗1 ≤ CT−r and P ∗2 ≤ CT−r with some arbitrarily

large r > 0. This together with the bounds from (S.7) and (S.6) yields (S.5), which in

turn completes the proof.

S.3 Auxiliary results on uniform convergence

We now use Proposition S.1 from the previous section to derive the uniform conver-

gence rates of some kernel estimators of interest. To start with, we consider the kernel

averages

Si,`(x, h) =
1

T

T∑
t=1

Kh(Xit − x)
(Xit − x

h

)`
(S.8)

S+
i,`(x, h) =

1

T

T∑
t=1

Kh(Xit − x)
∣∣∣Xit − x

h

∣∣∣` (S.9)

Sεi,`(x, h) =
1

T

T∑
t=1

Kh(Xit − x)
(Xit − x

h

)`
εit (S.10)
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Smi,`(x, h) =
1

T

T∑
t=1

Kh(Xit − x)
(Xit − x

h

)`
{mi(Xit)−mi(x)} (S.11)

for 0 ≤ ` ≤ 3.

Lemma S.2. Under (C1), (C2) and (C5)–(C9), it holds that

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Si,`(x, h)− E[Si,`(x, h)]

∣∣ = Op

(√
γn,T

)
(S.12)

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣S+

i,`(x, h)− E[S+
i,`(x, h)]

∣∣ = Op

(√
γn,T

)
(S.13)

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Sεi,`(x, h)

∣∣ = Op

(√
γn,T

)
(S.14)

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Smi,`(x, h)− E[Smi,`(x, h)]

∣∣ = Op

(√
γn,T

)
(S.15)

with γn,T = log n+ log T .

Proof of Lemma S.2. The terms Si,`(x, h) and Sεi,`(x, h) can be written in the form

T−1
∑T

t=1Kh(Xit − x){(Xit − x)/h}`Zit,T with Zit,T = 1 and Zit,T = εit, respectively.

In addition, Smi,`(x, h) can be expressed as Smi,`(x, h) = T−1
∑T

t=1Kh(Xit − x){(Xit −
x)/h}`ZA

it,T −mi(x)T−1
∑T

t=1Kh(Xit−x){(Xit−x)/h}`ZB
it,T with ZA

it,T = mi(Xit) and

ZB
it,T = 1. Hence, the statements (S.12), (S.14) and (S.15) are simple consequences of

Proposition S.1. Moreover, it is trivial to modify the proof of Proposition S.1 to apply

to the expression S+
i,`(x, h) and thus to derive statement (S.13).

The terms Si,`(x, h), Sεi,`(x, h) and Smi,`(x, h) are the building blocks of the local

linear kernel averages

Qi(x, h) =
1

T

T∑
t=1

Wit(x, h) (S.16)

Qε
i (x, h) =

1

T

T∑
t=1

Wit(x, h)εit (S.17)

Qm
i (x, h) =

1

T

T∑
t=1

Wit(x, h){mi(Xit)−mi(x)}. (S.18)

In particular, it holds that

Qi(x, h) = Si,2(x, h)Si,0(x, h)− S2
i,1(x, h)

Qε
i (x, h) = Si,2(x, h)Sεi,0(x, h)− Si,1(x, h)Sεi,1(x, h)

Qm
i (x, h) = Si,2(x, h)Smi,0(x, h)− Si,1(x, h)Smi,1(x, h).

The uniform convergence rates of Qi(x, h), Qε
i (x, h) and Qm

i (x, h) can be easily derived
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with the help of Lemma S.2 and some additional straightforward arguments. Defining

Q∗i (x, h) = E[Si,2(x, h)]E[Si,0(x, h)]− E[Si,1(x, h)]2

Qm,∗
i (x, h) = E[Si,2(x, h)]E[Smi,0(x, h)]− E[Si,1(x, h)]E[Smi,1(x, h)],

we in particular obtain the following result.

Lemma S.3. Under (C1), (C2) and (C5)–(C9), it holds that

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Qi(x, h)−Q∗i (x, h)

∣∣ = Op

(√
γn,T

)
(S.19)

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Qε

i (x, h)
∣∣ = Op

(√
γn,T

)
(S.20)

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Qm

i (x, h)−Qm,∗
i (x, h)

∣∣ = Op

(√
γn,T

)
(S.21)

with γn,T = log n+ log T .

