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In this supplement, we provide the technical details and proofs that are omitted
in the paper. In addition, we report the results of some robustness checks which
complement the simulation exercises in Section 5 of the paper.

S.1 Proofs of the results from Section 3

In this section, we prove the theoretical results from Section 3. We use the following

notation: The symbol C denotes a universal real constant which may take a different

value on each occurrence. For a, b ∈ R, we write a+ = max{0, a} and a∨b = max{a, b}.
For any set A, the symbol |A| denotes the cardinality of A. The notation X

D
= Y means

that the two random variables X and Y have the same distribution. Finally, f0(·) and

F0(·) denote the density and distribution function of the standard normal distribution,

respectively.

Auxiliary results using strong approximation theory

The main purpose of this section is to prove that there is a version of the multiscale

statistic Φ̂T defined in (3.4) which is close to a Gaussian statistic whose distribution is

known. More specifically, we prove the following result.

Proposition S.1. Under the conditions of Theorem 3.1, there exist statistics Φ̃T for

T = 1, 2, . . . with the following two properties: (i) Φ̃T has the same distribution as Φ̂T

for any T , and (ii)

∣∣Φ̃T − ΦT

∣∣ = op

( T 1/q

√
Thmin

+ ρT
√

log T
)
,

where ΦT is a Gaussian statistic as defined in (3.3).
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Proof of Proposition S.1. For the proof, we draw on strong approximation theory

for stationary processes {εt} that fulfill the conditions (C1)–(C3). By Theorem 2.1 and

Corollary 2.1 in Berkes et al. (2014), the following strong approximation result holds

true: On a richer probability space, there exist a standard Brownian motion B and a

sequence {ε̃t : t ∈ N} such that [ε̃1, . . . , ε̃T ]
D
= [ε1, . . . , εT ] for each T and

max
1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σB(t)
∣∣∣ = o

(
T 1/q

)
a.s., (S.1)

where σ2 =
∑

k∈Z Cov(ε0, εk) denotes the long-run error variance. To apply this result,

we define

Φ̃T = max
(u,h)∈GT

{∣∣∣ φ̃T (u, h)

σ̃

∣∣∣− λ(h)
}
,

where φ̃T (u, h) =
∑T

t=1wt,T (u, h)ε̃t and σ̃2 is the same estimator as σ̂2 with Yt,T =

m(t/T ) + εt replaced by Ỹt,T = m(t/T ) + ε̃t for 1 ≤ t ≤ T . In addition, we let

ΦT = max
(u,h)∈GT

{∣∣∣φT (u, h)

σ

∣∣∣− λ(h)
}

Φ�T = max
(u,h)∈GT

{∣∣∣φT (u, h)

σ̃

∣∣∣− λ(h)
}

with φT (u, h) =
∑T

t=1wt,T (u, h)σZt and Zt = B(t) − B(t − 1). With this notation, we

can write∣∣Φ̃T − ΦT

∣∣ ≤ ∣∣Φ̃T − Φ�T
∣∣+
∣∣Φ�T − ΦT

∣∣ =
∣∣Φ̃T − Φ�T

∣∣+ op
(
ρT
√

log T
)
, (S.2)

where the last equality follows by taking into account that φT (u, h) ∼ N(0, σ2) for all

(u, h) ∈ GT , |GT | = O(T θ) for some large but fixed constant θ and σ̃2 = σ2 + op(ρT ).

Straightforward calculations yield that∣∣Φ̃T − Φ�T
∣∣ ≤ σ̃−1 max

(u,h)∈GT

∣∣φ̃T (u, h)− φT (u, h)
∣∣.

Using summation by parts, we further obtain that

∣∣φ̃T (u, h)− φT (u, h)
∣∣ ≤ WT (u, h) max

1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σ
t∑

s=1

{
B(s)− B(s− 1)

}∣∣∣
= WT (u, h) max

1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σB(t)
∣∣∣,

where

WT (u, h) =
T−1∑
t=1

|wt+1,T (u, h)− wt,T (u, h)|+ |wT,T (u, h)|.
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Standard arguments show that max(u,h)∈GT WT (u, h) = O(1/
√
Thmin). Applying the

strong approximation result (S.1), we can thus infer that∣∣Φ̃T − Φ�T
∣∣ ≤ σ̃−1 max

(u,h)∈GT

∣∣φ̃T (u, h)− φT (u, h)
∣∣

≤ σ̃−1 max
(u,h)∈GT

WT (u, h) max
1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σB(t)
∣∣∣ = op

( T 1/q

√
Thmin

)
. (S.3)

Plugging (S.3) into (S.2) completes the proof.

Auxiliary results using anti-concentration bounds

In this section, we establish some properties of the Gaussian statistic ΦT defined in

(3.3). We in particular show that ΦT does not concentrate too strongly in small regions

of the form [x− δT , x+ δT ] with δT converging to zero.

