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In this paper, we develop new multiscale methods to test qualitative hypotheses
about the function m in the nonparametric regression model Yt,T = m(t/T ) + εt
with time series errors εt. In time series applications, m represents a nonpara-
metric time trend. Practitioners are often interested in whether the trend m has
certain shape properties. For example, they would like to know whether m is
constant or whether it is increasing/decreasing in certain time regions. Our mul-
tiscale methods allow to test for such shape properties of the trend m. In order
to perform the methods, we require an estimator of the long-run error variance
σ2 =

∑∞
`=−∞Cov(ε0, ε`). We propose a new difference-based estimator of σ2 for

the case that {εt} is an AR(p) process. In the technical part of the paper, we
derive asymptotic theory for the proposed multiscale test and the estimator of
the long-run error variance. The theory is complemented by a simulation study
and an empirical application to climate data.
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1 Introduction

The analysis of time trends is an important aspect of many time series applications.

In a wide range of situations, practitioners are particularly interested in certain shape

properties of the trend. They raise questions such as the following: Does the observed

time series have a trend at all? If so, is the trend increasing/decreasing in certain time

regions? Can one identify the regions of increase/decrease? As an example, consider

the time series plotted in Figure 1 which shows the yearly mean temperature in Central

England from 1659 to 2017. Climatologists are very much interested in learning about
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Figure 1: Yearly mean temperature in Central England from 1659 to 2017 measured in ◦C.

the trending behaviour of temperature time series like this; see e.g. Benner (1999) and

Rahmstorf et al. (2017). Among other things, they would like to know whether there

is an upward trend in the Central England mean temperature towards the end of the

sample as visual inspection might suggest.

In this paper, we develop new methods to test for certain shape properties of a nonpara-

metric time trend. We in particular construct a multiscale test which allows to identify

local increases/decreases of the trend function. We develop our test in the context of

the following model setting: We observe a time series {Yt,T : 1 ≤ t ≤ T} of the form

Yt,T = m
( t
T

)
+ εt (1.1)

for 1 ≤ t ≤ T , where m : [0, 1] → R is an unknown nonparametric regression function

and the error terms εt form a stationary time series process with E[εt] = 0. In a time

series context, the design points t/T represent the time points of observation and m is

a nonparametric time trend. As usual in nonparametric regression, we let the function

m depend on rescaled time t/T rather than on real time t. A detailed description of

model (1.1) is provided in Section 2.

Our multiscale test is developed step by step in Section 3. Roughly speaking, the

procedure can be outlined as follows: Let H0(u, h) be the hypothesis that m is constant

in the time window [u − h, u + h] ⊆ [0, 1], where u is the midpoint and 2h the size

of the window. In a first step, we set up a test statistic ŝT (u, h) for the hypothesis

H0(u, h). In a second step, we aggregate the statistics ŝT (u, h) for a large number

of different time windows [u − h, u + h]. We thereby construct a multiscale statistic

which allows to test the hypothesis H0(u, h) simultaneously for many time windows

[u−h, u+h]. In the technical part of the paper, we derive the theoretical properties of

the resulting multiscale test. To do so, we come up with a proof strategy which combines

strong approximation results for dependent processes with anti-concentration bounds

for Gaussian random vectors. This strategy is of interest in itself and may be applied

to other multiscale test problems for dependent data. As shown by our theoretical

analysis, our multiscale test is a rigorous level-α-test of the overall null hypothesis
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H0 that H0(u, h) is simultaneously fulfilled for all time windows [u − h, u + h] under

consideration. Moreover, for a given significance level α ∈ (0, 1), the test allows to

make simultaneous confidence statements of the following form: We can claim, with

statistical confidence 1 − α, that there is an increase/decrease in the trend m on all

time windows [u − h, u + h] for which the hypothesis H0(u, h) is rejected. Hence, the

test allows to identify, with a pre-specified statistical confidence, time regions where

the trend m is increasing/decreasing.

For independent data, multiscale tests have been developed in a variety of different

contexts in recent years. In the regression context, Chaudhuri and Marron (1999, 2000)

introduced the so-called SiZer method which has been extended in various directions; see

e.g. Hannig and Marron (2006) where a refined distribution theory for SiZer is derived.

Hall and Heckman (2000) constructed a multiscale test on monotonicity of a regression

function. Dümbgen and Spokoiny (2001) developed a multiscale approach which works

with additively corrected supremum statistics and derived theoretical results in the

context of a continuous Gaussian white noise model. Rank-based multiscale tests for

nonparametric regression were proposed in Dümbgen (2002) and Rohde (2008). More

recently, Proksch et al. (2018) have constructed multiscale tests for inverse regression

models. In the context of density estimation, multiscale tests have been investigated

in Dümbgen and Walther (2008), Rufibach and Walther (2010), Schmidt-Hieber et al.

(2013) and Eckle et al. (2017) among others.

Whereas a large number of multiscale tests for independent data have been developed

in recent years, multiscale tests for dependent data are much rarer. Most notably,

there are some extensions of the SiZer approach to a time series context. Park et al.

(2004) and Rondonotti et al. (2007) have introduced SiZer methods for dependent data

which can be used to find local increases/decreases of a trend and which may thus be

regarded as an alternative to our multiscale test. However, these SiZer methods are

mainly designed for data exploration rather than for rigorous statistical inference. Our

multiscale method, in contrast, is a rigorous level-α-test of the hypothesis H0 which

allows to make simultaneous confidence statements about the time regions where the

trend m is increasing/decreasing. Some theoretical results for dependent SiZer methods

have been derived in Park et al. (2009), but only under a quite severe restriction: Only

time windows [u − h, u + h] with window sizes or scales h are taken into account that

remain bounded away from zero as the sample size T grows. Scales h that converge to

zero as T increases are excluded. This effectively means that only large time windows

[u − h, u + h] are taken into consideration. Our theory, in contrast, allows to simul-

taneously consider scales h of fixed size and scales h that converge to zero at various

different rates. We are thus able to take into account time windows of many different

sizes.

Our multiscale approach is also related to Wavelet-based methods: Similar to the latter,

it takes into account different locations u and resolution levels or scales h simultaneously.
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However, while our multiscale approach is designed to test for local increases/decreases

of a nonparametric trend, Wavelet methods are commonly used for other purposes.

Among other things, they are employed for estimating/reconstructing nonparametric

regression curves [see e.g. Donoho et al. (1995) or Von Sachs and MacGibbon (2000)]

and for change point detection [see e.g. Cho and Fryzlewicz (2012)].

The test statistic of our multiscale method depends on the long-run error variance

σ2 =
∑∞

`=−∞Cov(ε0, ε`), which is usually unknown in practice. To carry out our

multiscale test, we thus require an estimator of σ2. Indeed, such an estimator is required

for virtually all inferential procedures in the context of model (1.1). Hence, the problem

of estimating σ2 in model (1.1) is of broader interest and has received a lot of attention in

the literature; see Müller and Stadtmüller (1988), Herrmann et al. (1992) and Hall and

Van Keilegom (2003) among many others. In Section 4, we discuss several estimators

of σ2 which are valid under different conditions on the error process {εt}. Most notably,

we introduce a new difference-based estimator of σ2 for the case that {εt} is an AR(p)

process. This estimator improves on existing methods in several respects.

The methodological and theoretical analysis of the paper is complemented by a simu-

lation study in Section 5 and an empirical application in Section 6. In the simulation

study, we examine the finite sample properties of our multiscale test and compare it to

the dependent SiZer methods introduced in Park et al. (2004) and Rondonotti et al.

(2007). Moreover, we investigate the small sample performance of our estimator of σ2

in the AR(p) case and compare it to the estimator of Hall and Van Keilegom (2003).

In Section 6, we use our methods to analyse the temperature data from Figure 1.

2 The model

We now describe the model setting in detail which was briefly outlined in the Intro-

duction. We observe a time series {Yt,T : 1 ≤ t ≤ T} of length T which satisfies the

nonparametric regression equation

Yt,T = m
( t
T

)
+ εt (2.1)

for 1 ≤ t ≤ T . Here, m is an unknown nonparametric function defined on [0, 1] and

{εt : 1 ≤ t ≤ T} is a zero-mean stationary error process. For simplicity, we restrict

attention to equidistant design points xt = t/T . However, our methods and theory can

also be carried over to non-equidistant designs. The stationary error process {εt} is

assumed to have the following properties:

(C1) The variables εt allow for the representation εt = G(. . . , ηt−1, ηt, ηt+1, . . .), where

ηt are i.i.d. random variables and G : RZ → R is a measurable function.

(C2) It holds that ‖εt‖q <∞ for some q > 4, where ‖εt‖q = (E|εt|q)1/q.
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Following Wu (2005), we impose conditions on the dependence structure of the error

process {εt} in terms of the physical dependence measure dt,q = ‖εt − ε′t‖q, where

ε′t = G(. . . , η−1, η
′
0, η1, . . . , ηt−1, ηt, ηt+1, . . .) with {η′t} being an i.i.d. copy of {ηt}. In

particular, we assume the following:

(C3) Define Θt,q =
∑
|s|≥t ds,q for t ≥ 0. It holds that Θt,q = O(t−τq(log t)−A), where

A > 2
3
(1/q + 1 + τq) and τq = {q2 − 4 + (q − 2)

√
q2 + 20q + 4}/8q.