In addition to Qi(x, h), Qε
i (x, h) and Qm

i (x, h), we consider the kernel average

Qfe
i (x, h) =

1

T

T∑
t=1

Wit(x, h)
{
ε
(i)
t +m

(i)
t

}
,

whose uniform convergence rate is specified by the following lemma.

Lemma S.4. Under (C1), (C2) and (C5)–(C9), it holds that

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Qfe

i (x, h)
∣∣ = Op

(√
log n+ log T

)
.

Proof of Lemma S.4. Defining

Sfe
i,`(x, h) =

1

T

T∑
t=1

Kh(Xit − x)
(Xit − x

h

)`
Zit,T

with Zit,T = ε
(i)
t +m

(i)
t , we can write Qfe

i (x, h) = Si,2(x, h)Sfe
i,0(x, h)−Si,1(x, h)Sfe

i,1(x, h).

From (C1) and Theorem 5.1(a) in Bradley (2005), it follows that the collection of

random variables Ai,T = {(Xit, Zit,T ) : 1 ≤ t ≤ T} is strongly mixing for any i and

T . In particular, the mixing coefficients αi,T (`) of Ai,T are such that αi,T (`) ≤ nα(`),

where the coefficients α(`) are defined in (C1) and decay exponentially fast to zero.

According to this, the variables (Zit,T , Xit) satisfy condition (P1). Since the collection

of random variables {Zit,T : 1 ≤ t ≤ T} is independent from {Xit : 1 ≤ t ≤ T} for

any i under (C1), it is straightforward to verify that the variables (Zit,T , Xit) fulfill

condition (P2) as well. Hence, we can apply Proposition S.1 to get that

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Sfe

i,`(x, h)
∣∣ = Op

(√
log n+ log T

)
.

9



With this and Lemma S.2, it is straightforward to complete the proof.

With the help of the kernel averages defined and analyzed above, the local linear

kernel smoothers m̂i,h can be expressed as

m̂i,h(x)−mi(x) =
Qε
i (x, h) +Qm

i (x, h)−Qfe
i (x, h)

Qi(x, h)
−
{
mi + εi

}
+
{
m

(i)
+ ε

(i)}
.

We now use this formulation to derive two different uniform expansions of the term√
Th{m̂i,h(x)−mi(x)}, which are required to prove different parts of Theorem 6.1.

Proposition S.5. Let the conditions of Theorem 6.1 be satisfied. Then it holds that

√
Th
{
m̂i,h(x)−mi(x)

}
=
√
Th

Qm,∗
i (x, h)

Q∗i (x, h)
+R

(a)
i (x, h),

where the remainder R
(a)
i (x, h) has the property that

max
1≤i≤n

max
(x,h)∈GT

∣∣R(a)
i (x, h)

∣∣ = Op

(√
log n+ log T

)
.

Proposition S.6. Under the conditions of Theorem 6.1, it holds that

√
Th
{
m̂i,h(x)−mi(x)

}
=
√
Th5

κ(x, h)m′′i (x)

2
+R

(b)
i (x, h),

where we use the shorthand κ(x, h) = {κ2(x, h)2−κ1(x, h)κ3(x, h)}/{κ2(x, h)κ0(x, h)−
κ1(x, h)2} with κ`(x, h) =

∫ (1−x)/h
−x/h u`K(u)du and the remainder R

(b)
i (x, h) is such that

max
1≤i≤n

max
(x,h)∈GT

∣∣R(b)
i (x, h)

∣∣ = Op

(√
log n+ log T +

√
Th7max

)
.

