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Abstract

This paper develops methodology for semiparametric panel data models in a set-

ting where both the time series and the cross section are large. Such settings are

common in finance and other areas of economics. Our model allows for hetero-

geneous nonparametric covariate effects as well as unobserved time and individual

specific effects that may depend on the covariates in an arbitrary way. To model

the covariate effects parsimoniously, we impose a dimensionality reducing common

component structure on them. In the theoretical part of the paper, we derive the

asymptotic theory for the proposed procedure. In particular, we provide the con-

vergence rates and the asymptotic distribution of our estimators. In the empirical

part, we apply our methodology to a specific application that has been the subject

of recent policy interest, that is, the effect of trading venue fragmentation on market

quality. We use a unique dataset that reports the location and volume of trading on

the FTSE350 companies from 2008 to 2011 at the weekly frequency. We find that

the effect of fragmentation on market quality is nonlinear and non-monotonic. The

implied quality of the market under perfect competition is superior to that under

monopoly provision, but the transition between the two is complicated.
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1 Introduction

In this paper, we develop estimation methodology for semiparametric panel models in a

setting where both the time series and the cross section dimension are large. Such settings

have become increasingly common over the last couple of years. In particular, they

are frequently encountered in finance and various areas of economics such as industrial

organization or labour economics. Cheng Hsiao has been a pioneer in the development of

panel data techniques and his monograph (1986, 2003) contains the main methodological

background for our work.

We investigate a regression model which has a nonparametric covariate effect along

with individual and time specific fixed effects. The covariate effect is allowed to be hetero-

geneous across individuals, which is feasible given the long time series we are assuming.

To restrict the heterogeneity to be of low dimension, we propose a common component

structure on the model. In particular, we assume the individual covariate effects to be

composed of a finite number of unknown functions that are the same across individu-

als but loaded up differently for each cross-sectional unit. The covariate effects are thus

modelled as linear combinations of a small number of common functions. The individual

and time specific effects of the model are allowed to be related to the covariate in quite

a general way. This allows a potential channel for endogeneity, which is important in

many applications. We recognize that the endogeneity that is permitted is rather limited,

but we remark that this type of restriction is extremely widely exploited in empirical

microeconomics, see Angrist and Pischke (2009, Chapter 5). A rigorous formulation of

the model together with a detailed description of its components is given in Section 2.

The issue of identifying the various model components is discussed in Section 3.

Our model can be regarded as an intermediate case between two extremes. The one

extreme is the homogeneous model, where the covariate effect is the same for each cross-

sectional unit. This is a very common framework which has been investigated in various

parametric and semiparametric studies, see for example Hsiao (1986). In a wide range of

applications, it is however rather unrealistic to assume that the covariate effect is the same

for all individuals. On the other extreme end, there is the fully flexible model without

any restrictions on the covariate effects. One example is the classical SURE model. More

recently, Chen, Gao, and Li (2012) among others have studied a semiparametric version

of this very general framework. Even though it is highly flexible, it is however not well

suited to some applications. In particular, if the number of individuals is in the hundreds

or thousands, the estimation output consists of a huge number of individual functions.

This makes the model hardly interpretable. Furthermore, the estimation precision may

be very low. Our model lies between these two extremes and allows the user to select the

degree of flexibility appropriate for the given application.

Our setting falls in the class of semiparametric panel data models for large cross-section

and long time series. Most of the models proposed in the literature for this type of panel

data are essentially parametric. Some important papers include Phillips and Moon (1999),
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Bai and Ng (2002), Bai (2003, 2004), and Pesaran (2006). These authors have addressed

a variety of issues including nonstationarity, estimation of unobserved factors, and model

selection. Most of the work on semiparametric panel models is in the context of short

time series, see for example Kyriazidou (1997). Nonparametric additive models have been

considered for instance in Porter (1996). More recent articles include Mammen, Støve,

and Tjøstheim (2009), Qian and Wang (2011), and Hoderlein, Mammen, and Yu (2011).