The conditions (C1)–(C3) are fulfilled by a wide range of stationary processes {εt}. As

a first example, consider linear processes of the form εt =
∑∞

i=0 ciηt−i with ‖εt‖q <∞,

where ci are absolutely summable coefficients and ηt are i.i.d. innovations with E[ηt] = 0

and ‖ηt‖q < ∞. Trivially, (C1) and (C2) are fulfilled in this case. Moreover, if |ci| =

O(ρi) for some ρ ∈ (0, 1), then (C3) is easily seen to be satisfied as well. As a special

case, consider an ARMA process {εt} of the form εt −
∑p

i=1 aiεt−i = ηt +
∑r

j=1 bjηt−j

with ‖εt‖q <∞, where a1, . . . , ap and b1, . . . , br are real-valued parameters. As before,

we let ηt be i.i.d. innovations with E[ηt] = 0 and ‖ηt‖q < ∞. Moreover, as usual, we

suppose that the complex polynomials A(z) = 1−
∑p

j=1 ajz
j and B(z) = 1 +

∑r
j=1 bjz

j

do not have any roots in common. If A(z) does not have any roots inside the unit

disc, then the ARMA process {εt} is stationary and causal. Specifically, it has the

representation εt =
∑∞

i=0 ciηt−i with |ci| = O(ρi) for some ρ ∈ (0, 1), implying that

(C1)–(C3) are fulfilled. The results in Wu and Shao (2004) show that condition (C3)

(as well as the other two conditions) is not only fulfilled for linear time series processes

but also for a variety of non-linear processes.

3 The multiscale test

In this section, we introduce our multiscale method to test for local increases/decreases

of the trend function m and analyse its theoretical properties. We assume throughout

that m is continuously differentiable on [0, 1]. The test problem under consideration

can be formulated as follows: Let H0(u, h) be the hypothesis that m is constant on

the interval [u − h, u + h]. Since m is continuously differentiable, H0(u, h) can be

reformulated as

H0(u, h) : m′(w) = 0 for all w ∈ [u− h, u+ h],

where m′ is the first derivative of m. We want to test the hypothesis H0(u, h) not only

for a single interval [u− h, u+ h] but simultaneously for many different intervals. The

overall null hypothesis is thus given by

H0 : The hypothesis H0(u, h) holds true for all (u, h) ∈ GT ,
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where GT is some large set of points (u, h). The details on the set GT are discussed at

the end of Section 3.1 below. Note that GT in general depends on the sample size T ,

implying that the null hypothesis H0 = H0,T depends on T as well. We thus consider

a sequence of null hypotheses {H0,T : T = 1, 2, . . .} as T increases. For simplicity of

notation, we however suppress the dependence of H0 on T . In Sections 3.1 and 3.2,

we step by step construct the multiscale test of the hypothesis H0. The theoretical

properties of the test are analysed in Section 3.3.

3.1 Construction of the multiscale statistic

We first construct a test statistic for the hypothesis H0(u, h), where [u− h, u + h] is a

given interval. To do so, we consider the kernel average

ψ̂T (u, h) =
T∑
t=1

wt,T (u, h)Yt,T ,

where wt,T (u, h) is a kernel weight and h is the bandwidth. In order to avoid boundary

issues, we work with a local linear weighting scheme. We in particular set

wt,T (u, h) =
Λt,T (u, h)

{
∑T

t=1 Λt,T (u, h)2}1/2
, (3.1)

where

Λt,T (u, h) = K
( t
T
− u
h

)[
ST,0(u, h)

( t
T
− u
h

)
− ST,1(u, h)

]
,

ST,`(u, h) = (Th)−1
∑T

t=1K(
t
T
−u
h

)(
t
T
−u
h

)` for ` = 0, 1, 2 and K is a kernel function with

the following properties:

(C4) The kernel K is non-negative, symmetric about zero and integrates to one. More-

over, it has compact support [−1, 1] and is Lipschitz continuous, that is, |K(v)−
K(w)| ≤ C|v − w| for any v, w ∈ R and some constant C > 0.

The kernel average ψ̂T (u, h) is nothing else than a rescaled local linear estimator of the

derivative m′(u) with bandwidth h.3

A test statistic for the hypothesis H0(u, h) is given by the normalized kernel average

ψ̂T (u, h)/σ̂, where σ̂2 is an estimator of the long-run variance σ2 =
∑∞

`=−∞Cov(ε0, ε`)

of the error process {εt}. The problem of estimating σ2 is discussed in detail in Section

4. For the time being, we suppose that σ̂2 is an estimator with reasonable theoretical

properties. Specifically, we assume that σ̂2 = σ2 +op(ρT ) with ρT = o(1/ log T ). This is

3Alternatively to the local linear weights defined in (3.1), we could also work with the weights

wt,T (u, h) = K ′(h−1[u − t/T ])/{
∑T

t=1K
′(h−1[u − t/T ])2}1/2, where the kernel function K is as-

sumed to be differentiable and K ′ is its derivative. We however prefer to use local linear weights as
these have superior theoretical properties at the boundary.
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a fairly weak condition which is in particular satisfied by the estimators of σ2 analysed in

Section 4. The kernel weights wt,T (u, h) are chosen such that in the case of independent

errors εt, Var(ψ̂T (u, h)) = σ2 for any location u and bandwidth h, where the long-run

error variance σ2 simplifies to σ2 = Var(εt). In the more general case that the error

terms satisfy the weak dependence conditions from Section 2, Var(ψ̂T (u, h)) = σ2+o(1)

for any u and h under consideration. Hence, for sufficiently large sample sizes T , the

test statistic ψ̂T (u, h)/σ̂ has approximately unit variance.

We now combine the test statistics ψ̂T (u, h)/σ̂ for a wide range of different locations

u and bandwidths or scales h. There are different ways to do so, leading to different

types of multiscale statistics. Our multiscale statistic is defined as

Ψ̂T = max
(u,h)∈GT

{∣∣∣ ψ̂T (u, h)

σ̂

∣∣∣− λ(h)
}
, (3.2)

where λ(h) =
√

2 log{1/(2h)} and GT is the set of points (u, h) that are taken into

consideration. The details on the set GT are given below. As can be seen, the statis-

tic Ψ̂T does not simply aggregate the individual statistics ψ̂T (u, h)/σ̂ by taking the

supremum over all points (u, h) ∈ GT as in more traditional multiscale approaches. We

rather calibrate the statistics ψ̂T (u, h)/σ̂ that correspond to the bandwidth h by sub-

tracting the additive correction term λ(h). This approach was pioneered by Dümbgen

and Spokoiny (2001) and has been used in numerous other studies since then; see e.g.

Dümbgen (2002), Rohde (2008), Dümbgen and Walther (2008), Rufibach and Walther

(2010), Schmidt-Hieber et al. (2013) and Eckle et al. (2017).

To see the heuristic idea behind the additive correction λ(h), consider for a moment

the uncorrected statistic

Ψ̂T,uncorrected = max
(u,h)∈GT

∣∣∣ ψ̂T (u, h)

σ̂

∣∣∣
and suppose that the hypothesis H0(u, h) is true for all (u, h) ∈ GT . For simplicity,

assume that the errors εt are i.i.d. normally distributed and neglect the estimation

error in σ̂, that is, set σ̂ = σ. Moreover, suppose that the set GT only consists of the

points (uk, h`) = ((2k− 1)h`, h`) with k = 1, . . . , b1/2h`c and ` = 1, . . . , L. In this case,

we can write

Ψ̂T,uncorrected = max
1≤`≤L

max
1≤k≤b1/2h`c

∣∣∣ ψ̂T (uk, h`)

σ

∣∣∣.
Under our simplifying assumptions, the statistics ψ̂T (uk, h`)/σ with k = 1, . . . , b1/2h`c
are independent and standard normal for any given bandwidth h`. Since the maximum

over b1/2hc independent standard normal random variables is λ(h)+op(1) as h→ 0, we

obtain that maxk ψ̂T (uk, h`)/σ is approximately of size λ(h`) for small bandwidths h`.

As λ(h) → ∞ for h → 0, this implies that maxk ψ̂T (uk, h`)/σ tends to be much larger
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in size for small than for large bandwidths h`. As a result, the stochastic behaviour of

the uncorrected statistic Ψ̂T,uncorrected tends to be dominated by the statistics ψ̂T (uk, h`)

corresponding to small bandwidths h`. The additively corrected statistic Ψ̂T , in con-

trast, puts the statistics ψ̂T (uk, h`) corresponding to different bandwidths h` on a more

equal footing, thus counteracting the dominance of small bandwidth values.

The multiscale statistic Ψ̂T simultaneously takes into account all locations u and band-

widths h with (u, h) ∈ GT . Throughout the paper, we suppose that GT is some subset

of GfullT = {(u, h) : u = t/T for some 1 ≤ t ≤ T and h ∈ [hmin, hmax]}, where hmin and

hmax denote some minimal and maximal bandwidth value, respectively. For our theory

to work, we require the following conditions to hold:

(C5) |GT | = O(T θ) for some arbitrarily large but fixed constant θ > 0, where |GT |
denotes the cardinality of GT .

(C6) hmin � T−(1−
2
q
) log T , that is, hmin/{T−(1−

2
q
) log T} → ∞ with q > 4 defined in

(C2) and hmax < 1/2.