Proposition S.2. Under the conditions of Theorem 3.1, it holds that

sup
x∈R

P
(
|ΦT − x| ≤ δT

)
= o(1),

where δT = T 1/q/
√
Thmin + ρT

√
log T .

Proof of Proposition S.2. The main technical tool for proving Proposition S.2 are

anti-concentration bounds for Gaussian random vectors. The following proposition

slightly generalizes anti-concentration results derived in Chernozhukov et al. (2015), in

particular Theorem 3 therein.

Proposition S.3. Let (X1, . . . , Xp)
> be a Gaussian random vector in Rp with E[Xj] =

µj and Var(Xj) = σ2
j > 0 for 1 ≤ j ≤ p. Define µ = max1≤j≤p |µj| together with

σ = min1≤j≤p σj and σ = max1≤j≤p σj. Moreover, set ap = E[max1≤j≤p(Xj − µj)/σj]
and bp = E[max1≤j≤p(Xj − µj)]. For every δ > 0, it holds that

sup
x∈R

P
(∣∣ max

1≤j≤p
Xj − x

∣∣ ≤ δ
)
≤ Cδ

{
µ+ ap + bp +

√
1 ∨ log(σ/δ)

}
,

where C > 0 depends only on σ and σ.

The proof of Proposition S.3 is provided at the end of this section for completeness. To

apply Proposition S.3 to our setting at hand, we introduce the following notation: We

write x = (u, h) along with GT = {x : x ∈ GT} = {x1, . . . , xp}, where p := |GT | ≤ O(T θ)

for some large but fixed θ > 0 by our assumptions. Moreover, for j = 1, . . . , p, we set

X2j−1 =
φT (xj1, xj2)

σ
− λ(xj2)

X2j = −φT (xj1, xj2)

σ
− λ(xj2)
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with xj = (xj1, xj2). This notation allows us to write

ΦT = max
1≤j≤2p

Xj,

where (X1, . . . , X2p)
> is a Gaussian random vector with the following properties: (i)

µj := E[Xj] = −λ(xj2) and thus µ = max1≤j≤2p |µj| ≤ C
√

log T , and (ii) σ2
j :=

Var(Xj) = 1 for all j. Since σj = 1 for all j, it holds that a2p = b2p. Moreover, as the

variables (Xj − µj)/σj are standard normal, we have that a2p = b2p ≤
√

2 log(2p) ≤
C
√

log T . With this notation at hand, we can apply Proposition S.3 to obtain that

sup
x∈R

P
(∣∣ΦT − x

∣∣ ≤ δT

)
≤ CδT

[√
log T +

√
log(1/δT )

]
= o(1)

with δT = T 1/q/
√
Thmin + ρT

√
log T , which is the statement of Proposition S.2.

Proof of Theorem 3.1

To prove Theorem 3.1, we make use of the two auxiliary results derived above. By

Proposition S.1, there exist statistics Φ̃T for T = 1, 2, . . . which are distributed as Φ̂T

for any T ≥ 1 and which have the property that

∣∣Φ̃T − ΦT

∣∣ = op

( T 1/q

√
Thmin

+ ρT
√

log T
)
, (S.4)

where ΦT is a Gaussian statistic as defined in (3.3). The approximation result (S.4)

allows us to replace the multiscale statistic Φ̂T by an identically distributed version Φ̃T

which is close to the Gaussian statistic ΦT . In the next step, we show that

sup
x∈R

∣∣P(Φ̃T ≤ x)− P(ΦT ≤ x)
∣∣ = o(1), (S.5)

which immediately implies the statement of Theorem 3.1. For the proof of (S.5), we

use the following simple lemma:

Lemma S.1. Let VT and WT be real-valued random variables for T = 1, 2, . . . such that

VT −WT = op(δT ) with some δT = o(1). If

sup
x∈R

P(|VT − x| ≤ δT ) = o(1), (S.6)

then

sup
x∈R

∣∣P(VT ≤ x)− P(WT ≤ x)
∣∣ = o(1). (S.7)

The statement of Lemma S.1 can be summarized as follows: If WT can be approximated

by VT in the sense that VT −WT = op(δT ) and if VT does not concentrate too strongly
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in small regions of the form [x− δT , x + δT ] as assumed in (S.6), then the distribution

of WT can be approximated by that of VT in the sense of (S.7).

Proof of Lemma S.1. It holds that∣∣P(VT ≤ x)− P(WT ≤ x)
∣∣

=
∣∣E[1(VT ≤ x)− 1(WT ≤ x)

]∣∣
≤
∣∣E[{1(VT ≤ x)− 1(WT ≤ x)

}
1(|VT −WT | ≤ δT )

]∣∣+
∣∣E[1(|VT −WT | > δT )

]∣∣
≤ E

[
1(|VT − x| ≤ δT , |VT −WT | ≤ δT )

]
+ o(1)

≤ P(|VT − x| ≤ δT ) + o(1).