Only recently, there have been a number of contributions to the non- and semipara-

metric literature on panels with large cross-section and time series dimension. Linton,

Nielsen, and Nielsen (2009) consider estimation of a fixed effect time series. Atak, Linton,

and Xiao (2011) are concerned with seasonality and trends in a panel setting; see also Li,

Chen, and Gao (2013a). Connor, Hagmann, and Linton (2012) consider a semiparametric

additive panel model for stock returns driven by observable covariates and unobservable

“factor returns”. They allow weak dependence in both time and cross-section direction,

but the covariates are not time-varying and there is no individual effect. This model is

suited for their application but does not allow a channel for endogeneity. The estimation

method is made simpler by the fact that each additive term has a different covariate,

whereas the common functions in our model all have the same covariate. Finally, Kneip,

Sickles, and Song (2012) consider a model similar to ours except that they focus on time

as the key nonparametric covariate.

In Section 8, we apply our methods to an empirical question of recent interest for policy

makers and in academic research, that is, the effect of trading venue fragmentation on

market quality. In 2007, the monopoly of primary European exchanges such as the London

stock exchange was ended by the “Markets in Financial Instruments Directive”. Since

then, various new trading platforms have emerged and competed for trading volume. We

investigate whether this competition has led to improved market quality for participants.

It has been argued that High Frequency Trading has been a major beneficiary of the

market fragmentation, and that this affects both the amount of fragmentation as well as

the quality of the market outcomes.1 Our model allows for this endogeneity channel by

treating this unobservable as part of the individual and time effects. It also allows for

heterogeneous nonlinear covariate effects of fragmentation on market quality, which we

think are important for capturing the relationship of interest in an adequate way. We use

a unique weekly dataset on the location and volume of trading for FTSE 100 and FTSE

250 companies over the period from 2008 to 2011, as well as publicly available measures

of market quality. To summarize the results, we find that the effect of fragmentation

on market quality is nonlinear and non-monotonic. The implied quality of the market

under perfect competition is superior to that under monopoly provision, but the transition

between the two regimes is complicated. Our model and procedures may also be applied

in many other contexts in economics and finance.

1See the UK government project ”The future of computer based trading in financial mar-
kets” for a full description of High Frequency Trading and related concepts. www.bis.gov.uk/

foresight/our-work/projects/current-projects/computer-trading.
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Our method to estimate the common functions and the parameter vectors which consti-

tute the individual covariate effects is introduced in Section 4. The asymptotic properties

of the estimators are described in Section 5. In Subsection 5.2, we derive the uniform con-

vergence rates as well as an asymptotic normality result for our estimators of the common

functions. Importantly, the estimators can be shown to converge to the true functions at

the uniform rate
√

log nT/nTh which is based on the pooled number of data points nT

with n being the cross-section dimension and T the length of the time series. Intuitively,

this fast rate is possible to achieve because the functions are the same for all individuals.

This allows us to base our estimation procedure on information from the whole panel

rather than on a single time series corresponding to a specific individual. In Subsection

5.3, we investigate the asymptotic behaviour of our parameter estimators. In particular,

we show that they are asymptotically normal. As will turn out, the parameters are esti-

mated with the same precision as in the case where the common functions are known. In

particular, our estimators have the same asymptotic distribution as the oracle estimators

constructed under the assumption that the functions are observed. To investigate the

small sample performance of our estimation procedures, we conduct a series of simulation

experiments. Overall, our procedures work well even for quite small sample sizes. For

reasons of brevity, the detailed results are reported in the supplementary material.

To keep the arguments and discussion as simple as possible, we derive our estimation

procedure as well as the asymptotic results under the simplifying assumption that the

number of common functions is known. In Sections 6 and 7, we explain how to dispense

with this assumption. In particular, we provide a simple rule to select the number of

unknown common functions. This complements our estimation procedure and makes it

ready to apply to real data.

2 The model

In this section, we provide a detailed description of our model framework. We observe

a sample of panel data {(Yit, Xit) : i = 1, . . . , n, t = 1, . . . , T}, where i denotes the i-

th individual and t is the time point of observation. To keep the notation as simple as

possible, we assume that both the variables Yit and Xit are real-valued and focus on the

case of a balanced panel.