According to (C5), the number of points (u, h) in GT should not grow faster than T θ

for some arbitrarily large but fixed θ > 0. This is a fairly weak restriction as it allows

the set GT to be extremely large compared to the sample size T . For example, we may

work with the set

GT =
{

(u, h) : u = t/T for some 1 ≤ t ≤ T and h ∈ [hmin, hmax]

with h = t/T for some 1 ≤ t ≤ T
}
,

which contains more than enough points (u, h) for most practical applications. Condi-

tion (C6) imposes some restrictions on the minimal and maximal bandwidths hmin and

hmax. These conditions are fairly weak, allowing us to choose the bandwidth window

[hmin, hmax] extremely large. The lower bound on hmin depends on the parameter q

defined in (C2) which specifies the number of existing moments for the error terms εt.

As one can see, we can choose hmin to be of the order T−1/2 for any q > 4. Hence, we

can let hmin converge to 0 very quickly even if only the first few moments of the error

terms εt exist. If all moments exist (i.e. q = ∞), hmin may converge to 0 almost as

quickly as T−1 log T . Furthermore, the maximal bandwidth hmax is not even required

to converge to 0, which implies that we can pick it very large.

Remark 3.1. The above construction of the multiscale statistic can be easily adapted

to hypotheses other than H0. To do so, one simply needs to replace the kernel weights

wt,T (u, h) defined in (3.1) by appropriate versions which are suited to test the hypothesis

of interest. For example, if one wants to test for local convexity/concavity of m, one may

define the kernel weights wt,T (u, h) such that the kernel average ψ̂T (u, h) is a (rescaled)

estimator of the second derivative of m at the location u with bandwidth h.
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3.2 The test procedure

In order to formulate a test for the null hypothesis H0, we still need to specify a critical

value. To do so, we define the statistic

ΦT = max
(u,h)∈GT

{∣∣∣φT (u, h)

σ

∣∣∣− λ(h)
}
, (3.3)

where φT (u, h) =
∑T

t=1wt,T (u, h)σZt and Zt are independent standard normal random

variables. The statistic ΦT can be regarded as a Gaussian version of the test statistic Ψ̂T

under the null hypothesis H0. Let qT (α) be the (1−α)-quantile of ΦT . Importantly, the

quantile qT (α) can be computed by Monte Carlo simulations and can thus be regarded

as known. Our multiscale test of the hypothesis H0 is now defined as follows: For a

given significance level α ∈ (0, 1), we reject H0 if Ψ̂T > qT (α).

3.3 Theoretical properties of the test

In order to examine the theoretical properties of our multiscale test, we introduce the

auxiliary multiscale statistic

Φ̂T = max
(u,h)∈GT

{∣∣∣ φ̂T (u, h)

σ̂

∣∣∣− λ(h)
}

(3.4)

with φ̂T (u, h) = ψ̂T (u, h) − E[ψ̂T (u, h)] =
∑T

t=1wt,T (u, h)εt. The following result is

central to the theoretical analysis of our multiscale test. According to it, the (known)

quantile qT (α) of the Gaussian statistic ΦT defined in Section 3.2 can be used as a proxy

for the (1− α)-quantile of the multiscale statistic Φ̂T .

Theorem 3.1. Let (C1)–(C6) be fulfilled and assume that σ̂2 = σ2 + op(ρT ) with

ρT = o(1/ log T ). Then

P
(
Φ̂T ≤ qT (α)

)
= (1− α) + o(1).

A full proof of Theorem 3.1 is given in the Supplementary Material. We here shortly

outline the proof strategy, which splits up into two main steps. In the first, we replace

the statistic Φ̂T for each T ≥ 1 by a statistic Φ̃T with the same distribution as Φ̂T and

the property that ∣∣Φ̃T − ΦT

∣∣ = op(δT ), (3.5)

where δT = o(1) and the Gaussian statistic ΦT is defined in Section 3.2. We thus replace

the statistic Φ̂T by an identically distributed version which is close to a Gaussian statistic

whose distribution is known. To do so, we make use of strong approximation theory

for dependent processes as derived in Berkes et al. (2014). In the second step, we show
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that

sup
x∈R

∣∣P(Φ̃T ≤ x)− P(ΦT ≤ x)
∣∣ = o(1), (3.6)

which immediately implies the statement of Theorem 3.1. Importantly, the convergence

result (3.5) is not sufficient for establishing (3.6). Put differently, the fact that Φ̃T can

be approximated by ΦT in the sense that Φ̃T − ΦT = op(δT ) does not imply that the

distribution of Φ̃T is close to that of ΦT in the sense of (3.6). For (3.6) to hold, we

additionally require the distribution of ΦT to have some sort of continuity property.

Specifically, we prove that

sup
x∈R

P
(
|ΦT − x| ≤ δT

)
= o(1), (3.7)

which says that ΦT does not concentrate too strongly in small regions of the form

[x − δT , x + δT ]. The main tool for verifying (3.7) are anti-concentration results for

Gaussian random vectors as derived in Chernozhukov et al. (2015). The claim (3.6) can

be proven by using (3.5) together with (3.7), which in turn yields Theorem 3.1.

The main idea of our proof strategy is to combine strong approximation theory with

anti-concentration bounds for Gaussian random vectors to show that the quantiles of the

multiscale statistic Φ̂T can be proxied by those of a Gaussian analogue. This strategy is

quite general in nature and may be applied to other multiscale problems for dependent

data. Strong approximation theory has also been used to investigate multiscale tests

for independent data; see e.g. Schmidt-Hieber et al. (2013). However, it has not been

combined with anti-concentration results to approximate the quantiles of the multiscale

statistic. As an alternative to strong approximation theory, Eckle et al. (2017) and

Proksch et al. (2018) have recently used Gaussian approximation results derived in

Chernozhukov et al. (2014, 2017) to analyse multiscale tests for independent data.

Even though it might be possible to adapt these techniques to the case of dependent

data, this is not trivial at all as part of the technical arguments and the Gaussian

approximation tools strongly rely on the assumption of independence.

We now investigate the theoretical properties of our multiscale test with the help of

Theorem 3.1. The first result is an immediate consequence of Theorem 3.1. It says that

the test has the correct (asymptotic) size.

Proposition 3.1. Let the conditions of Theorem 3.1 be satisfied. Under the null hy-

pothesis H0, it holds that

P
(
Ψ̂T ≤ qT (α)

)
= (1− α) + o(1).

The second result characterizes the power of the multiscale test against local alterna-

tives. To formulate it, we consider any sequence of functions m = mT with the following
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property: There exists (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1] such that

m′T (w) ≥ cT

√
log T

Th3
for all w ∈ [u− h, u+ h], (3.8)

where {cT} is any sequence of positive numbers with cT →∞. Alternatively to (3.8), we

may also assume that −m′T (w) ≥ cT
√

log T/(Th3) for all w ∈ [u−h, u+h]. According

to the following result, our test has asymptotic power 1 against local alternatives of the

form (3.8).

Proposition 3.2. Let the conditions of Theorem 3.1 be satisfied and consider any

sequence of functions mT with the property (3.8). Then

P
(
Ψ̂T ≤ qT (α)

)
= o(1).

The proof of Proposition 3.2 can be found in the Supplementary Material. To formulate

the next result, we define

Π±T =
{
Iu,h = [u− h, u+ h] : (u, h) ∈ A±T

}
Π+
T =

{
Iu,h = [u− h, u+ h] : (u, h) ∈ A+

T and Iu,h ⊆ [0, 1]
}

Π−T =
{
Iu,h = [u− h, u+ h] : (u, h) ∈ A−T and Iu,h ⊆ [0, 1]

}
together with

A±T =
{

(u, h) ∈ GT :
∣∣∣ ψ̂T (u, h)

σ̂

∣∣∣ > qT (α) + λ(h)
}

A+
T =

{
(u, h) ∈ GT :

ψ̂T (u, h)

σ̂
> qT (α) + λ(h)

}
A−T =

{
(u, h) ∈ GT : − ψ̂T (u, h)

σ̂
> qT (α) + λ(h)

}
.

Π±T is the collection of intervals Iu,h = [u−h, u+h] for which the (corrected) test statistic

|ψ̂T (u, h)/σ̂| − λ(h) lies above the critical value qT (α), that is, for which our multiscale

test rejects the hypothesis H0(u, h). Π+
T and Π−T can be interpreted analogously but

take into account the sign of the statistic ψ̂T (u, h)/σ̂. With this notation at hand, we

consider the events

E±T =
{
∀Iu,h ∈ Π±T : m′(v) 6= 0 for some v ∈ Iu,h = [u− h, u+ h]

}
E+
T =

{
∀Iu,h ∈ Π+

T : m′(v) > 0 for some v ∈ Iu,h = [u− h, u+ h]
}

E−T =
{
∀Iu,h ∈ Π−T : m′(v) < 0 for some v ∈ Iu,h = [u− h, u+ h]

}
.

E±T (E+
T , E−T ) is the event that the function m is non-constant (increasing, decreasing)
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on all intervals Iu,h ∈ Π±T (Π+
T , Π−T ). More precisely, E±T (E+

T , E−T ) is the event that for

each interval Iu,h ∈ Π±T (Π+
T , Π−T ), there is a subset Ju,h ⊆ Iu,h with m being a non-

constant (increasing, decreasing) function on Ju,h. We can make the following formal

statement about the events E±T , E+
T and E−T , whose proof is given in the Supplementary

Material.

Proposition 3.3. Let the conditions of Theorem 3.1 be fulfilled. Then for ` ∈ {±,+,−},
it holds that

P
(
E`
T

)
≥ (1− α) + o(1).