Proof of Proposition S.5. Simple algebra yields that

√
Th
{
m̂i,h(x)−mi(x)

}
=
√
Th

Qm,∗
i (x, h)

Q∗i (x, h)
+R

(a)
i (x, h),

where R
(a)
i (x, h) = R

(a)
i,1 (x, h) + . . .+R

(a)
i,6 (x, h) with

R
(a)
i,1 (x, h) =

√
ThQm,∗

i (x, h)
{ 1

Qi(x, h)
− 1

Q∗i (x, h)

}
R

(a)
i,2 (x, h) =

√
Th

Qm
i (x, h)−Qm,∗

i (x, h)

Qi(x, h)

R
(a)
i,3 (x, h) =

√
Th

Qε
i (x, h)

Qi(x, h)

R
(a)
i,4 (x, h) = −

√
Th

Qfe
i (x, h)

Qi(x, h)

10



as well as R
(a)
i,5 (x, h) = −

√
Th{mi+εi} and R

(a)
i,6 (x, h) =

√
Th{m(i)

+ε
(i)}. To complete

the proof, we show that

max
1≤i≤n

max
(x,h)∈GT

∣∣R(a)
i,` (x, h)

∣∣ = Op

(√
log n+ log T

)
(S.22)

for 1 ≤ ` ≤ 6: By standard bias calculations, we obtain that

max
1≤i≤n

max
(x,h)∈GT

∣∣Qm,∗
i (x, h)

∣∣ = O(hmax) (S.23)

max
1≤i≤n

max
(x,h)∈GT

∣∣Q∗i (x, h)−
{
κ2(x, h)κ0(x, h)− κ1(x, h)2

}
f 2
i (x)

∣∣ = O(hmax), (S.24)

where under our assumptions, the term Q∗∗i (x, h) = {κ2(x, h)κ0(x, h)−κ1(x, h)2}f 2
i (x)

is bounded away from zero and infinity uniformly over i and (x, h), that is, 0 <

c ≤ Q∗∗i (x, h) ≤ C < ∞ with some constants c and C that are independent of

i and (x, h). With the help of these observations and Lemmas S.3 and S.4, it is

straightforward to derive (S.22) for 1 ≤ ` ≤ 4. Next, note that max1≤i≤n |m
(i)| ≤

max1≤i≤n |mi| and max1≤i≤n |ε
(i)| ≤ max1≤i≤n |εi|. Arguments similar to but simpler

than those for Proposition S.1 yield that max1≤i≤n |mi| = Op(
√
{log n+ log T}/T )

and max1≤i≤n |εi| = Op(
√
{log n+ log T}/T ). From this, (S.22) immediately follows

for ` = 5 and ` = 6.

Proof of Proposition S.6. Straightforward calculations yield that

√
Th
{
m̂i,h(x)−mi(x)

}
=
√
Th5

κ(x, h)m′′i (x)

2
+R

(b)
i (x, h),

where R
(b)
i (x, h) = R

(b)
i,1(x, h) + . . .+R

(b)
i,5(x, h) with

R
(b)
i,1(x, h) =

√
Th
{Qm

i (x, h)

Qi(x, h)
− h2κ(x, h)m′′i (x)

2

}
and R

(b)
i,` (x, h) = R

(a)
i,`+1(x, h) for 2 ≤ ` ≤ 5. In order to prove Proposition S.6, it suffices

to show that

max
1≤i≤n

max
(x,h)∈GT

∣∣R(b)
i,1(x, h)

∣∣ = Op

(√
Th7max

)
+ op

(√
log n+ log T

)
(S.25)

max
1≤i≤n

max
(x,h)∈GT

∣∣R(b)
i,` (x, h)

∣∣ = Op

(√
log n+ log T

)
(S.26)

for 2 ≤ ` ≤ 5. (S.26) has already been verified in the proof of Proposition S.5. To

prove (S.25), we make use of the following two facts:

11



(a) From Lemma S.3 and (S.24), it follows that

max
1≤i≤n

max
(x,h)∈GT

√
Th
∣∣Qi(x, h)−Q∗∗i (x, h)

∣∣ = Op

(√
log n+ log T +

√
Th3max

)
(S.27)

with Q∗∗i (x, h) = {κ2(x, h)κ0(x, h)−κ1(x, h)2}f 2
i (x). As already noted in the proof

of Proposition S.5, the term Q∗∗i (x, h) is bounded away from zero and infinity

uniformly over i and (x, h).

(b) A second-order Taylor expansion of mi yields that

√
ThQm

i (x, h) =
√
ThQm,∗∗

i (x, h) +Rm
i (x, h), (S.28)

where

Qm,∗∗
i (x, h) = h2

m′′i (x)f 2
i (x)

2

[
κ2(x, h)2 − κ1(x, h)κ3(x, h)

]
.