The data are assumed to come from the model

Yit = µ0 + αi + γt +mi(Xit) + εit, (1)

where E[εit|Xit] = 0. Here, mi are nonparametric functions which capture the covariate

effect, µ0 is the model constant and the variables εit are idiosyncratic error terms. The

expressions αi and γt are unobserved individual and time specific effects, respectively,

which may depend on the regressors in an arbitrary way, e.g., αi = Gi(Xi1, . . . , XiT ; ηi)
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and γt = Ht(X1t, . . . , Xnt; δt) for some deterministic functions Gi, Ht and random errors

ηi, δt that are independent of the covariates. As usual there is an identification shortfall

here, and to identify the components of the model, we assume that E[mi(Xit)] = 0 along

with
∑n

i=1 αi =
∑T

t=1 γt = 0.

As the functions mi may differ across individuals, the covariate effect in our model is

allowed to be heterogeneous. However, rather than allowing the effect to vary completely

freely, we impose some structure on it. In particular, we assume the functions mi to have

the common component structure

mi(x) =
K∑
k=1

βikµk(x), (2)

where µ = (µ1, . . . , µK)
ᵀ

is a vector of nonparametric component functions and βi =

(βi1, . . . , βiK)
ᵀ

are parameter vectors. Like the functions µ and the coefficient vectors βi,

the number of components K is unobserved. Identifying the functions µ together with the

coefficients βi in our setting is not completely straightforward and requires some care. We

thus devote a separate section to this issue. In particular, we provide a detailed discussion

in Section 3.

The model defined by (1) and (2) takes into account several issues which are important

in a panel data context. To start with, it captures nonlinearities and heterogeneity in the

covariate effect in a flexible but parsimonious way. Moreover, since E[αi+γt|{Xit}] 6= 0 in

general, the unobserved effects αi and γt introduce a simultaneity between the covariates

and the dependent variable. This allows a certain type of endogeneity. Our model and the

estimation techniques we develop may thus be applied to a number of different empirical

problems where heterogeneity and endogeneity are potential issues. In the applied part

of the paper, we focus on a particular problem from the area of finance.2

The type of endogeneity allowed for by the unobserved effects αi and γt is rather

limited, but we remark that this type of restriction is extremely widely exploited in

empirical microeconomics, see Angrist and Pischke (2009, Chapter 5). An alternative

approach to dealing with endogeneity is to introduce instrumental variables, but there

are advantages and disadvantages with that approach also. Our model has the benefit of

simplicity and is in line with the simple approach to identifying empirical effects espoused

both in Angrist and Pischke (2009) and Manski (2008), for example. It is a generalization

of standard heterogeneous linear regression panel data models that are widely discussed in

Hsiao (2003) and is part of a large developing literature on semiparametric panel models

including Atak, Linton, and Xiao (2011), Chen, Gao, and Li (2012), Connor, Hagmann,

and Linton (2012), Chen, Gao, and Li (2013a), and Chen, Gao, and Li (2013b) that

explore different weakenings of these models.

The elements θ = {µ0, αi, γt : i = 1, . . . , n, t = 1, . . . , T} play the role of nuisance

2We note that a symmetric type of model where the heterogeneity in the covariate effect is driven by
time rather than individual (i.e., mt(·) instead of mi(·)) may be of interest in some cases.
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parameters in our framework. There is a large number of them which is increasing with

the sample size. Nevertheless, we have an even larger number of observations, which

enable us to estimate consistently all the unknown quantities of interest. We thus do

not face the “incidental parameters problem” (Neyman and Scott (1948)) that is of wide

concern in other panel data settings; see Hsiao (2003) for some discussion of this issue.

We take a pragmatic approach to estimation based on first eliminating the nuisance

parameters. To achieve this we make use of a fixed effect transformation. Denote the

time, cross sectional, and global averages by:

Y i =
1

T

T∑
t=1

Yit, Y t =
1

n

n∑
i=1

Yit, Y =
1

nT

n∑
i=1

T∑
t=1

Yit,

and define Y fe
it = Yit − Y i − Y t + Y . Now note that

Y fe
it = mi(Xit) + εit −

1

T

T∑
t=1

mi(Xit)−
1

T

T∑
t=1

εit −
1

n

n∑
i=1

mi(Xit)−
1

n

n∑
i=1

εit

+
1

nT

n∑
i=1

T∑
t=1

mi(Xit) +
1

nT

n∑
i=1

T∑
t=1

εit

= mi(Xit) + εit +Op(T
−1/2) +Op(n

−1/2), (3)

where we require the sample averages to converge to their population means at standard

rates. (3) shows that the nuisance parameters θ can be eliminated by subtracting sample

means from the data, although this method introduces some additional small error terms.