According to Proposition 3.3, we can make simultaneous confidence statements of the

following form: With (asymptotic) probability ≥ (1− α), the trend function m is non-

constant (increasing, decreasing) on some part of the interval Iu,h for all Iu,h ∈ Π±T (Π+
T ,

Π−T ). Hence, our multiscale procedure allows to identify, with a pre-specified confidence,

time regions where there is an increase/decrease in the time trend m.

Remark 3.2. Unlike Π±T , the sets Π+
T and Π−T only contain intervals Iu,h = [u−h, u+h]

which are subsets of [0, 1]. We thus exclude points (u, h) ∈ A+
T and (u, h) ∈ A−T which

lie at the boundary, that is, for which Iu,h * [0, 1]. The reason is as follows: Let

(u, h) ∈ A+
T with Iu,h * [0, 1]. Our technical arguments allow us to say, with asymptotic

confidence ≥ 1−α, that m′(v) 6= 0 for some v ∈ Iu,h. However, we cannot say whether

m′(v) > 0 or m′(v) < 0, that is, we cannot make confidence statements about the sign.

Crudely speaking, the problem is that the local linear weights wt,T (u, h) behave quite

differently at boundary points (u, h) with Iu,h * [0, 1]. As a consequence, we can include

boundary points (u, h) in Π±T but not in Π+
T and Π−T .

The statement of Proposition 3.3 suggests to graphically present the results of our

multiscale test by plotting the intervals Iu,h ∈ Π`
T for ` ∈ {±,+,−}, that is, by plotting

the intervals where (with asymptotic confidence ≥ 1 − α) our test detects a violation

of the null hypothesis. The drawback of this graphical presentation is that the number

of intervals in Π`
T is often quite large. To obtain a better graphical summary of the

results, we replace Π`
T by a subset Π`,min

T which is constructed as follows: As in Dümbgen

(2002), we call an interval Iu,h ∈ Π`
T minimal if there is no other interval Iu′,h′ ∈ Π`

T

with Iu′,h′ ⊂ Iu,h. Let Π`,min
T be the set of all minimal intervals in Π`

T for ` ∈ {±,+,−}
and define the events

E±,min
T =

{
∀Iu,h ∈ Π±,min

T : m′(v) 6= 0 for some v ∈ Iu,h = [u− h, u+ h]
}

E+,min
T =

{
∀Iu,h ∈ Π+,min

T : m′(v) > 0 for some v ∈ Iu,h = [u− h, u+ h]
}

E−,min
T =

{
∀Iu,h ∈ Π−,min

T : m′(v) < 0 for some v ∈ Iu,h = [u− h, u+ h]
}
.

It is easily seen that E`
T = E`,min

T for ` ∈ {±,+,−}. Hence, by Proposition 3.3, it holds
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that

P
(
E`,min
T

)
≥ (1− α) + o(1)

for ` ∈ {±,+,−}. This suggests to plot the minimal intervals in Π`,min
T rather than

the whole collection of intervals Π`
T as a graphical summary of the test results. We in

particular use this way of presenting the test results in our application in Section 6.

4 Estimation of the long-run error variance

In this section, we discuss how to estimate the long-run variance σ2 =
∑∞

`=−∞Cov(ε0, ε`)

of the error terms in model (2.1). There are two broad classes of estimators: residual-

and difference-based estimators. In residual-based approaches, σ2 is estimated from the

residuals ε̂t = Yt,T − m̂h(t/T ), where m̂h is a nonparametric estimator of m with the

bandwidth or smoothing parameter h. Difference-based methods proceed by estimating

σ2 from the `-th differences Yt,T−Yt−`,T of the observed time series {Yt,T} for certain or-

ders `. In what follows, we focus attention on difference-based methods as these do not

involve a nonparametric estimator of the function m and thus do not require to specify

a bandwidth h for the estimation of m. To simplify notation, we let ∆`Zt = Zt − Zt−`
denote the `-th differences of a general time series {Zt} throughout the section.

4.1 Weakly dependent error processes

We first consider the case that {εt} is a general stationary error process. We do not

impose any time series model such as a moving average (MA) or an autoregressive (AR)

model on {εt} but only require that {εt} satisfies certain weak dependence conditions

such as those from Section 2. These conditions imply that the autocovariances γε(`) =

Cov(ε0, ε`) decay to zero at a certain rate as |`| → ∞. For simplicity of exposition,

we assume that the decay is exponential, that is, |γε(`)| ≤ Cρ|`| for some C > 0 and

0 < ρ < 1. In addition to these weak dependence conditions, we suppose that the trend

m is smooth. Specifically, we assume m to be Lipschitz continuous on [0, 1], that is,

|m(u)−m(v)| ≤ C|u− v| for all u, v ∈ [0, 1] and some constant C <∞.

Under these conditions, a difference-based estimator of σ2 can be obtained as follows: To

start with, we construct an estimator of the short-run error variance γε(0) = Var(ε0).

As m is Lipschitz continuous, it holds that ∆qYt,T = ∆qεt + O(q/T ). Hence, the

differences ∆qYt,T of the observed time series are close to the differences ∆qεt of the

unobserved error process as long as q is not too large in comparison to T . Moreover,

since |γε(q)| ≤ Cρq, we have that E[(∆qεt)
2]/2 = γε(0)− γε(q) = γε(0) +O(ρq). Taken

together, these considerations yield that γε(0) = E[(∆qYt,T )2]/2+O({q/T}2+ρq), which
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motivates to estimate γε(0) by

γ̂ε(0) =
1

2(T − q)

T∑
t=q+1

(∆qYt,T )2, (4.1)

where we assume that q = qT → ∞ with qT/ log T → ∞ and qT/
√
T → 0. Estimators

of the autocovariances γε(`) for ` 6= 0 can be derived by similar considerations. Since

γε(`) = γε(0)−E[(∆`εt)
2]/2 = γε(0)−E[(∆`Yt,T )2]/2+O({`/T}2), we may in particular

define

γ̂ε(`) = γ̂ε(0)− 1

2(T − |`|)

T∑
t=|`|+1

(∆|`|Yt,T )2 (4.2)

for any ` 6= 0. Difference-based estimators of the type (4.1) and (4.2) have been used

in different contexts in the literature before. Estimators similar to (4.1) and (4.2) were

analysed, for example, in Müller and Stadtmüller (1988) and Hall and Van Keilegom

(2003) in the context of m-dependent and autoregressive error terms, respectively. In

order to estimate the long-run error variance σ2, we may employ HAC-type estima-

tion procedures as discussed in Andrews (1991) or De Jong and Davidson (2000). In

particular, an estimator of σ2 may be defined as

σ̂2 =
∑
|`|≤bT

W
( `
bT

)
γ̂ε(`), (4.3)

where W : [−1, 1]→ R is a kernel (e.g. of Bartlett or Parzen type) and bT is a bandwidth

parameter with bT →∞ and bT/qT → 0. The additional bandwidth bT comes into play

because estimating σ2 under general weak dependence conditions is a nonparametric

problem. In particular, it is equivalent to estimating the (nonparametric) spectral

density fε of the process {εt} at frequency 0 (assuming that fε exists).

Estimating the long-run error variance σ2 under general weak dependence conditions

is a notoriously difficult problem. Estimators of σ2 such as σ̂2 from (4.3) tend to be

quite imprecise and are usually very sensitive to the choice of the smoothing parameter,

that is, to bT in the case of σ̂2 from (4.3). To circumvent this issue in practice, it may

be beneficial to impose a time series model on the error process {εt}. Estimating

σ2 under the restrictions of such a model may of course create some misspecification

bias. However, as long as the model gives a reasonable approximation to the true error

process, the produced estimates of σ2 can be expected to be fairly reliable even though

they are a bit biased. Which time series model is appropriate of course depends on

the application at hand. In the sequel, we follow authors such as Hart (1994) and Hall

and Van Keilegom (2003) and impose an autoregressive structure on the error terms

{εt}, which is a very popular error model in many application contexts. We thus do

not dwell on the nonparametric estimator σ̂2 from (4.3) any further but rather give an
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in-depth analysis of the case of autoregressive error terms.

4.2 Autoregressive error processes

Estimators of the long-run error variance σ2 in model (2.1) have been developed for

different kinds of error processes {εt}. A number of authors have analysed the case

of MA(m) or, more generally, m-dependent error terms. Difference-based estimators

of σ2 for this case were proposed in Müller and Stadtmüller (1988), Herrmann et al.

(1992) and Tecuapetla-Gómez and Munk (2017) among others. Under the assumption

of m-dependence, γε(`) = 0 for all |`| > m. Even though m-dependent time series are

a reasonable error model in some applications, the condition that γε(`) is exactly equal

to 0 for sufficiently large lags ` is quite restrictive in many situations. Presumably the

most widely used error model in practice is an AR(p) process. Residual-based methods

to estimate σ2 in model (2.1) with AR(p) errors can be found for example in Truong

(1991), Shao and Yang (2011) and Qiu et al. (2013). A difference-based method was

proposed in Hall and Van Keilegom (2003).

In what follows, we introduce a difference-based estimator of σ2 for the AR(p) case which

improves on existing methods in several respects. As in Hall and Van Keilegom (2003),

we consider the following situation: {εt} is a stationary and causal AR(p) process of

the form

εt =

p∑
j=1

ajεt−j + ηt, (4.4)

where a1, . . . , ap are unknown parameters and ηt are i.i.d. innovations with E[ηt] = 0

and E[η2t ] = ν2. The AR order p is known and m is Lipschitz continuous on [0, 1], that

is, |m(u)−m(v)| ≤ C|u− v| for all u, v ∈ [0, 1] and some constant C <∞. Since {εt}
is causal, the variables εt have an MA(∞) representation of the form εt =

∑∞
k=0 ckηt−k.

