
Simulation Study

Simulated Models

Consider the nonparametric model

Xt,T = m
( t
T
,Xt−1,T

)
+ εt (1)

and the additive framework

Xt,T = m
( t
T
,Xt−1,T

)
+ g
( t
T
,Xt−2,T

)
+ εt (2)

with

m(u, x) = 1.5(1 + u) cos(0.25πx)

g(u, x) = 0.5ux

and residuals εt that are i.i.d. standard normally distributed. With the help of a

Monte Carlo experiment, I now tackle the question whether the asymptotic normality

result

QT (u, x) :=
√
Thuhx

(
m̂(u, x)−m(u, x)

) d−→ N(Bu,x, Vu,x) (3)

gives a good approximation to the distribution of QT (u, x) in small samples. Here,

m̂(u, x) is either the NW estimate of m(u, x) in (1) or the smooth backfitting estimate

of m(u, x) in (2), depending on which model we are talking about. Moreover, Bu,x

and Vu,x are the corresponding asymptotic bias and variance expressions. Finally, hu

denotes the bandwidth in time direction and hx the bandwidth in the direction of

the regressor Xt−1,T .

Remark 1. Model (1) belongs to the tvNAR framework introduced in Section 3. Note

however that the regression function m does not fulfill condition (M3). In particular,

there is no real constant K1 with |∂m(u, x)| ≤ δ < 1 for all u ∈ [0, 1] and |x| > K1,

where ∂m is the derivative of m with respect to x. To fix this problem, m may be

replaced by the function

mτ (u, x) =

1.5(1 + u) cos(0.25πx) for u ∈ [0, 1] and |x| ≤ τ := 8 · 10n

1.5(1 + u) for u ∈ [0, 1] and |x| > τ := 8 · 10n,

which fulfills (M1)–(M3). If we take n very large (say 100), then the simulated process

(1) will virtually never wander into the region where mτ differs from m (at least not

for any practically relevant sample size). Thus, the difference between m and mτ can

be completely ignored in the simulation. This shows that from a practical point of

view, (M3) is not a very harsh assumption and can usually be assumed to hold. (A

similar point can be made with respect to the boundedness assumption (M1).)
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Remark 2. Model (2) also belongs to the tvNAR framework. Similarly as above, m

and g may be replaced by a pair of functions that fulfill the main conditions of the

theory.

Remark 3. The constants which show up in the function m (and in g) influence the

signal-to-noise ratio in the models. For example, if the constant 1.5 in the function m

of model (1) is replaced by a smaller/larger constant, then the variation of the signal

m( t
T
, Xt−1,T ) gets smaller/larger compared to the variation of the error term, and thus

the signal-to-noise ratio decreases/increases. I have tried to choose the constants in a

way that yields a reasonable signal-to-noise ratio. In particular, the standard devia-

tion of the signal (which is m( t
T
, Xt−1,T ) in model (1) and m( t

T
, Xt−1,T )+g( t

T
, Xt−2,T )

in model (2)) amounts to roughly 1.5 locally around the time point u = 0.5 where

estimation is performed in what follows. This compares to a standard deviation of

the error term which equals 1.

Simulation Setup

For each of the two models, I simulate N = 1000 samples of size T , considering four

different lengths T = 500, 1000, 1500, 2000. To exclude boundary effects, I examine

the normality result (3) at a point (u, x) which lies more or less in the center of the

data support both in time direction and in the direction of Xt−1,T . In particular, I

pick u = 0.5 and x = 0. Given this, I proceed as follows:

(i) For each sample, I calculate m̂(u, x) and use this estimate to compute the term

of interest QT (u, x). This provides me with N sample values of QT (u, x). I

then calculate the empirical distribution from these N values. This yields a

simulated version of the distribution of QT (u, x).

(ii) To compare the (simulated) distribution of QT (u, x) with its normal limit, I

compute the bias Bu,x and the variance Vu,x of the latter.

To calculate Vu,x, I need to estimate the density f(u, x) of the approximating

variables Xt(u). All other terms occurring in Vu,x are known. To get a precise

estimate of f(u, x), I simulate a long sample of the process {Xt(u)} (of size

50000) and calculate the kernel density from it.