An alternative procedure is based on differencing, which is the most common method

in linear models, see Angrist and Pischke (2009). Specifically, let Y did
ijt = (Yit − Yit−1) −

(Yjt − Yjt−1) denote the difference-in-difference transformation. Then we have

Y did
ijt = (mi(Xit)−mi(Xit−1))− (mj(Xjt)−mj(Xjt−1)) + uijt, (4)

where uijt = (εit − εit−1) − (εjt − εjt−1) is a serially dependent error term. This ap-

proach also eliminates the nuisance parameters θ, but also not completely without cost.

First of all, the right-hand side of (4) is an additive regression function of the covariates

Xit, Xit−1, Xjt, Xjt−1. To estimate this function, either higher dimensional smoothing must

be employed, see Linton and Nielsen (1995), or iterative smoothing techniques like back-

fitting, see Mammen, Linton, and Nielsen (1999). Second, the error term uijt is dependent

across time and cross-section, in particular it has a four term ”dyadic” (Fafchamps and

Gubert (2007)) structure that needs to be accounted for. Finally, one needs stronger

conditional moment restrictions on the original error terms to be able to consistently

estimate this model. Specifically, we require E[εit|Xit, Xit−1, Xjt, Xjt−1] = 0 rather than

just the assumption E[εit|Xit] = 0 that will be needed for the fixed effect method. Hen-

derson, Carroll, and Li (2008) propose this method (with just time differencing) in the
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homogeneous one way model, i.e., Yit = µ0 + αi +m(Xit) + εit.

3 Identification

The individual regression functions mi in our model are identified through the normaliza-

tions E[mi(Xit)] = 0 along with
∑n

i=1 αi =
∑T

t=1 γt = 0. We now describe how to identify

the vector of common component functions µ = (µ1, . . . , µK)
ᵀ

and the parameter vectors

βi = (βi1, . . . , βiK)
ᵀ

which constitute the functions mi. Roughly speaking, the idea is

to characterize µ and the parameter vectors βi via an eigendecomposition of a matrix

related to the functions mi. Exploiting the uniqueness properties of this decomposition,

we are able to identify µ and the parameter vectors up to sign. Our strategy is thus very

similar to the arguments usually used in factor analysis which can for example be found

in Connor and Korajczyk (1988) and Bai (2003).

To lay out our strategy, we denote the vector of individual functions by m = (m1,

. . . , mn)
ᵀ

and define B to be a n × K matrix with the entries βik for i = 1, . . . , n and

k = 1, . . . , K. With this notation at hand, we can represent the vector of functions m as

m = Bµ. (5)

We now put some slight regularity conditions on B and µ. In particular, the func-

tions µ are assumed to be orthonormal with respect to a weighting function w, i.e.,∫
µ(x)µ(x)

ᵀ
w(x)dx = IK . Moreover, the coefficient matrix B is supposed to have full

rank K. These assumptions are rather harmless. In particular, the rank condition on

B just makes sure that there is enough variation in the coefficients, i.e., in the linear

combinations of the µ-functions across individuals.

The above two assumptions on µ and B can be replaced by a condition which parallels

the set of assumptions usually used in factor analysis. In particular, they are equivalent

to the following condition:

(I1) The matrix B is orthonormal, i.e. B
ᵀ
B = IK , and

∫
µ(x)µ(x)

ᵀ
w(x)dx is a diagonal

matrix with non-zero diagonal entries.

To see this equivalence, assume that we start off with a matrix B(1) of rank K and a

vector of common component functions µ(1) which are orthonormal in the sense specified

above. Then consider the symmetric, positive definite K×K matrix (B(1))
ᵀ
B(1) = ODO

ᵀ
,

where OO
ᵀ

= O
ᵀ
O = IK and D is a diagonal matrix with positive entries. Let

B(2) = B(1)OD−1/2 (6)

µ(2)(x) = D1/2O
ᵀ
µ(1)(x). (7)

Then

(B(2))
ᵀ
B(2) = D−1/2O

ᵀ
(B(1))

ᵀ
B(1)OD−1/2 = IK
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and ∫
µ(2)(x)µ(2)(x)

ᵀ
w(x)dx = D1/2O

ᵀ
OD1/2 = D.