The coefficients ck can be computed iteratively from the equations

ck −
p∑
j=1

ajck−j = bk (4.5)

for k = 0, 1, 2, . . ., where b0 = 1, bk = 0 for k > 0 and ck = 0 for k < 0. Moreover, the

coefficients ck can be shown to decay exponentially fast to zero as k →∞, in particular,

|ck| ≤ Cρk with some C > 0 and 0 < ρ < 1.

Our estimation method relies on the following simple observation: If {εt} is an AR(p)

process of the form (4.4), then the time series {∆qεt} of the differences ∆qεt = εt− εt−q
is an ARMA(p, q) process of the form

∆qεt −
p∑
j=1

aj∆qεt−j = ηt − ηt−q. (4.6)
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As m is Lipschitz, the differences ∆qεt of the unobserved error process are close to the

differences ∆qYt,T of the observed time series in the sense that

∆qYt,T =
[
εt − εt−q

]
+
[
m
( t
T

)
−m

(t− q
T

)]
= ∆qεt +O

( q
T

)
. (4.7)

Taken together, (4.6) and (4.7) imply that the differenced time series {∆qYt,T} is ap-

proximately an ARMA(p, q) process of the form (4.6). It is precisely this point which

is exploited by our estimation methods.

We first construct an estimator of the parameter vector a = (a1, . . . , ap)
>. For any

q ≥ 1, the ARMA(p, q) process {∆qεt} satisfies the Yule-Walker equations

γq(`)−
p∑
j=1

ajγq(`− j) = −ν2cq−` for 1 ≤ ` < q + 1 (4.8)

γq(`)−
p∑
j=1

ajγq(`− j) = 0 for ` ≥ q + 1, (4.9)

where γq(`) = Cov(∆qεt, ∆qεt−`) and ck are the coefficients from the MA(∞) expansion

of {εt}. From (4.8) and (4.9), we get that

Γqa = γq + ν2cq, (4.10)

where cq = (cq−1, . . . , cq−p)
>, γq = (γq(1), . . . , γq(p))

> and Γq denotes the p× p covari-

ance matrix Γq = (γq(i− j) : 1 ≤ i, j ≤ p). Since the coefficients ck decay exponentially

fast to zero, cq ≈ 0 and thus Γqa ≈ γq for large values of q. This suggests to estimate

a by

ãq = Γ̂
−1
q γ̂q, (4.11)

where Γ̂q and γ̂q are defined analogously as Γq and γq with γq(`) replaced by the

sample autocovariances γ̂q(`) = (T − q)−1
∑T

t=q+`+1 ∆qYt,T∆qYt−`,T and q = qT goes to

infinity sufficiently fast as T → ∞, specifically, q = qT → ∞ with qT/ log T → ∞ and

qT/
√
T → 0.

The estimator ãq depends on the tuning parameter q, which is very similar in nature

to the two tuning parameters of the methods in Hall and Van Keilegom (2003). An

appropriate choice of q needs to take care of the following two points: (i) q should be

chosen large enough to ensure that the vector cq = (cq−1, . . . , cq−p)
> is close to zero.

As we have already seen, the constants ck decay exponentially fast to zero and can be

computed from the recursive equations (4.5) for given AR parameters a1, . . . , ap. In

the AR(1) case, for example, one can readily calculate that ck ≤ 0.0035 for any k ≥ 20

and any |a1| ≤ 0.75. Hence, if we have an AR(1) model for the errors εt and the error

process is not too persistent, choosing q such that q ≥ 20 should make sure that cq is

close to zero. Generally speaking, the recursive equations (4.5) can be used to get some
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idea for which values of q the vector cq can be expected to be approximately zero. (ii)

q should not be chosen too large in order to ensure that the trend m is appropriately

eliminated by taking q-th differences. As long as the trend m is not very strong, the

two requirements (i) and (ii) can be fulfilled without much difficulty. For example, by

choosing q = 20 in the AR(1) case just discussed, we do not only take care of (i) but

also make sure that moderate trends m are differenced out appropriately.

When the trend m is very pronounced, in contrast, even moderate values of q may

be too large to eliminate the trend appropriately. As a result, the estimator ãq will

have a strong bias. In order to reduce this bias, we refine our estimation procedure as

follows: By solving the recursive equations (4.5) with a replaced by ãq, we can compute

estimators c̃k of the coefficients ck and thus estimators c̃r of the vectors cr for any r ≥ 1.

Moreover, the innovation variance ν2 can be estimated by ν̃2 = (2T )−1
∑T

t=p+1 r̃
2
t,T ,

where r̃t,T = ∆1Yt,T−
∑p

j=1 ãj∆1Yt−j,T and ãj is the j-th entry of the vector ãq. Plugging

the expressions Γ̂r, γ̂r, c̃r and ν̃2 into (4.10), we can estimate a by

âr = Γ̂
−1
r (γ̂r + ν̃2c̃r), (4.12)

where r is any fixed number with r ≥ 1. In particular, unlike q, the parameter r does

not diverge to infinity but remains fixed as the sample size T increases. As one can see,

the estimator âr is based on differences of some small order r; only the pilot estimator

ãq relies on differences of a larger order q. As a consequence, âr should eliminate the

trend m more appropriately and should thus be less biased than the pilot estimator ãq.

In order to make the method more robust against estimation errors in c̃r, we finally

average the estimators âr for a few small values of r. In particular, we define

â =
1

r

r∑
r=1

âr, (4.13)

where r is a small natural number. For ease of notation, we suppress the dependence

of â on the parameter r. Once â = (â1, . . . , âp)
> is computed, the long-run variance σ2

can be estimated by

σ̂2 =
ν̂2

(1−
∑p

j=1 âj)
2
, (4.14)

where ν̂2 = (2T )−1
∑T

t=p+1 r̂
2
t,T with r̂t,T = ∆1Yt,T −

∑p
j=1 âj∆1Yt−j,T is an estimator of

the innovation variance ν2 and we make use of the fact that σ2 = ν2/(1−
∑p

j=1 aj)
2 for

the AR(p) process {εt}.
We briefly compare the estimator â to competing methods. Presumably closest to our

approach is the procedure of Hall and Van Keilegom (2003). Nevertheless, the two

approaches differ in several respects. The two main advantages of our method are as

follows:
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(a) Our estimator produces accurate estimation results even when the AR process {εt}
is quite persistent, that is, even when the AR polynomial A(z) = 1 −

∑p
j=1 ajz

j

has a root close to the unit circle. The estimator of Hall and Van Keilegom (2003),

in contrast, may have very high variance and may thus produce unreliable results

when the AR polynomial A(z) is close to having a unit root. This difference in

behaviour can be explained as follows: Our pilot estimator ãq = (ã1, . . . , ãp)
> has

the property that the estimated AR polynomial Ã(z) = 1−
∑p

j=1 ãjz
j has no root

inside the unit disc, that is, Ã(z) 6= 0 for all complex numbers z with |z| ≤ 1.4

Hence, the fitted AR model with the coefficients ãq is ensured to be stationary

and causal. Even though this may seem to be a minor technical detail, it has a

huge effect on the performance of the estimator: It keeps the estimator stable even

when the AR process is very persistent and the AR polynomial A(z) has almost

a unit root. This in turn results in a reliable behaviour of the estimator â in

the case of high persistence. The estimator of Hall and Van Keilegom (2003), in

contrast, may produce non-causal results when the AR polynomial A(z) is close to

having a unit root. As a consequence, it may have unnecessarily high variance in

the case of high persistence. We illustrate this difference between the estimators

by the simulation exercises in Section 5.3. A striking example is Figure 5, which

presents the simulation results for the case of an AR(1) process εt = a1εt−1 + ηt

with a1 = −0.95 and clearly shows the much better performance of our method.

(b) Both our pilot estimator ãq and the estimator of Hall and Van Keilegom (2003)

tend to have a substantial bias when the trend m is pronounced. Our estimator

â reduces this bias considerably as demonstrated in the simulations of Section 5.3.

Unlike the estimator of Hall and Van Keilegom (2003), it thus produces accurate

results even in the presence of a very strong trend.

We now derive some basic asymptotic properties of the estimators ãq, â and σ̂2. The

following proposition shows that they are
√
T -consistent.

Proposition 4.1. Let {εt} be a causal AR(p) process of the form (4.4). Suppose that

the innovations ηt have a finite fourth moment and let m be Lipschitz continuous. If

q → ∞ with q/ log T → ∞ and q/
√
T → 0, then ãq − a = Op(T

−1/2) as well as

â− a = Op(T
−1/2) and σ̂2 − σ2 = Op(T

−1/2).

It can also be shown that ãq, â and σ̂2 are asymptotically normal. In general, their

asymptotic variance is somewhat larger than that of the estimators in Hall and Van Kei-

legom (2003). They are thus a bit less efficient in terms of asymptotic variance. How-

ever, this theoretical loss of efficiency is more than compensated by the advantages

4More precisely, Ã(z) 6= 0 for all z with |z| ≤ 1, whenever the covariance matrix (γ̂q(i− j) : 1 ≤ i, j ≤
p + 1) is non-singular. Moreover, (γ̂q(i − j) : 1 ≤ i, j ≤ p + 1) is non-singular whenever γ̂q(0) > 0,
which is the generic case.
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discussed in (a) and (b) above, which lead to a substantially better small sample per-

formance as demonstrated in the simulations of Section 5.3.