The remainder term Rm
i (x, h) has the form Rm

i (x, h) = Rm
i,1(x, h) + Rm

i,2(x, h),

where

Rm
i,1(x, h) =

√
Th5

m′′i (x)

2

{[
Si,2(x, h)2 − Si,1(x, h)Si,3(x, h)

]
−
[
κ2(x, h)2 − κ1(x, h)κ3(x, h)

]
f 2
i (x)

}
Rm
i,2(x, h) =

√
Th5

2T

T∑
t=1

Kh(Xit − x)
[
Si,2(x, h)−

(Xit − x
h

)
Si,1(x, h)

]
×
{
m′′i (ξit)−m′′i (x)

}(Xit − x
h

)2
with ξit denoting an intermediate point between Xit and x. By Lemma S.2 and

standard bias calculations, we obtain that

max
1≤i≤n

max
(x,h)∈GT

∣∣Rm
i,1(x, h)

∣∣ = Op

(
h2max

√
log n+ log T +

√
Th7max

)
. (S.29)

As m′′i is Lipschitz continuous by (C6), we further get that |Rm
i,2(x, h)| ≤ C

√
Th7

{Si,2(x, h)2 + S+
i,1(x, h)S+

i,3(x, h)}. Applying Lemma S.2 together with standard

bias calculations to this upper bound, we can infer that

max
1≤i≤n

max
(x,h)∈GT

∣∣Rm
i,2(x, h)

∣∣ = Op

(
h3max

√
log n+ log T +

√
Th7max

)
. (S.30)

Finally, by combining (S.29) and (S.30), the remainder term Rm
i (x, h) is seen to

have the property that

max
1≤i≤n

max
(x,h)∈GT

∣∣Rm
i (x, h)

∣∣ = Op

(
h2max

√
log n+ log T +

√
Th7max

)
. (S.31)
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We now proceed as follows: Simple algebra yields that

√
Th
(Qm

i (x, h)

Qi(x, h)
− Qm,∗∗

i (x, h)

Q∗∗i (x, h)

)
=
Rm
i (x, h)

Qi(x, h)
+
√
ThQm,∗∗

i (x, h)
{ 1

Qi(x, h)
− 1

Q∗∗i (x, h)

}
.

Since Qm,∗∗
i (x, h)/Q∗∗i (x, h) = h2κ(x, h)m′′i (x)/2, this implies that

R
(b)
i,1(x, h) =

Rm
i (x, h)

Qi(x, h)
+
√
ThQm,∗∗

i (x, h)
{ 1

Qi(x, h)
− 1

Q∗∗i (x, h)

}
.

Using this representation of R
(b)
i,1(x, h) together with (S.27), (S.31) and the fact that

Q∗∗i (x, h) is bounded away from zero and infinity uniformly over i and (x, h), it is

straightforward to verify (S.25).

The final result of this section is concerned with the normalization term

ν̂ij(x, h) =

{
σ̂2
i,h

f̂i,h(x)
+

σ̂2
j,h

f̂j,h(x)

}
s(x, h), (S.32)

where s(x, h) = {
∫ (1−x)/h
−x/h K2(u)[κ2(x, h)−κ1(x, h)u]2du}/{κ0(x, h)κ2(x, h)−κ1(x, h)2}2

with κ`(x, h) =
∫ (1−x)/h
−x/h u`K(u)du for 0 ≤ ` ≤ 2, f̂i,h(x) = {κ0(x, h)T}−1

∑T
t=1Kh(Xit−

x) and σ̂2
i,h = T−1

∑T
t=1{Ŷ ∗it − m̂i,h(Xit)}2.

Proposition S.7. Let the conditions of Theorem 6.1 be satisfied. Then there exist

absolute constants 0 < cν ≤ Cν <∞ such that

min
1≤i≤j≤n

min
(x,h)∈GT

√
ν̂ij(x, h) ≥ cν + op(1)

max
1≤i≤j≤n

max
(x,h)∈GT

√
ν̂ij(x, h) ≤ Cν + op(1).

Proof of Proposition S.7. The proposition is a straightforward consequence of the

following three observations:

(a) Under our conditions, the term s(x, h) is bounded away from zero and infinity

uniformly over (x, h), that is, 0 < cs ≤ s(x, h) ≤ Cs < ∞ for some absolute

constants cs and Cs.