To calculate the asymptotic bias of the NW estimate, I neglect the terms that

depend on the first derivatives of f(u, x) (see the formula in Theorem 4.3).

As the remaining terms are all known, the bias can then be computed without

performing any estimation. The same term is used as a proxy for the asymptotic

bias in the smooth backfitting case. In my simulation setup, this should be a fair

choice for the following reason: The main ingredient of the asymptotic bias of

the backfitting estimates is an additive projection of the function β specified in

Lemma C4. Neglecting the components of β that depend on the first derivatives
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of the density p(u, x), this projection is identical to the bias approximation used

in the NW case.

There are different reasons why the normal limit in (3) may be a poor approximation

of the (simulated) distribution of QT (u, x):

(a) The distribution of QT (u, x) is highly non-normal.

(b) The distribution of QT (u, x) is approximately normal but E[QT (u, x)] strongly

differs from Bu,x.

(c) The distribution of QT (u, x) is approximately normal but Var(QT (u, x)) strongly

differs from Vu,x.

To discern between these different reasons, I examine the following three issues:

(a) I check whether the standardized version of QT (u, x) is approximately standard

normal, i.e. I check whether the result

QT (u, x)− E[QT (u, x)]√
Var(QT (u, x))

d−→ N(0, 1)

is approximately true in small samples.

(b) I check whether Bu,x is a reasonable approximation of E[QT (u, x)].

(c) I check whether Vu,x is a reasonable approximation of Var(QT (u, x)).

Results for Model (1)

The results were produced using an Epanechnikov kernel and bandwidth vectors of

the form

(hu, hx) = (hu(λ), hx(λ))

with

hu(λ) = λT−1/6 and hx(λ) = sXλT
−1/6.

Here, λ takes the values 0.3, 0.5, 0.7 and 0.9. Moreover, sX measures how large the

support of the covariate observations is. In particular, I let sX = (q99− q1), where qα

is the average of the α%-quantiles of the simulated samples. (For the sample size T =

1000, for instance, these definitions yield the bandwidths hu ≈ 0.09, 0.15, 0.22, 0.28

and hx = sXhu with sX ≈ 8.) Note that the bandwidths shrink by a factor of T−1/6

as the sample size increases. This reflects the fact that they are theoretically of the

order O(T−1/6).

I first report the results on issue (a). Figure 1 compares the (simulated) quantiles

of the standardized version of QT (u, x) with the theoretical quantiles of a standard

normal law.
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Figure 1: Quantile-quantile plots for different bandwidths and sample sizes. The plots

compare the (simulated) quantiles of the standardized version of QT (u, x) (y-axis) with the

theoretical quantiles of a standard normal distribution (x-axis).

As can be seen, the quantiles of a standard normal distribution match the quantiles

of the standardized version of QT (u, x) pretty well even for small sample sizes. The

only noticeable deviations occur for very extreme quantiles. Thus, a standard normal

distribution appears to be a reasonable approximation.

I next turn to the issues (b) and (c), i.e. I compare the mean BT = E[QT (u, x)]

and the variance VT = Var(QT (u, x)) with their asymptotic counterparts B∞ = Bu,x

and V∞ = Vu,x. Note that the asymptotic bias B∞ in Table 1 varies for different

bandwidths and sample sizes. The reason is that it depends on the constant ch which

is defined as the limit of Th6 in Theorem 4.3. In the simulations, ch is approximated

by the value of Th6.
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λ = 0.3

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -0.513 -0.587 0.075 1.994 2.026 -0.032

T = 1000 -0.605 -0.607 0.002 1.928 2.026 -0.098

T = 1500 -0.671 -0.610 -0.061 1.969 2.026 -0.057

T = 2000 -0.611 -0.613 0.003 1.941 2.026 -0.085

λ = 0.5

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -2.626 -2.719 0.093 1.979 2.026 -0.047

T = 1000 -2.745 -2.809 0.064 1.907 2.026 -0.119

T = 1500 -2.867 -2.825 -0.042 1.992 2.026 -0.034

T = 2000 -2.766 -2.838 0.073 2.034 2.026 0.009

λ = 0.7

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -6.841 -7.461 0.620 2.146 2.026 0.121