We now apply this lemma with VT = ΦT , WT = Φ̃T and δT = T 1/q/
√
Thmin+ρT

√
log T :

From (S.4), we already know that Φ̃T − ΦT = op(δT ). Moreover, by Proposition S.2, it

holds that

sup
x∈R

P
(
|ΦT − x| ≤ δT

)
= o(1). (S.8)

Hence, the conditions of Lemma S.1 are satisfied. Applying the lemma, we obtain (S.5),

which completes the proof of Theorem 3.1.

Proof of Proposition 3.2

To start with, we introduce the notation ψ̂T (u, h) = ψ̂AT (u, h)+ψ̂BT (u, h) with ψ̂AT (u, h) =∑T
t=1wt,T (u, h)εt and ψ̂BT (u, h) =

∑T
t=1wt,T (u, h)mT ( t

T
). By assumption, there exists

(u0, h0) ∈ GT with [u0 − h0, u0 + h0] ⊆ [0, 1] such that m′T (w) ≥ cT
√

log T/(Th30) for

all w ∈ [u0 − h0, u0 + h0]. (The case that −m′T (w) ≥ cT
√

log T/(Th30) for all w can be

treated analogously.) Below, we prove that under this assumption,

ψ̂BT (u0, h0) ≥
κcT
√

log T

2
(S.9)

for sufficiently large T , where κ = (
∫
K(ϕ)ϕ2dϕ)/(

∫
K2(ϕ)ϕ2dϕ)1/2. Moreover, by

arguments very similar to those for the proof of Proposition S.1, it follows that

max
(u,h)∈GT

|ψ̂AT (u, h)| = Op(
√

log T ). (S.10)

With the help of (S.9), (S.10) and the fact that λ(h) ≤ λ(hmin) ≤ C
√

log T , we can

infer that

Ψ̂T ≥ max
(u,h)∈GT

|ψ̂BT (u, h)|
σ̂

− max
(u,h)∈GT

{ |ψ̂AT (u, h)|
σ̂

+ λ(h)
}

= max
(u,h)∈GT

|ψ̂BT (u, h)|
σ̂

+Op(
√

log T )
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≥ κcT
√

log T

2σ̂
+Op(

√
log T ) (S.11)

for sufficiently large T . Since qT (α) = O(
√

log T ) for any fixed α ∈ (0, 1), (S.11)

immediately yields that P(Ψ̂T ≤ qT (α)) = o(1), which is the statement of Proposition

3.2.

Proof of (S.9). Write mT ( t
T

) = mT (u0)+m′T (ξu0,t,T )( t
T
−u0), where ξu0,t,T is an inter-

mediate point between u0 and t/T . The local linear weights wt,T (u0, h0) are constructed

such that
∑T

t=1wt,T (u0, h0) = 0. We thus obtain that

ψ̂BT (u0, h0) =
T∑
t=1

wt,T (u0, h0)
( t
T
− u0
h0

)
h0m

′
T (ξu0,t,T ). (S.12)

Moreover, since the kernel K is symmetric and u0 = t/T for some t, it holds that

ST,1(u0, h0) = 0, which in turn implies that

wt,T (u0, h0)
( t
T
− u0
h0

)
= K

( t
T
− u0
h0

)( t
T
− u0
h0

)2/{ T∑
t=1

K2
( t
T
− u0
h0

)( t
T
− u0
h0

)2}1/2

≥ 0. (S.13)

From (S.12), (S.13) and the assumption that m′T (w) ≥ cT
√

log T/(Th30) for all w ∈
[u0 − h0, u0 + h0], we get that

ψ̂BT (u0, h0) ≥ cT

√
log T

Th0

T∑
t=1

wt,T (u0, h0)
( t
T
− u0
h0

)
. (S.14)

Standard calculations exploiting the Lipschitz continuity of the kernel K show that for

any (u, h) ∈ GT and any given natural number `,

∣∣∣ 1

Th

T∑
t=1

K
( t
T
− u
h

)( t
T
− u
h

)`
−
∫ 1

0

1

h
K
(w − u

h

)(w − u
h

)`
dw
∣∣∣ ≤ C

Th
, (S.15)

where the constant C does not depend on u, h and T . With the help of (S.13) and

(S.15), we obtain that for any (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1],

∣∣∣ T∑
t=1

wt,T (u, h)
( t
T
− u
h

)
− κ
√
Th
∣∣∣ ≤ C√

Th
, (S.16)

where the constant C does once again not depend on u, h and T . (S.16) implies that∑T
t=1wt,T (u, h)( t