Hence, the normalized versions B(2) and µ(2) satisfy (I1).

Let us now assume that the matrix B and the component functions µ are normal-

ized according to (I1). In addition, suppose that the functions µ satisfy the following

constraint:

(I2) The diagonal entries of the matrix
∫
µ(x)µ(x)

ᵀ
w(x)dx are all distinct.

This assumption is needed to ensure that the eigenspaces in the spectral decomposition

below are one-dimensional, which in turn makes sure that the eigenvectors of the decom-

position are uniquely identified up to sign.

Given (I1) and (I2), the matrix B can be characterized via the “covariance” structure

of the functions m. In particular, we have that

Ω :=

∫
m(x)m(x)

ᵀ
w(x)dx = B

∫
µ(x)µ(x)

ᵀ
w(x)dx B

ᵀ
= BDB

ᵀ
,

where D is a diagonal matrix with the diagonal entries
∫
µ2
k(x)w(x)dx for k = 1, . . . , K.

These entries are the non-zero distinct eigenvalues of the matrix Ω. Moreover, the columns

of the matrix B are the corresponding orthonormal eigenvectors. This spectral decompo-

sition is unique up to the sign of the eigenvectors, i.e., up to the sign of the columns of

the matrix B. Thus, the coefficient vectors contained in the matrix B are identified up

to sign as well.

Exploiting the fact that the columns of B are orthonormal, we can moreover represent

the vector of functions µ by writing

µ = B
ᵀ
m.

This equation almost surely identifies the functions µ up to sign: The functions mi con-

tained in the vector m are identified almost surely by our normalizing assumptions. More-

over, as seen above the columns of the matrix B are identified up to sign. As a result,

the functions µ are almost surely identified up to sign as well.

Rather than working with the system (5) of dimension n directly, we transform it into

a system of dimension K. Let W = (ωki) be a K × n weighting matrix of rank K. Then

we can write Wm = WBµ. Introducing the shorthands S = WB and g = Wm, we

obtain that

g = Sµ. (8)

Here, g = (g1, . . . , gK)
ᵀ

are weighted averages of the individual functions mi given by

gk =
∑n

i=1 ωkimi. Moreover, the K × K matrix S contains weighted averages of the

model parameters as its elements, in particular S = (skl) with skl =
∑n

i=1 ωkiβil for
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k, l = 1, . . . , K. Note that the vectors m and g as well as the matrices B, W , and S

depend on the cross-section dimension n. To keep the notation readable, this dependence

is suppressed throughout the paper.

Premultiplying the n-dimensional system (5) with the matrix W , we form K differ-

ent weighted averages of the individual functions m. We thus replace the system (5)

which characterizes the individual functions m as linear combinations of the common

components µ by a system which represents weighted averages of these functions as linear

combinations of µ. The reason for this is twofold: Firstly, the system (8) has a fixed

dimension K rather than a growing dimension n, which is technically more convenient.

Secondly, the functions g being averages of the individual functions m, they can be es-

timated much more precisely than the latter. In particular, g can be estimated with a

much faster convergence rate than the individual functions. This will help us to achieve

a fast convergence rate for our estimator of µ as well.

The elements of the system (8) can be normalized in an analogous way as those of the

system (5): To start with, we assume that the matrix S has full rank K and that the

functions µ are orthonormal, i.e.
∫
µ(x)µ(x)

ᵀ
w(x)dx = IK . By the same arguments as

before, this is equivalent to the following assumption:

(IW1) The matrix S is orthonormal, i.e. S
ᵀ
S = IK , and

∫
µ(x)µ(x)

ᵀ
w(x)dx is a diagonal

matrix with non-zero diagonal entries.

Note that the normalization of the functions µ in (IW1) depends on the matrix S and thus

on the chosen weighting matrix W . This becomes visible from equation (7) which shows

how the normalized version of µ is constructed. As before, we additionally suppose that

the normalized vector of functions µ has the following property:

(IW2) The diagonal entries of the matrix
∫
µ(x)µ(x)

ᵀ
w(x)dx are all distinct.

We finally put a slight regularity condition on the weighting scheme W :

(IW3) The weights ωki are of the form ωki = vki/n with non-negative parameters vki ≤
C <∞ for some sufficiently large constant C. For each k, the number nk of nonzero

weights is such that nk/n→ ck for some positive constant ck.