(b) It holds that

max
1≤i≤n

max
(x,h)∈GT

∣∣f̂i,h(x)− fi(x)
∣∣ = Op

(√ log n+ log T

Thmin

+ hmax

)
,

where the densities fi are uniformly bounded away from zero and infinity by (C2).
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(c) It holds that

σ̂2
i,h = σ2

i + bσi +Rσ
i,h with max

1≤i≤n
max

{h:(x,h)∈GT }
|Rσ

i,h| = op(1),

where bσi = E[(m
(i)
t +ε

(i)
t )2] and the error variances σ2

i are uniformly bounded away

from zero and infinity according to (C3). Note that 0 ≤ bσi ≤ Cb < ∞ for some

sufficiently large absolute constant Cb and that max1≤i≤n b
σ
i = o(1) in the case

that n tends to infinity as T →∞.

Observation (a) can be seen by straightforward arguments and (b) follows from Lemma

S.2 together with standard bias calculations. In order to prove (c), we write σ̂2
i,h =

σ2
i + bσi +Rσ

i,h with Rσ
i,h = Rσ

i,h,1 + . . .+Rσ
i,h,5, where

Rσ
i,h,1 =

1

T

T∑
t=1

{
ε2it − E

[
ε2it
]}

Rσ
i,h,2 =

1

T

T∑
t=1

{
(m

(i)
t + ε

(i)
t )2 − E

[
(m

(i)
t + ε

(i)
t )2

]}
Rσ
i,h,3 =

1

T

T∑
t=1

{
∆̂i,h(Xit)− (mi + εi) + (m

(i)
+ ε

(i)
)
}2

Rσ
i,h,4 = − 2

T

T∑
t=1

{
m

(i)
t + ε

(i)
t

}{
∆̂i,h(Xit)− (mi + εi) + (m

(i)
+ ε

(i)
)
}

Rσ
i,h,5 =

2

T

T∑
t=1

εit
{

∆̂i,h(Xit)− (mi + εi)− (m
(i)
t + ε

(i)
t ) + (m

(i)
+ ε

(i)
)
}

with the shorthand ∆̂i,h(Xit) = mi(Xit)−m̂i,h(Xit). A simplified version of Proposition

S.1 yields that

max
1≤i≤n

∣∣∣ 1

T

T∑
t=1

{
ε2it − E

[
ε2it
]}∣∣∣ = Op

(√ log n+ log T

T

)
. (S.33)

By (C1) and Theorem 5.1(a) in Bradley (2005), the collection of random variables

Ai,T = {(εit, ε(i)t ,m
(i)
t ) : 1 ≤ t ≤ T} is strongly mixing for any i and T , where the

mixing coefficients αi,T (`) of Ai,T are such that αi,T (`) ≤ nα(`) with α(`) decaying to

zero exponentially fast. For this reason, we can once again apply a simplified version

of Proposition S.1 to obtain that

max
1≤i≤n

∣∣∣ 1

T

T∑
t=1

εit
(
m

(i)
t + ε

(i)
t

)∣∣∣ = Op

(√ log n+ log T

T

)
(S.34)
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max
1≤i≤n

∣∣∣ 1

T

T∑
t=1

{
(m

(i)
t + ε

(i)
t )2 − E

[
(m

(i)
t + ε

(i)
t )2

]}∣∣∣ = Op

(√ log n+ log T

T

)
. (S.35)

Moreover, slightly modifying the proof of Proposition S.6, we can infer that

max
1≤i≤n

max
(x,h)∈GT

∣∣∆̂i,h(x)
∣∣ = Op

(√ log n+ log T

Thmin

+ h2max

)
. (S.36)

Finally, as already seen in the proof of Proposition S.5,

max
1≤i≤n

∣∣mi + εi
∣∣ = Op

(√ log n+ log T

T

)
(S.37)

max
1≤i≤n

∣∣m(i)
+ ε

(i)∣∣ = Op

(√ log n+ log T

T

)
. (S.38)

With the help of (S.33)–(S.38), it is not difficult to infer that

max
1≤i≤n

max
{h:(x,h)∈GT }

|Rσ
i,h,`| = op(1) (S.39)

for 1 ≤ ` ≤ 5, which implies (c).