T
− u)/h ≥ κ

√
Th/2 for sufficiently large T and any (u, h) ∈ GT with

[u−h, u+h] ⊆ [0, 1]. Using this together with (S.14), we immediately obtain (S.9).
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Proof of Proposition 3.3

In what follows, we show that

P(E+
T ) ≥ (1− α) + o(1). (S.17)

The other statements of Proposition 3.3 can be verified by analogous arguments. (S.17)

is a consequence of the following two observations:

(i) For all (u, h) ∈ GT with

∣∣∣ ψ̂T (u, h)− Eψ̂T (u, h)

σ̂

∣∣∣− λ(h) ≤ qT (α) and
ψ̂T (u, h)

σ̂
− λ(h) > qT (α),

it holds that E[ψ̂T (u, h)] > 0.

(ii) For all (u, h) ∈ GT with [u−h, u+h] ⊆ [0, 1], E[ψ̂T (u, h)] > 0 implies that m′(v) > 0

for some v ∈ [u− h, u+ h].

Observation (i) is trivial, (ii) can be seen as follows: Let (u, h) be any point with

(u, h) ∈ GT and [u − h, u + h] ⊆ [0, 1]. It holds that E[ψ̂T (u, h)] = ψ̂BT (u, h), where

ψ̂BT (u, h) has been defined in the proof of Proposition 3.2. As already shown in (S.12),

ψ̂BT (u, h) =
T∑
t=1

wt,T (u, h)
( t
T
− u
h

)
hm′(ξu,t,T ),

where ξu,t,T is some intermediate point between u and t/T . Moreover, by (S.13), it

holds that wt,T (u, h)( t
T
− u)/h ≥ 0 for any t. Hence, E[ψ̂T (u, h)] = ψ̂BT (u, h) can only

take a positive value if m′(v) > 0 for some v ∈ [u− h, u+ h].

From observations (i) and (ii), we can draw the following conclusions: On the event

{
Φ̂T ≤ qT (α)

}
=
{

max
(u,h)∈GT

(∣∣∣ ψ̂T (u, h)− Eψ̂T (u, h)

σ̂

∣∣∣− λ(h)
)
≤ qT (α)

}
,

it holds that for all (u, h) ∈ A+
T with [u − h, u + h] ⊆ [0, 1], m′(v) > 0 for some

v ∈ Iu,h = [u−h, u+h]. We thus obtain that {Φ̂T ≤ qT (α)} ⊆ E+
T . This in turn implies

that

P(E+
T ) ≥ P

(
Φ̂T ≤ qT (α)

)
= (1− α) + o(1),

where the last equality holds by Theorem 3.1.
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Proof of Proposition S.3

The proof makes use of the following three lemmas, which correspond to Lemmas 5–7

in Chernozhukov et al. (2015).

Lemma S.2. Let (W1, . . . ,Wp)
> be a (not necessarily centred) Gaussian random vector

in Rp with Var(Wj) = 1 for all 1 ≤ j ≤ p. Suppose that Corr(Wj,Wk) < 1 whenever

j 6= k. Then the distribution of max1≤j≤pWj is absolutely continuous with respect to

Lebesgue measure and a version of the density is given by

f(x) = f0(x)

p∑
j=1

eE[Wj ]x−E[Wj ]
2/2 P

(
Wk ≤ x for all k 6= j

∣∣Wj = x
)
.

Lemma S.3. Let (W0,W1, . . . ,Wp)
> be a (not necessarily centred) Gaussian random

vector with Var(Wj) = 1 for all 0 ≤ j ≤ p. Suppose that E[W0] ≥ 0. Then the map

x 7→ eE[W0]x−E[W0]2/2 P
(
Wj ≤ x for 1 ≤ j ≤ p

∣∣W0 = x
)

is non-decreasing on R.

Lemma S.4. Let (X1, . . . , Xp)
> be a centred Gaussian random vector in Rp with

max1≤j≤p E[X2
j ] ≤ σ2

X for some σ2
X > 0. Then for any r > 0,

P
(

max
1≤j≤p

Xj ≥ E
[

max
1≤j≤p

Xj

]
+ r
)
≤ e−r

2/(2σ2
X).

The proof of Lemmas S.2 and S.3 can be found in Chernozhukov et al. (2015). Lemma

S.4 is a standard result on Gaussian concentration whose proof is given e.g. in Ledoux

(2001); see Theorem 7.1 therein. We now closely follow the arguments for the proof of

Theorem 3 in Chernozhukov et al. (2015). The proof splits up into three steps.

Step 1. Pick any x ≥ 0 and set

Wj =
Xj − x
σj

+
µ+ x

σ
.