T = 1000 -7.233 -7.708 0.476 2.066 2.026 0.041

T = 1500 -7.516 -7.752 0.236 2.049 2.026 0.024

T = 2000 -7.456 -7.789 0.333 2.047 2.026 0.022

λ = 0.9

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -13.36 -15.86 2.493 2.100 2.026 0.075

T = 1000 -14.45 -16.38 1.938 1.997 2.026 -0.026

T = 1500 -14.98 -16.48 1.495 2.035 2.026 0.010

T = 2000 -15.10 -16.55 1.452 2.040 2.026 0.015

Table 1: Comparison of the mean BT and the variance VT with their asymptotic counter-

parts B∞ and V∞ for different bandwidths and sample sizes.

The tables show that the variance VT is pretty well approximated by the limit expres-

sion V∞ for most bandwidths. Only if the estimate m̂(u, x) is strongly oversmoothed

(i.e. in the case with λ = 0.9), the approximation gets considerably worse. Moreover,

the values of VT can overall be seen to get closer to the limit point V∞ as the sample

size increases. A similar picture arises for the mean BT . The latter is reasonably

close to B∞ as long as m̂(u, x) is not strongly oversmoothed. In addition, the values

of BT can again be seen to tend to the limit B∞ as T gets larger.
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Results for Model (2)

The results for model (2) are presented in exactly the same way as those for model

(1). For the estimation, I again use an Epanechnikov kernel and the bandwidth

vectors from the NW case. To keep the results easily presentable, the bandwidth

in the direction of the second covariate Xt−2,T is fixed throughout. In particular, I

choose it as 0.9sXT
−1/6 which gives a good fit of the function g.

I start with the discussion of issue (a). Figure 2 shows that similarly to the findings

for model (1), the distribution of the normalized variables QT (u, x) is reasonably well

approximated by a standard normal law.
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Figure 2: Quantile-quantile plots for different bandwidths and sample sizes. The values on

the y-axis give the (simulated) quantiles of the standardized version of QT (u, x).

I next compare the bias BT and the variance VT to their limits B∞ and V∞. The

findings are again similar to those for model (1): On the whole, BT and VT are

reasonably close to their limits as long as the bandwidths are not chosen too large.
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λ = 0.3

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -0.853 -0.758 -0.095 2.066 2.148 -0.082

T = 1000 -0.843 -0.793 -0.050 2.060 2.148 -0.088

T = 1500 -0.929 -0.805 -0.124 2.082 2.148 -0.066

T = 2000 -0.972 -0.806 -0.166 2.048 2.148 -0.010

λ = 0.5

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -3.580 -3.561 -0.019 2.151 2.148 0.004

T = 1000 -3.797 -3.659 -0.138 1.983 2.148 -0.165

T = 1500 -4.017 -3.729 -0.289 2.226 2.148 0.079

T = 2000 -4.103 -3.741 -0.362 2.173 2.148 0.026

λ = 0.7

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -9.079 -9.764 0.686 2.172 2.148 0.025

T = 1000 -9.768 -10.07 0.306 2.119 2.148 -0.029

T = 1500 -10.23 -10.24 0.010 2.283 2.148 0.136

T = 2000 -10.50 -10.28 -0.216 2.217 2.148 0.070

λ = 0.9

BT B∞ BT −B∞ VT V∞ VT − V∞
T = 500 -17.53 -20.81 3.281 2.139 2.148 -0.009

T = 1000 -19.05 -21.46 2.417 2.161 2.148 0.014

T = 1500 -19.98 -21.82 1.842 2.258 2.148 0.111

T = 2000 -20.54 -21.84 1.292 2.133 2.148 -0.015

Table 2: Comparison of the mean BT and the variance VT with their asymptotic counter-

parts B∞ and V∞ for different bandwidths and sample sizes.

To sum up, the simulations show that both in the NW and the smooth backfitting

case, the asymptotic normality result (3) gives a reasonable approximation in small

samples (at least for the models considered). However, one can also see that the

results are sensitive to the choice of bandwidths to a certain extent. This indicates

that an appropriate choice is crucial when applying the normality result (3). Some

ideas how to select the bandwidths in my model framework can be found in my replies

to the referee reports and in Section 6 of the paper.
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