5 Simulations

To assess the finite sample performance of our methods, we conduct a number of sim-

ulations. In Sections 5.1 and 5.2, we investigate the performance of our multiscale test

and compare it to the SiZer methods for time series developed in Park et al. (2004),

Rondonotti et al. (2007) and Park et al. (2009). In Section 5.3, we analyse the finite

sample properties of our long-run variance estimator from Section 4.2 and compare it

to the estimator of Hall and Van Keilegom (2003).

5.1 Size and power properties of the multiscale test

Our simulation design mimics the situation in the application example of Section 6.

We generate data from the model Yt,T = m(t/T ) + εt for different trend functions

m, error processes {εt} and time series lengths T . The error terms are supposed to

have the AR(1) structure εt = a1εt−1 + ηt, where a1 ∈ {−0.5,−0.25, 0.25, 0.5} and

ηt are i.i.d. standard normal. In addition, we consider the AR(2) specification εt =

a1εt−1 + a2εt−2 + ηt, where ηt are normally distributed with E[ηt] = 0 and E[η2t ] = ν2.

We set a1 = 0.167, a2 = 0.178 and ν2 = 0.322, thus matching the estimated values

obtained in the application of Section 6. To simulate data under the null hypothesis,

we let m be a constant function. In particular, we set m = 0 without loss of generality.

To generate data under the alternative, we consider the trend functions m(u) = β(u−
0.5) · 1(0.5 ≤ u ≤ 1) with β = 1.5, 2.0, 2.5. These functions are broken lines with a kink

at u = 0.5 and different slopes β. Their shape roughly resembles the trend estimates

in the application of Section 6. The slope parameter β corresponds to a trend with the

value m(1) = 0.5β at the right endpoint u = 1. We thus consider broken lines with the

values m(1) = 0.75, 1.0, 1.25. Inspecting the middle panel of Figure 7, the broken lines

with the endpoints m(1) = 1.0 and m(1) = 1.25 (that is, with β = 2.0 and β = 2.5)

can be seen to resemble the local linear trend estimates in the real-data example the

most (where we neglect the nonlinearities of the local linear fits at the beginning of

the observation period). The broken line with β = 1.5 is closer to the null, making it

harder for our test to detect this alternative.5

5The broken lines m are obviously non-differentiable at the kink point. We could replace them by
slightly smoothed versions to satisfy the differentiability assumption that is imposed in the theoretical
part of the paper. However, as this leaves the simulation results essentially unchanged but only creates
additional notation, we stick to the broken lines.
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To implement our test, we choose K to be an Epanechnikov kernel and define the set

GT of location-scale points (u, h) as

GT =
{

(u, h) : u = 5k/T for some 1 ≤ k ≤ T/5 and

h = (3 + 5`)/T for some 0 ≤ ` ≤ T/20
}
. (5.1)

We thus take into account all rescaled time points u ∈ [0, 1] on an equidistant grid

with step length 5/T . For the bandwidth h = (3 + 5`)/T and any u ∈ [h, 1 − h],

the kernel weights K(h−1{t/T − u}) are non-zero for exactly 5 + 10` observations.

Hence, the bandwidths h in GT correspond to effective sample sizes of 5, 15, 25, . . . up to

approximately T/4 data points. As a robustness check, we have re-run the simulations

for a number of other grids. As the results are very similar, we do however not report

them here. The long-run error variance σ2 is estimated by the procedures from Section

4.2: We first compute the estimator â of the AR parameter(s), where we use r = 10

and the pilot estimator ãq with q = 25. Based on â, we then compute the estimator

σ̂2 of the long-run error variance σ2. As a further robustness check, we have re-run

the simulations for other choices of the parameters q and r, which yields very similar

results. The dependence of the estimators â and σ̂2 on q and r is further explored in

Section 5.3. To compute the critical values of the multiscale test, we simulate 1000

values of the statistic ΦT defined in Section 3.2 and compute their empirical (1 − α)

quantile qT (α).

Tables 1 and 2 report the simulation results for the sample sizes T = 250, 350, 500 and

the significance levels α = 0.01, 0.05, 0.10. The sample size T = 350 is approximately

equal to the time series length 359 in the real-data example of Section 6. To produce our

simulation results, we generate S = 1000 samples for each model specification and carry

out the multiscale test for each sample. The entries of Tables 1 and 2 are computed

as the number of simulations in which the test rejects divided by the total number of

simulations. As can be seen from Table 1, the actual size of the test is fairly close to

the nominal target α for all the considered AR specifications and sample sizes. Hence,

the test has approximately the correct size. Inspecting Table 2, one can further see that

the test has reasonable power properties. For all the considered AR specifications, the

power increases quickly (i) as the sample size gets larger and (ii) as we move away from

the null by increasing the slope parameter β. The power is of course quite different

across the various AR specifications. In particular, it is much lower for positive than

for negative values of a1 in the AR(1) case, the lowest power numbers being obtained

for the largest positive value a1 = 0.5 under consideration. This reflects the fact that it

is more difficult to detect a trend when there is strong positive autocorrelation in the

data. For the AR(2) specification of the errors, the sample size T = 350 and the slopes

β = 2.0 and β = 2.5, which yield the two model specifications that resemble the real-

life data in Section 6 the most, the power of the test is above 92% for the significance
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levels α = 0.05 and α = 0.1 and above 75% for α = 0.01. Hence, our method has

substantial power in the two simulation scenarios which are closest to the situation in

the application.

5.2 Comparison with SiZer

We now compare our multiscale test to SiZer for times series which was developed in

Park et al. (2004), Rondonotti et al. (2007) and Park et al. (2009). Roughly speak-

ing, the SiZer method proceeds as follows: For each location u and bandwidth h in a

pre-specified set, SiZer computes an estimator m̂′h(u) of the derivative m′(u) and a cor-

responding confidence interval. For each (u, h), it then checks whether the confidence

interval includes the value 0. The set ΠSiZer
T of points (u, h) for which the confidence

interval does not include 0 corresponds to the set of intervals Π±T for which our multi-

scale test finds an increase/decrease in the trend m. In order to explore how our test

performs in comparison to SiZer, we compare the two sets Π±T and ΠSiZer
T in different

ways to each other in what follows.

In order to implement SiZer for time series, we follow the exposition in Park et al.

(2009).6 The details are given in Section S.3 in the Supplementary Material. To simplify

the implementation of SiZer, we assume that the autocovariance function γε(·) of the

error process and thus the long-run error variance σ2 is known. Our multiscale test is

implemented in the same way as in Section 5.1. To keep the comparison fair, we treat

σ2 as known also when implementing our method. Moreover, we use the same grid GT of

points (u, h) for both methods. To achieve this, we start off with the grid GT from (5.1).

We then follow Rondonotti et al. (2007) and Park et al. (2009) and restrict attention

to those points (u, h) ∈ GT for which the effective sample size ESS∗(u, h) for correlated

data is not smaller than 5. This yields the grid G∗T = {(u, h) ∈ GT : ESS∗(u, h) ≥ 5}.
A detailed discussion of the effective sample size ESS∗(u, h) for correlated data can be

found in Rondonotti et al. (2007).

In the first part of the comparison study, we analyse the size and power of the two

methods. To do so, we treat SiZer as a rigorous statistical test of the null hypothesis

H0 that m is constant on all intervals [u − h, u + h] with (u, h) ∈ G∗T . In particular,

we let SiZer reject the null if the set ΠSiZer
T is non-empty, that is, if the value 0 is not

included in the confidence interval for at least one point (u, h) ∈ G∗T . We simulate data

from the model Yt,T = m(t/T ) + εt with different AR(1) error processes and different

trends m. In particular, we let {εt} be an AR(1) process of the form εt = a1εt−1 + ηt

with a1 ∈ {−0.25, 0.25} and i.i.d. standard normal innovations ηt. To simulate data

under the null, we set m = 0 as in the previous section. To generate data under the

6We have also examined the somewhat different implementation from Rondonotti et al. (2007). As
this yields worse simulation results than the procedure from Park et al. (2009), we however do not
report them here.
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Table 3: Size of our multiscale test (MT) and SiZer for different model specifications.

a1 = −0.25 a1 = 0.25

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer

T = 250 0.018 0.112 0.040 0.374 0.104 0.575 0.017 0.106 0.034 0.347 0.092 0.522
T = 350 0.012 0.140 0.058 0.426 0.080 0.621 0.012 0.130 0.046 0.399 0.074 0.578
T = 500 0.005 0.140 0.041 0.489 0.097 0.680 0.006 0.136 0.039 0.452 0.097 0.639

Table 4: Power of our multiscale test (MT) and SiZer for different model specifications. The
three panels (a)–(c) corresponds to different slope parameters β of the linear tend m.