By construction, E[Wj] ≥ 0 and Var(Wj) = 1. Defining Z = max1≤j≤pWj, it holds that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ P

(∣∣∣ max
1≤j≤p

Xj − x
σj

∣∣∣ ≤ δ

σ

)
≤ sup

y∈R
P
(∣∣∣ max

1≤j≤p

Xj − x
σj

+
µ+ x

σ
− y
∣∣∣ ≤ δ

σ

)
= sup

y∈R
P
(
|Z − y| ≤ δ

σ

)
.

Step 2. We now bound the density of Z. Without loss of generality, we assume that
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Corr(Wj,Wk) < 1 for k 6= j. The marginal distribution of Wj is N(νj, 1) with νj =

E[Wj] = (µj/σj +µ/σ)+(x/σ−x/σj) ≥ 0. Hence, by Lemmas S.2 and S.3, the random

variable Z has a density of the form

fp(z) = f0(z)Gp(z), (S.18)

where the map z 7→ Gp(z) is non-decreasing. Define Z = max1≤j≤p(Wj − E[Wj]) and

set z = 2µ/σ + x(1/σ − 1/σ) such that E[Wj] ≤ z for any 1 ≤ j ≤ p. With these

definitions at hand, we obtain that∫ ∞
z

f0(u)duGp(z) ≤
∫ ∞
z

f0(u)Gp(u)du = P(Z > z)

≤ P (Z > z − z) ≤ exp
(
−

(z − z − E[Z])2+
2

)
,

where the last inequality follows from Lemma S.4. Since Wj − E[Wj] = (Xj − µj)/σj,
it holds that

E[Z] = E
[

max
1≤j≤p

{Xj − µj
σj

}]
=: ap.

Hence, for every z ∈ R,

Gp(z) ≤ 1

1− F0(z)
exp

(
−

(z − z − ap)2+
2

)
. (S.19)

Mill’s inequality states that for z > 0,

z ≤ f0(z)

1− F0(z)
≤ z

1 + z2

z2
.

Since (1 + z2)/z2 ≤ 2 for z ≥ 1 and f0(z)/{1− F0(z)} ≤ 1.53 ≤ 2 for z ∈ (−∞, 1), we

can infer that
f0(z)

1− F0(z)
≤ 2(z ∨ 1) for any z ∈ R.

This together with (S.18) and (S.19) yields that

fp(z) ≤ 2(z ∨ 1) exp
(
−

(z − z − ap)2+
2

)
for any z ∈ R.

Step 3. By Step 2, we get that for any y ∈ R and u > 0,

P(|Z − y| ≤ u) =

∫ y+u

y−u
fp(z)dz ≤ 2u max

z∈[y−u,y+u]
fp(z) ≤ 4u(z + ap + 1),

where the last inequality follows from the fact that the map z 7→ ze−(z−a)
2/2 (with

a > 0) is non-increasing on [a + 1,∞). Combining this bound with Step 1, we further
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obtain that for any x ≥ 0 and δ > 0,

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ 4δ

{2µ

σ
+ |x|

( 1

σ
− 1

σ

)
+ ap + 1

}/
σ. (S.20)

This inequality also holds for x < 0 by an analogous argument, and hence for all x ∈ R.

Now let 0 < δ ≤ σ and define bp = Emax1≤j≤p{Xj − µj}. For any |x| ≤ δ + µ + bp +

σ
√

2 log(σ/δ), (S.20) yields that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ 4δ

σ

{
µ
( 3

σ
− 1

σ

)
+ ap +

( 1

σ
− 1

σ

)
bp

+
(σ
σ
− 1
)√

2 log
(σ
δ

)
+ 2− σ

σ

}
≤ Cδ

{
µ+ ap + bp +

√
1 ∨ log(σ/δ)

}
(S.21)

with a sufficiently large constant C > 0 that depends only on σ and σ. For |x| ≥
δ + µ+ bp + σ

√
2 log(σ/δ), we obtain that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ δ

σ
, (S.22)

which can be seen as follows: If x > δ + µ, then |maxj Xj − x| ≤ δ implies that

|x| − δ ≤ maxj Xj ≤ maxj{Xj −µj}+µ and thus maxj{Xj −µj} ≥ |x| − δ−µ. Hence,

it holds that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ P

(
max
1≤j≤p

{
Xj − µj} ≥ |x| − δ − µ

)
. (S.23)

If x < −(δ + µ), then |maxj Xj − x| ≤ δ implies that maxj{Xj − µj} ≤ −|x| + δ + µ.