The above condition is satisfied by a wide range of weighting schemes, for example by the

simple choice

[n/K] times︷ ︸︸ ︷
W =


1
n
. . . 1

n
0

1
n
. . . 1

n
. . .

0 1
n
. . . 1

n

 . (9)
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Note that by assuming nk/n to converge to a positive limit, we just make sure that the

averages which result from applying the weighting matrix W are composed of O(n) terms.

This allows us to apply asymptotic arguments to them later on.

Given the normalization conditions (IW1) and (IW2) together with the assumption on

the weights (IW3), the functions µ can be represented as follows: As the columns of the

matrix S are orthonormal, we can write

µ = S
ᵀ
g. (10)

The matrix S in this equation can be characterized by a spectral decomposition of the

matrix Σ =
∫
g(x)g(x)

ᵀ
w(x)dx. In particular, it holds that

Σ = S

∫
µ(x)µ(x)

ᵀ
w(x)dx S

ᵀ
= SDS

ᵀ
,

where D = diag(λ1, . . . , λK) with λk =
∫
µ2
k(x)w(x)dx. The constants λ1, . . . , λK are the

non-zero distinct eigenvalues of Σ. Moreover, the columns of S are the corresponding

orthonormal eigenvectors, denoted by s1, . . . , sK in what follows.

In the sequel, we shall assume throughout that the functions µ and the matrix S are

normalized to fulfill (IW1) and (IW2). Moreover, we suppose that the matrix Σ converges

to a full-rank matrix Σ∗. These seem like reasonable and innocuous assumptions. Finally,

note that given the existence of a limit Σ∗, the matrix S converges to a limit S∗ as well.

This is due to the fact that the eigenvectors s1, . . . , sK depend continuously on the entries

of the matrix Σ.

4 Estimation

We now describe our procedure to estimate the functions µ1, . . . , µK and the coefficient

vectors βi = (βi1, . . . , βiK)
ᵀ
, which is based on kernel methods. Of course, alternative

methods can be used, including the iterative algorithms developed in Chen, Gao, and Li

(2013a) or the sieve methods described in Chen (2010). One advantage of our procedures

is that they are “in closed form” meaning that one does not have to rely on nonlinear

optimization and that they can be computed very fast and accurately even with very large

datasets.

For simplicity of exposition, we assume throughout the section that the number K of

common components is known. In Sections 6 and 7, we will dispense with this assumption

and provide a procedure to estimate K. Our approach splits up into four steps, each of

which is described in a separate subsection. To start with, we construct preliminary

estimators of the individual regression functions mi. These are used to obtain estimators

of the µ-functions and the coefficient vectors βi in a second and third step, respectively. In

a final step, we exploit the model structure to obtain improved estimators of the individual
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regression functions mi.

4.1 Preliminary estimators of the individual functions

We estimate the individual functions mi by applying nonparametric kernel techniques to

the time series data {(Y fe
it , Xit) : t = 1, . . . , T}. More specifically, Nadaraya-Watson or

local linear smoothers may be used. The Nadaraya-Watson estimator of the function mi

is defined as

m̂NW
i (x) =

∑T
t=1Kh(Xit − x)Y fe

it∑T
t=1 Kh(Xit − x)

,

where h is a scalar bandwidth and K(·) denotes a kernel satisfying
∫
K(u)du = 1 and

Kh(·) = h−1K(h−1 ·). The local linear estimator of mi is given by the formula

m̂LL
i (x) =

∑T
t=1wi,T (x,Xit)Y

fe
it∑T

t=1 wi,T (x,Xit)
,

with

wi,T (x,Xit) = Kh(Xit − x)
(
Si,T,2(x)−

(Xit − x
h

)
Si,T,1(x)

)
and

Si,T,k(x) =
1

T

T∑
t=1

Kh(Xit − x)
(Xit − x

h

)k
for k = 1, 2; see Fan and Gijbels (1995) for a detailed account of the local linear smoothing

method. The procedure to estimate the functions µ and the parameter vectors βi is the

same no matter whether we work with Nadaraya-Watson or local linear smoothers. In

what follows, we thus use the symbol m̂i to denote either the local constant estimator

m̂NW
i or the local linear smoother m̂LL

i .