(a) β = 1.0 for negative a1 and β = 2.0 for positive a1

a1 = −0.25 a1 = 0.25

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer

T = 250 0.218 0.544 0.454 0.869 0.664 0.949 0.359 0.717 0.653 0.947 0.829 0.989
T = 350 0.385 0.707 0.665 0.958 0.753 0.986 0.599 0.888 0.864 0.995 0.913 0.998
T = 500 0.581 0.899 0.862 0.993 0.949 0.999 0.851 0.981 0.983 1.000 0.999 1.000

(b) β = 1.25 for negative a1 and β = 2.25 for positive a1

a1 = −0.25 a1 = 0.25

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer

T = 250 0.426 0.771 0.705 0.969 0.878 0.996 0.537 0.861 0.791 0.987 0.932 0.999
T = 350 0.645 0.912 0.882 0.993 0.954 1.000 0.773 0.955 0.948 0.999 0.985 1.000
T = 500 0.915 0.994 0.993 1.000 0.998 1.000 0.962 0.999 1.000 1.000 0.999 1.000

(c) β = 1.5 for negative a1 and β = 2.5 for positive a1

a1 = −0.25 a1 = 0.25

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer MT SiZer

T = 250 0.701 0.942 0.911 0.992 0.972 1.000 0.698 0.941 0.908 0.993 0.970 1.000
T = 350 0.895 0.994 0.981 1.000 0.996 1.000 0.893 0.993 0.980 1.000 0.996 1.000
T = 500 0.995 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000

alternative, we consider the linear trends m(u) = β(u− 0.5) with different slopes β. As

it is more difficult to detect a trend m in the data when the error terms are positively

autocorrelated, we choose the slopes β larger in the AR(1) case with a1 = 0.25 than in

the case with a1 = −0.25. In particular, we let β ∈ {1.0, 1.25, 1.5} when a1 = −0.25 and

β ∈ {2.0, 2.25, 2.5} when a1 = 0.25. Further model specifications with nonlinear trends

are considered in the second part of the comparison study. To produce our simulation

results, we generate S = 1000 samples for each model specification and carry out the

two methods for each sample.
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The simulation results are reported in Tables 3 and 4. Both for our multiscale test and

SiZer, the entries in the tables are computed as the number of simulations in which

the respective method rejects the null hypothesis H0 divided by the total number of

simulations. As can be seen from Table 3, our test has approximately correct size in

all of the considered settings, whereas SiZer is very liberal and rejects the null way

too often. Examining Table 4, one can further see that our procedure has reasonable

power against the considered alternatives. The power numbers are of course higher for

SiZer, which is a trivial consequence of the fact that SiZer is extremely liberal. These

numbers should thus be treated with caution. All in all, the simulations suggest that

SiZer can hardly be regarded as a rigorous statistical test of the null hypothesis H0 that

m is constant on all intervals [u−h, u+h] with (u, h) ∈ G∗T . This is not very surprising

as SiZer is not designed to be such a test but to produce informative SiZer maps. In

particular, the confidence intervals of SiZer are not constructed to control the level α

under H0. In what follows, we thus attempt to compare the two methods in a different

way which goes beyond mere size and power comparisons.

Both our method and SiZer can be regarded as statistical tools to identify time regions

where the curve m is increasing/decreasing.7 Suppose that m is increasing/decreasing

in the time region R ⊂ [0, 1] but constant otherwise, that is, m′(u) 6= 0 for all u ∈ R
and m′(u) = 0 for all u /∈ R. A natural question is the following: How well can the

two methods identify the time region R? In our framework, information on the region

R is contained in the minimal intervals of the set Π±T . In particular, the union R±T of

the minimal intervals in Π±T can be regarded as an estimate of R. This follows from

the results in Propositions 3.2 and 3.3. Let RSiZer
T be the union of the minimal intervals

in ΠSiZer
T . In what follows, we compare R±T and RSiZer

T to the region R. This gives

us information on how well the two methods approximate the true region where m is

increasing/decreasing.8

We consider the same simulation setup as in the first part of the comparison study,

only the trend function m is different. We let m be defined as m(u) = 2 · 1(u ∈
[0.4, 0.6]) · (1 − 100{u − 0.5}2)2, which implies that R = (0.4, 0.5) ∪ (0.5, 0.6). The

function m is plotted in the two upper panels of Figure 2. We set the significance level to

α = 0.05 and the sample size to T = 500. For each AR parameter a1 ∈ {−0.25, 0.25}, we

simulate S = 100 samples and compute R±T and RSiZer
T for each sample. The simulation

results are depicted in Figure 2, the two subfigures (a) and (b) corresponding to different

AR parameters. The upper panel of each subfigure displays the time series path of a

representative simulation together with the trend function m. The middle panel shows

the regions R±T produced by our multiscale approach for the 100 simulation runs: On

7More precisely speaking, SiZer is usually interpreted as investigating the curve m, viewed at different
levels of resolution, rather than the curve m itself. Put differently, the underlying object of interest
is a family of smoothed versions of m rather than m itself.

8The same exercise could of course also be carried out separately for the time region where the trend
m increases and the region where it decreases.
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Figure 2: Comparison of the regions R±T and RSiZer
T . Subfigure (a) corresponds to the model

setting with the AR parameter a1 = −0.25, subfigure (b) to the setting with a1 = 0.25. The
upper panel of each subfigure shows a simulated time series path together with the underlying
trend function m. The middle panel depicts the regions R±T produced by our multiscale test
for 100 simulation runs. The lower panel presents the regions RSiZer

T produced by SiZer.

the y-axis, the simulation runs i are enumerated for 1 ≤ i ≤ 100, and the black line at

y-level i represents R±T for the i-th simulation. Finally, the lower panel of each subfigure

depicts the regions RSiZer
T in an analogous way.

Inspecting Figure 2, our multiscale method can be seen to approximate the region R
fairly well in both simulation scenarios under consideration. In particular, R±T gives

a good approximation to the region R for most simulations. Only in some simulation

runs, R±T is too large compared to R, which means that our method is not able to

locate the region R sufficiently precisely. Overall, the SiZer method also produces quite

satisfactory results. However, the SiZer estimates of R are not as precise as ours. In

particular, SiZer spuriously finds regions of decrease/increase outside the interval R
much more often than our method. It thus frequently mistakes fluctuations in the time

series which are due to the dependence in the error terms for increases/decreases in the

trend m.

To sum up, our multiscale test exhibits good size and power properties in the simu-

lations, and the minimal intervals produced by it identify the time regions where m

increases/decreases in a quite reliable way. SiZer performs clearly worse in these re-

spects. Nevertheless, it may still produce informative SiZer plots. All in all, we would

like to regard the two methods as complementary rather than direct competitors. SiZer

25



is an explorative tool which aims to give an overview of the increases/decreases in m

by means of a SiZer plot. Our method, in contrast, is tailored to be a rigorous sta-

tistical test of the hypothesis H0. In particular, it allows to make rigorous confidence

statements about the time regions where the trend m increases/decreases.

5.3 Small sample properties of the long-run variance estimator

In the final part of the simulation study, we examine the estimators of the AR para-

meters and the long-run error variance from Section 4.2. We simulate data from the

model Yt,T = m(t/T )+εt, where {εt} is an AR(1) process of the form εt = a1εt−1+ηt. We

consider the AR parameters a1 ∈ {−0.95,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 0.95} and

let ηt be i.i.d. standard normal innovation terms. We report our findings for a specific

sample size T , in particular for T = 500, as the results for other sample sizes are very

similar. For simplicity, m is chosen to be a linear function of the form m(u) = βu

with the slope parameter β. For each value of a1, we consider two different slopes β,

one corresponding to a moderate and one to a pronounced trend m. In particular,

we let β = sβ
√

Var(εt) with sβ ∈ {1, 10}. When sβ = 1, the slope β is equal to the

standard deviation
√

Var(εt) of the error process, which yields a moderate trend m.

When sβ = 10, in contrast, the slope β is 10 times as large as
√

Var(εt), which results

in a quite pronounced trend m.

For each model specification, we generate S = 1000 data samples and compute the

following quantities for each simulated sample:

(i) the pilot estimator ãq from (4.11) with the tuning parameter q.

(ii) the estimator â from (4.13) with the tuning parameter r as well as the long-run

variance estimator σ̂2 from (4.14).

(iii) the estimators of a1 and σ2 from Hall and Van Keilegom (2003), which are de-

noted by âHvK and σ̂2
HvK for ease of reference. The estimator âHvK is computed

as described in Section 2.2 of Hall and Van Keilegom (2003) and σ̂2
HvK as defined

at the bottom of p.447 in Section 2.3. The estimator âHvK (as well as σ̂2
HvK) de-

pends on two tuning parameters which we denote by m1 and m2 as in Hall and

Van Keilegom (2003).

(iv) oracle estimators âoracle and σ̂2
oracle of a1 and σ2, which are constructed under the

assumption that the error process {εt} is observed. For each simulation run, we

compute âoracle as the maximum likelihood estimator of a1 from the time series

of simulated error terms ε1, . . . , εT . We then calculate the residuals rt = εt −
âoracle εt−1 and estimate the innovation variance ν2 = E[η2t ] by ν̂2oracle = (T −
1)−1

∑T
t=2 r

2
t . Finally, we set σ̂2

oracle = ν̂2oracle/(1− âoracle)2.
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Figure 3: MSE values for the estimators â, âHvK, âoracle and σ̂2, σ̂2HvK, σ̂2oracle in the simulation
scenarios with a moderate trend (sβ = 1).

0.
00

0.
01

0.
02

0.
03

0.
04

a1

M
S

E

● ● ● ● ● ●
● ●

●

●

●

●

●

●

●
●● ● ● ● ● ● ● ●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

a
aHvK

aoracle

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

Figure 4: MSE values for the estimators â, âHvK, âoracle and σ̂2, σ̂2HvK, σ̂2oracle in the simulation
scenarios with a pronounced trend (sβ = 10).