Hence, in this case,

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ P

(
max
1≤j≤p

{
Xj − µj} ≤ −|x|+ δ + µ

)
≤ P

(
max
1≤j≤p

{
Xj − µj} ≥ |x| − δ − µ

)
, (S.24)

where the last inequality follows from the fact that for centred Gaussian random vari-

ables Vj and v > 0, P(maxj Vj ≤ −v) ≤ P(V1 ≤ −v) = P (V1 ≥ v) ≤ P(maxj Vj ≥ v).

With (S.23) and (S.24), we obtain that for any |x| ≥ δ + µ+ bp + σ
√

2 log(σ/δ),

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ P

(
max
1≤j≤p

{
Xj − µj} ≥ |x| − δ − µ

)
≤ P

(
max
1≤j≤p

{
Xj − µj

}
≥ E

[
max
1≤j≤p

{
Xj − µj

}]
+ σ
√

2 log(σ/δ)
)
≤ δ

σ
,

the last inequality following from Lemma S.4. To sum up, we have established that for
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any 0 < δ ≤ σ and any x ∈ R,

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ
)
≤ Cδ

{
µ+ ap + bp +

√
1 ∨ log(σ/δ)

}
(S.25)

with some constant C > 0 that does only depend on σ and σ. For δ > σ, (S.25) trivially

follows upon setting C ≥ 1/σ. This completes the proof.

S.2 Proofs of the results from Section 4

In what follows, we prove Proposition 4.1 from Section 4. The notation is the same as

in the previous section. In particular, we use the symbol C to denote a generic constant

which may take a different value on each occurrence.

Auxiliary results

To start with, we derive some auxiliary results needed for the proof of Proposition 4.1.

The first lemma analyses the term

ξ(`1, `2, L) =
1

T − L

T∑
t=L+1

εt−`1εt−`2 ,

where `1, `2 and L are natural numbers with 0 ≤ `1, `2 ≤ L that may depend on the

sample size T , that is, L = LT as well as `1 = `1,T and `2 = `2,T .

Lemma S.5. For any L = LT with LT/T → 0, it holds that

E
[{
ξ(`1, `2, L)− γε(`2 − `1)

}2]
= O(T−1),

where γε(`) = Cov(εt, εt−`).

Proof of Lemma S.5. Since the variables εt have the expansion εt =
∑∞

k=0 ckηt−k and

γε(`) = (
∑∞

k=0 ckck+`)ν
2, it holds that

E
[
ξ2(`1, `2, L)

]
=

1

(T − L)2

T∑
t,t′=L+1

E
[
εt−`1εt−`2εt′−`1εt′−`2

]
,

where

E
[
εt−`1εt−`2εt′−`1εt′−`2

]
=
( ∞∑
k=0

ckck+`1−`2ck+t′−tck+t′−t+`1−`2

)
κ+

( ∞∑
k=0

ckck+`1−`2

)2
ν4

+
( ∞∑
k=0

ckck+t′−t

)2
ν4 +

( ∞∑
k=0

ckck+t′−t−`1+`2

)( ∞∑
k=0

ckck+t′−t+`1−`2

)
ν4

11



=
( ∞∑
k=0

ckck+`1−`2ck+t′−tck+t′−t+`1−`2

)
κ+ γ2ε (`1 − `2)

+ γ2ε (t
′ − t) + γε(t

′ − t− `1 + `2)γε(t
′ − t+ `1 − `2)

with κ = E[η40]− 3ν4 and ck = 0 for k < 0. Noting that

E
[{
ξ(`1, `2, L)− γε(`1 − `2)

}2]
= E

[
ξ2(`1, `2, L)

]
− γ2ε (`1 − `2),

we can infer that

E
[{
ξ(`1, `2, L)− γε(`1 − `2)

}2]
=

1

(T − L)2

T∑
t,t′=L+1

( ∞∑
k=0

ckck+`1−`2ck+t′−tck+t′−t+`1−`2

)
κ+

1

(T − L)2

T∑
t,t′=L+1

γ2ε (t
′ − t)

+
1

(T − L)2

T∑
t,t′=L+1

γε(t
′ − t− `1 + `2)γε(t

′ − t+ `1 − `2)

= O(T−1),

the last equality following from the fact that the autocovariances γε(`) are absolutely

summable and the coefficients ck decay exponentially fast to zero.

We next show that the empirical autocovariances

γ̂q(`) =
1

T − q

T∑
t=q+`+1

∆qYt,T ∆qYt−`,T

of the process {∆qYt,T} have the following property.

Lemma S.6. For any q = qT with qT/
√
T → 0 and any 1 ≤ ` ≤ p+ 1, it holds that

γ̂q(`)− γq(`) = Op(T
−1/2),

where γq(`) = Cov(∆qεt,∆qεt−`).