S.4 Proof of Theorem 6.1

Proof of (6.2). From Proposition S.5, it follows that

√
Th
{
m̂i,h(x)− m̂j,h(x)

}
=
√
Th
{
mi(x)−mj(x)

}
+
√
Th
{Qm,∗

i (x, h)

Q∗i (x, h)
−
Qm,∗
j (x, h)

Q∗j(x, h)

}
+Rij(x, h),

where max1≤i≤j≤n max(x,h)∈GT |Rij(x, h)| = Op(
√

log n+ log T ). Since Qm,∗
i (x, h) =

Qm,∗
j (x, h) and Q∗i (x, h) = Q∗j(x, h) for any two time series i and j in the same group

Gk under our conditions, this implies that

max
1≤k≤K0

max
i,j∈Gk

max
(x,h)∈GT

√
Th
∣∣m̂i,h(x)− m̂j,h(x)

∣∣ = Op

(√
log n+ log T

)
. (S.40)

Moreover, by Proposition S.7,

min
1≤i≤j≤n

min
(x,h)∈GT

√
ν̂ij(x, h) ≥ cν + op(1),
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where cν > 0 is a sufficiently small absolute constant. As a result, we arrive at

max
1≤k≤K0

max
i,j∈Gk

d̂ij ≤ max
1≤k≤K0

max
i,j∈Gk

{
max

(x,h)∈GT
|ψ̂ij(x, h)|

}

≤
max

1≤k≤K0

max
i,j∈Gk

max
(x,h)∈GT

√
Th
∣∣m̂i,h(x)− m̂j,h(x)

∣∣
min

1≤i≤j≤n
min

(x,h)∈GT

√
ν̂ij(x, h)

= Op

(√
log n+ log T

)
,

which completes the proof.

Proof of (6.3). By Proposition S.6, it holds that

√
Th
{
m̂i,h(x)− m̂j,h(x)

}
=
√
Th
{
mi(x)−mj(x)

}
+
√
Th5

κ(x, h)

2

{
m′′i (x)−m′′j (x)

}
+Rij(x, h),

where max1≤i≤j≤n max(x,h)∈GT |Rij(x, h)| = Op(
√

log n+ log T +
√
Th7max). With the

help of this expansion, we can infer that

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

max
(x,h)∈GT

√
Th
∣∣m̂i,h(x)− m̂j,h(x)

∣∣
≥ min

1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

max
(x,h)∈GT

√
Th
∣∣mi(x)−mj(x)

∣∣
− max

1≤i≤j≤n
max

(x,h)∈GT

√
Th5
|κ(x, h)|

2

∣∣m′′i (x)−m′′j (x)
∣∣

− max
1≤i≤j≤n

max
(x,h)∈GT

∣∣Rij(x, h)
∣∣

= min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

max
(x,h)∈GT

√
Th
∣∣mi(x)−mj(x)

∣∣
+Op

(√
Th5max +

√
log n+ log T

)
≥ c
√
Thmax + op

(√
Thmax

)
,

where c > 0 is a sufficiently small absolute constant. Moreover, by Proposition S.7,

max
1≤i≤j≤n

max
(x,h)∈GT

√
ν̂ij(x, h) ≤ Cν + op(1)

with Cν > 0 being an absolute constant that is chosen sufficiently large. As a conse-
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quence, we get that

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

{
max

(x,h)∈GT
|ψ̂ij(x, h)|

}

≥
min

1≤k<k′≤K0

min
i∈Gk, j∈Gk′

max
(x,h)∈GT

√
Th
∣∣m̂i,h(x)− m̂j,h(x)

∣∣
max

1≤i≤j≤n
max

(x,h)∈GT

√
ν̂ij(x, h)

≥ c0
√
Thmax + op

(√
Thmax

)
(S.41)

with some sufficiently small absolute constant c0. Since λ(2hmin) = O(
√

log T ) by the

conditions on the bandwidth hmin in (C8), we finally obtain that

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij ≥ min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

{
max

(x,h)∈GT
|ψ̂ij(x, h)|

}
− λ(2hmin)

= min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

{
max

(x,h)∈GT
|ψ̂ij(x, h)|

}
+O(

√
log T )

≥ c0
√
Thmax + op

(√
Thmax

)
,

the last line following from (S.41).
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