Throughout the section, we set q = 25, r = 10 and (m1,m2) = (20, 30). We in

particular choose q to be in the middle of m1 and m2 to make the tuning parameters of

the estimators ãq and âHvK more or less comparable. In order to assess how sensitive

our estimators are to the choice of q and r, we carry out a number of robustness checks,

considering a range of different values for q and r. In addition, we vary the tuning

parameters m1 and m2 of the estimators from Hall and Van Keilegom (2003) in order

to make sure that the results of our comparison study are not driven by the particular

choice of any of the involved tuning parameters. The results of our robustness checks

are reported in Section S.3 of the Supplementary Material. They show that the results

of our comparison study are robust to different choices of the parameters q, r and

(m1,m2). Moreover, they indicate that our estimators are rather insensitive to the

choice of tuning parameters.

For each estimator â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle and for each model specification,

the simulation output consists in a vector of length S = 1000 which contains the 1000

simulated values of the respective estimator. Figures 3 and 4 report the mean squared
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Figure 5: Histograms of the simulated values produced by the estimators â, âHvK, âoracle and
σ̂2, σ̂2HvK, σ̂2oracle in the scenario with a1 = −0.95 and sβ = 1. The vertical red lines indicate
the true values of a1 and σ2.

error (MSE) of these 1000 simulated values for each estimator. On the x-axis of each

plot, the various values of the AR parameter a1 are listed which are considered. The

solid line in each plot gives the MSE values of our estimators. The dashed and dotted

lines specify the MSE values of the HvK and the oracle estimators, respectively. Note

that for the long-run variance estimators, the plots report the logarithm of the MSE

rather than the MSE itself since the MSE values are too different across simulation

scenarios to obtain a reasonable graphical presentation. In addition to the MSE values

presented in Figures 3 and 4, we depict histograms of the 1000 simulated values pro-

duced by the estimators â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle for two specific simulation

scenarios in Figures 5 and 6. The main findings can be summarized as follows:

(a) In the simulation scenarios with a moderate trend (sβ = 1), the estimators âHvK

and σ̂2
HvK of Hall and Van Keilegom (2003) exhibit a similar performance as our

estimators â and σ̂2 as long as the AR parameter a1 is not too close to −1. For

strongly negative values of a1 (in particular for a1 = −0.75 and a1 = −0.95),

the estimators perform much worse than ours. This can be clearly seen from the

much larger MSE values of the estimators âHvK and σ̂2
HvK for a1 = −0.75 and

a1 = −0.95 in Figure 3. Figure 5 gives some further insights into what is happening
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Figure 6: Histograms of the simulated values produced by the estimators â, âHvK, âoracle and
σ̂2, σ̂2HvK, σ̂2oracle in the scenario with a1 = 0.25 and sβ = 10. The vertical red lines indicate
the true values of a1 and σ2.

here. It shows the histograms of the simulated values produced by the estimators

â, âHvK, âoracle and the corresponding long-run variance estimators in the scenario

with a1 = −0.95 and sβ = 1. As can be seen, the estimator âHvK does not obey the

causality restriction |a1| ≤ 1 but frequently takes values substantially smaller than

−1. This results in a very large spread of the histogram and thus in a disastrous

performance of the estimator.9 A similar point applies to the histogram of the

long-run variance estimator σ̂2
HvK. Our estimators â and σ̂2, in contrast, exhibit a

stable behaviour in this case.

Interestingly, the estimator âHvK (as well as the corresponding long-run variance

estimator σ̂2
HvK) performs much worse than ours for large negative values but not

for large positive values of a1. This can be explained as follows: In the special case

of an AR(1) process, the estimator âHvK may produce estimates smaller than −1

but it cannot become larger than 1. This can be easily seen upon inspecting the

definition of the estimator. Hence, for large positive values of a1, the estimator

9One could of course set âHvK to −(1− δ) for some small δ > 0 whenever it takes a value smaller than
−1. This modified estimator, however, is still far from performing in a satisfying way when a1 is close
to −1.
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âHvK performs well as it satisfies the causality restriction that the estimated AR

parameter should be smaller than 1.

(b) In the simulation scenarios with a pronounced trend (sβ = 10), the estimators of

Hall and Van Keilegom (2003) are clearly outperformed by ours for most of the

AR parameters a1 under consideration. In particular, their MSE values reported in

Figure 4 are much larger than the values produced by our estimators for most pa-

rameter values a1. The reason is the following: The HvK estimators have a strong

bias since the pronounced trend with sβ = 10 is not eliminated appropriately by the

underlying differencing methods. This point is illustrated by Figure 6 which shows

histograms of the simulated values for the estimators â, âHvK, âoracle and the corre-

sponding long-run variance estimators in the scenario with a1 = 0.25 and sβ = 10.

As can be seen, the histogram produced by our estimator â is approximately cen-

tred around the true value a1 = 0.25, whereas that of the estimator âHvK is strongly

biased upwards. A similar picture arises for the long-run variance estimators σ̂2

and σ̂2
HvK.

Whereas the methods of Hall and Van Keilegom (2003) perform much worse than

ours for negative and moderately positive values of a1, the performance (in terms

of MSE) is fairly similar for large values of a1. This can be explained as follows:

When the trend m is not eliminated appropriately by taking differences, this creates

spurious persistence in the data. Hence, the estimator âHvK tends to overestimate

the AR parameter a1, that is, âHvK tends to be larger in absolute value than a1.

Very loosely speaking, when the parameter a1 is close to 1, say a1 = 0.95, there is

not much room for overestimation since âHvK cannot become larger than 1. Con-

sequently, the effect of not eliminating the trend appropriately has a much smaller

impact on âHvK for large positive values of a1.

6 Application

The analysis of time trends in long temperature records is an important task in clima-

tology. Information on the shape of the trend is needed in order to better understand

long-term climate variability. The Central England temperature record is the longest

instrumental temperature time series in the world. It is a valuable asset for analysing

climate variability over the last few hundred years. The data is publicly available on

the webpage of the UK Met Office. A detailed description of the data can be found in

Parker et al. (1992). For our analysis, we use the dataset of yearly mean temperatures

which consists of T = 359 observations covering the years from 1659 to 2017.

We assume that the data follow the nonparametric trend model Yt,T = m(t/T ) + εt,

where m is the unknown time trend of interest. The error process {εt} is supposed to

have the AR(p) structure εt =
∑p

j=1 ajεt−j + ηt, where ηt are i.i.d. innovations with
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Figure 7: Summary of the application results. The upper panel shows the Central England
mean temperature time series. The middle panel depicts local linear kernel estimates of the
time trend for a number of different bandwidths h. The lower panel presents the minimal
intervals in the set Π+

T produced by the multiscale test. These are [1686, 1742], [1831, 2007],
[1866, 2012] and [1871, 2017].

mean 0 and variance ν2. As pointed out in Mudelsee (2010) among others, this is

the most widely used error model for discrete climate time series. To select the AR

order p, we proceed as follows: We estimate the AR parameters and the corresponding

variance of the innovation terms for different AR orders by our methods from Section

4.2 and choose p to be the minimizer of the Bayesian information criterion (BIC). This

yields the AR order p = 2. We then estimate the parameters a = (a1, a2) and the

long-run error variance σ2 by the estimators â = (â1, â2) and σ̂2, which gives the values

â1 = 0.167, â2 = 0.178 and σ̂2 = 0.749. To select the AR order p and to produce the

estimators â and σ̂2, we set q = 25 and r = 10 as in the simulation study of Section

5.1.10

10As a robustness check, we have repeated the process of order selection and parameter estimation for
other values of q and r as well as for other criteria such as FPE, AIC and AICC, which gave similar
results.
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With the help of our multiscale method from Section 3, we now test the null hypothesis

H0 that m is constant on all intervals [u − h, u + h] with (u, h) ∈ GT , where we use

the grid GT defined in (5.1). To do so, we set the significance level to α = 0.05 and

implement the test in exactly the same way as in the simulations of Section 5.1. The

results are presented in Figure 7. The upper panel shows the raw temperature time

series, whereas the middle panel depicts local linear kernel estimates of the trend m for

different bandwidths h. As one can see, the shape of the estimated time trend strongly

differs with the chosen bandwidth. When the bandwidth is small, there are many local

increases and decreases in the estimated trend. When the bandwidth is large, most of

these local variations get smoothed out. Hence, by themselves, the nonparametric fits

do not give much information on whether the trend m is increasing or decreasing in

certain time regions.

Our multiscale test provides this kind of information, which is summarized in the lower

panel of Figure 7. The plot depicts the minimal intervals contained in the set Π+
T , which

is defined in Section 3.3. The set of intervals Π−T is empty in the present case. The height

at which a minimal interval Iu,h = [u−h, u+h] ∈ Π+
T is plotted indicates the value of the

corresponding (additively corrected) test statistic ψ̂T (u, h)/σ̂ − λ(h). The dashed line

specifies the critical value qT (α), where α = 0.05 as already mentioned above. According

to Proposition 3.3, we can make the following simultaneous confidence statement about

the collection of minimal intervals in Π+
T . We can claim, with confidence of about 95%,

that the trend function m has some increase on each minimal interval. More specifically,

we can claim with this confidence that there has been some upward movement in the

trend both in the period from around 1680 to 1740 and in the period from about 1870

onwards. Hence, our test in particular provides evidence that there has been some

warming trend in the period over approximately the last 150 years. On the other hand,

as the set Π−T is empty, there is no evidence of any downward movement of the trend.
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