Proof of Lemma S.6. To analyse the term γ̂q(`), we decompose it as follows:

γ̂q(`) = γ̂∗q (`) +RA +RB +RC ,

where

γ̂∗q (`) =
1

T − q

T∑
t=q+`+1

∆qεt ∆qεt−`

as well as RA = (T − q)−1
∑T

t=q+`+1 ∆qmt∆qεt−`, RB = (T − q)−1
∑T

t=q+`+1 ∆qεt∆qmt−`

and RC = (T − q)−1
∑T

t=q+`+1 ∆qmt∆qmt−` with ∆qmt = m( t
T

) − m( t−q
T

). With the

12



help of Lemma S.5, it is straightforward to show that

γ̂∗q (`)− γq(`) = Op(T
−1/2).

Moreover, the Cauchy-Schwarz inequality yields that

E[R2
A] ≤

{ 1

T − q

T∑
t=q+`+1

(∆qmt)
2
}
E
[ 1

T − q

T∑
t=q+`+1

(∆qεt−`)
2
]
.

Since m is Lipschitz by assumption, we get that (T−q)−1
∑T

t=q+`+1(∆qmt)
2 ≤ C(q/T )2.

In addition, it obviously holds that E[(T − q)−1
∑T

t=q+`+1(∆qεt−`)
2] = O(1). Hence, we

can infer that

E[R2
A] = O

({ q
T

}2)
,

which implies that RA = op(T
−1/2). Similar arguments yield that Rj = op(T

−1/2) for

j = B,C as well. Putting everything together, we arrive at the statement of Lemma

S.6.

Proof of Proposition 4.1

We first show that the pilot estimator ãq converges to a. In particular, we verify

that ãq − a = Op(T
−1/2). By Lemma S.6, it holds that Γ̂q = Γq + Op(T

−1/2) and

γ̂q = γq +Op(T
−1/2). Since Γq is invertible, this implies that

ãq = Γ−1q γq +Op(T
−1/2).

With the help of equation (4.10), we can further infer that

ãq − a = −ν2Γ−1q cq +Op(T
−1/2).

As already noted in Section 4.2, the entries of the vector cq = (cq−1, . . . , cc−p)
> decay

exponentially fast to zero, that is, |ck| ≤ Cρk for some 0 < ρ < 1. Moreover, it holds

that γq(`) → 2γε(`) for any fixed ` as q → ∞. Consequently, ‖ν2Γ−1q cq‖∞ = o(T−1/2),

where ‖ · ‖∞ denotes the usual supremum norm for vectors. As a result, we obtain that

ãq − a = Op(T
−1/2).

We next show that âr − a = Op(T
−1/2), where r ≥ 1 is any fixed integer that does not

grow with the sample size T . By definition, it holds that âr = Γ̂
−1
r (γ̂r + ν̃2c̃r). From

Lemma S.6, it follows that Γ̂
−1
r = Γ−1r +Op(T

−1/2) and γ̂r = γr+Op(T
−1/2). Moreover,

with the help of the fact that ãq − a = Op(T
−1/2), it is straightforward to verify that

ν̃2 − ν2 = Op(T
−1/2) and c̃r − cr = Op(T

−1/2). Hence, we arrive at

âr = Γ−1r (γr + ν2cr) +Op(T
−1/2) = a+Op(T

−1/2), (S.26)
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where the last equality is due to equation (4.10).

From (S.26), it immediately follows that â−a = Op(T
−1/2), which in turn allows us to

infer that ν̂2− ν2 = Op(T
−1/2) and σ̂2 = σ2 +Op(T

−1/2) by straightforward arguments.

S.3 Robustness checks and implementation details

for the simulations in Section 5

Robustness checks for Section 5.3

In what follows, we carry out some robustness checks to assess how sensitive the esti-

mators â and σ̂2 are to the choice of the tuning parameters q and r. To do so, we repeat

the simulation exercises of Section 5.3 for different values of q and r. In addition, we

consider different choices of the tuning parameters (m1,m2) on which the estimators of

Hall and Van Keilegom (2003) depend. As in Section 5.3, we choose m1 and m2 such

that q lies between these values. We thus keep the parameters q and (m1,m2) roughly

comparable.

To start with, we consider the simulation scenarios with a moderate trend (sβ = 1).

The MSE values of the estimators â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle for these scenarios

are presented in Figure 3 of Section 5.3. These MSEs are re-calculated in Figures S.1

and S.2 for a range of different choices of q, r and (m1,m2). As one can see, the MSEs

in the different plots of Figures S.1 and S.2 are very similar. Hence, the MSE results

reported in Section 5.3 for the scenarios with a moderate trend appear to be fairly

robust to different choices of the tuning parameters. In particular, our estimators â

and σ̂2 seem to be quite insensitive to the choice of tuning parameters, at least as far

as their MSEs are concerned.

We next turn to the simulation designs with a pronounced trend (sβ = 10). The MSE

values of the estimators in these scenarios are reported in Figure 4 of Section 5.3.

Analogously as before, we re-calculate these MSEs for different tuning parameters in

Figures S.3–S.5. Figure S.4 is a zoomed-in version of Figure S.3 which is added for

better visibility. As can be seen, our estimators appear to be barely influenced by the

choice of q. However, the MSE values become somewhat larger when r is chosen bigger.

This is of course not very surprising: The main reason why the estimator â works well

in the presence of a strong trend is that it is only based on differences of small orders.

If we increase r, we use larger differences to compute â, which results in not eliminating

the trend m appropriately any more. This becomes visible in somewhat larger MSE

values. Nevertheless, overall, our estimators appear not to be strongly influenced by

the choice of tuning parameters (in terms of MSE) as long as these are chosen within

reasonable bounds.
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Figure S.1: MSE values for the estimators â, âHvK and âoracle in the scenario with a moderate
trend (sβ = 1).

15



−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 20, r = 10, (m1, m2) = (15,25)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 20, r = 15, (m1, m2) = (15,25)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 25, r = 10, (m1, m2) = (20,30)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 25, r = 15, (m1, m2) = (20,30)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 30, r = 10, (m1, m2) = (25,35)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 30, r = 15, (m1, m2) = (25,35)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 35, r = 10, (m1, m2) = (30,40)

−
5

0
5

10

a1

lo
g(

M
S

E
)

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

−0.95 −0.75 −0.5 −0.25 0.25 0.5 0.75 0.95

σ2

σHvK
2

σoracle
2

q = 35, r = 15, (m1, m2) = (30,40)

Figure S.2: Logarithmic MSE values for the estimators σ̂2, σ̂2HvK and σ̂2oracle in the scenario
with a moderate trend (sβ = 1).
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Figure S.3: MSE values for the estimators â, âHvK and âoracle in the scenario with a pronounced
trend (sβ = 10).
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Figure S.4: MSE values for the estimators â, âHvK and âoracle in the scenario with a pronounced
trend (sβ = 10). The plots are zoomed-in versions of the respective plots in Figure S.3.
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Figure S.5: Logarithmic MSE values for the estimators σ̂2, σ̂2HvK and σ̂2oracle in the scenario
with a pronounced trend (sβ = 10).
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Implementation of SiZer in Section 5.2

The SiZer methods for the comparison study in Section 5.2 are implemented as follows:

(a) Computation of the grid G∗T :

To start with, we compute the variance of Ȳ = T−1
∑T

t=1 Yt,T , which is given by

Var(Ȳ ) =
γε(0)

T
+

2

T

T−1∑
k=1

(
1− k

T

)
γε(k).

Since the autocovariance function γε(·) is known by assumption, we can calculate

the value of Var(Ȳ ) by using the formula γε(k) = ν2a
|k|
1 /(1− a21) together with the

true parameters a1 and ν2 = E[η2t ]. We next compute

T ∗ =
γε(0)

Var(Ȳ )
,

which can be interpreted as a measure of information in the data. For each point

(u, h) ∈ GT from (5.1), we finally calculate the effective sample size for dependent

data

ESS∗(u, h) =
T ∗

T

∑T
t=1Kh(t/T − u)

Kh(0)

with Kh(v) = h−1K(v/h) and set G∗T = {(u, h) ∈ GT : ESS∗(u, h) ≥ 5}.

(b) Computation of the local linear estimators and their standard deviations:

For each (u, h) ∈ G∗T , we compute a standard local linear estimator m̂′h(u) of the

derivative m′(u) together with its standard deviation sd(m̂′h(u)). The latter is given

by sd(m̂′h(u)) = {Var(m̂′h(u))}1/2, where Var(m̂′h(u)) = e>V e with e = (0 1)> and

V = (XTWX)−1(XTΣX)(XTWX)−1.

The matrices X, W and Σ are defined as follows: Σ is a T × T matrix with the

elements

Σst = γε(s− t)Kh

( s
T
− u
)
Kh

( t
T
− u
)
,

W is a T × T diagonal matrix with the diagonal entries Kh(t/T − u) and

X =


1 (1/T − u)

1 (2/T − u)
...

...

1 (1− u)

 .
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(c) Computation of the confidence intervals:

For a given confidence level α and for each bandwidth value h with (u, h) ∈ G∗T , we

compute the quantile

q(h) = Φ−1
((

1− α

2

)1/(θg))
,

where Φ is the distribution function of a standard normal random variable, g is

the number of locations u in the grid GT , and the cluster index θ is defined on

p.1519 in Park et al. (2009). The confidence interval of m̂′h(u) is then computed as

[m̂′h(u)− q(h) sd(m̂′h(u)), m̂′h(u) + q(h) sd(m̂′h(u))].
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