4.2 Estimating the common component functions µ

We now use the characterization (10) of the functions µ to construct an estimator of them.

We proceed as follows:

Step 1: Construct estimators ĝ = (ĝ1, . . . , ĝK)
ᵀ

of the functions g = (g1, . . . , gK)
ᵀ

accord-

ing to

ĝk(x) =
n∑
i=1

ωkim̂i(x).

Step 2: Estimate the matrix Σ by

Σ̂ =

∫
ĝ(x)ĝ(x)

ᵀ
w(x)dx.
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Step 3: Estimate the eigenvalues and eigenvectors by

Σ̂ = ŜD̂Ŝ
ᵀ
,

i.e., by performing an eigendecomposition of the matrix Σ̂. Let λ̂1, . . . , λ̂K be the

eigenvalues of Σ̂ (i.e. the diagonal entries of the matrix D̂), and ŝ1, . . . , ŝK the

corresponding orthonormal eigenvectors (i.e. the columns of the matrix Ŝ).

Step 4: Define the estimator of µ by replacing S and g in (10) with their respective

estimators, i.e.,

µ̂ = Ŝ
ᵀ
ĝ.

4.3 Estimating the coefficients βi

Consider the time series data {(Yit, Xit) : t = 1, . . . , T} of the i-th individual. These are

assumed to come from the model

Yit = µ0 + αi + γt +
K∑
k=1

βikµk(Xit) + εit

for t = 1, . . . , T , which is linear in the parameters βi = (βi1, . . . , βiK)
ᵀ
. If the functions

µ1, . . . , µK were known, the coefficients βi could be estimated by standard least squares

methods from the time series data {(Y fe
it , Xit) : t = 1, . . . , T}. In particular, we could use

a weighted least squares estimator given by

β̃i =
( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1 1

T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it (11)

with a weighting function π. As the functions µ are not known, we replace them by the

estimates µ̂, thus yielding the estimator

β̂i =
( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1 1

T

T∑
t=1

π(Xit)µ̂(Xit)Y
fe
it . (12)

4.4 Re-estimating the functions mi and iterating the estimation

procedure

Exploiting the model structure, we can now define new estimators of the individual func-

tions mi which have better asymptotic properties than the preliminary estimators m̂i.

Specifically, we let

m̂e
i (x) = β̂

ᵀ

i µ̂(x).

As we will see later on, the estimators m̂e
i have a faster convergence rate than the prelim-

inary smoothers m̂i.
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A possible extension of our estimation procedure is to iterate it. To do so, we first

re-estimate the component functions µ and the parameters βi by using m̂e
i instead of the

preliminary smoothers m̂i. This yields updated estimators of µ and βi. In addition, we

may update the estimated individual effects whose first round estimates were implicitly

given by α̂i = Y i − Y , γ̂t = Y t − Y , and µ̂0 = Y . Specifically, these may be replaced by:

α̂ei =
1

T

T∑
t=1

{Yit − µ̂0 − m̂e
i (Xit)} ; γ̂et =

1

n

n∑
i=1

{Yit − µ̂0 − m̂e
i (Xit)} ;

µ̂e0 =
1

nT

n∑
i=1

T∑
t=1

{Yit − m̂e
i (Xit)} .

This process can be continued until some convergence criterion is satisfied, which is likely

to be achieved in practice quite quickly. Note that we can view this iterative algorithm

as a procedure to find the minimum of a least squares objective function along the lines

of Connor, Linton, and Hagmann (2012).

5 Asymptotics

In what follows, we derive the asymptotic properties of our estimators. To start with, we

list the assumptions needed for our analysis. We then present the results on the limiting

behaviour of the estimators µ̂, β̂i, and m̂e
i . The proofs of our theoretical results can be

found in Appendix A.

5.1 Assumptions

We impose the following regularity conditions, which as usual are sufficient but not nec-

essary for our results. The expression T a � n � T b is used to mean that CT a+δ ≤ n ≤
CT b−δ for some positive constant C, a small δ > 0 and 0 < a < b. The symbol � is used

analogously.

(A1) The data {(Xit, εit) : i = 1, . . . , n, t = 1, . . . , T} are independent across i. Moreover,

they are strictly stationary and strongly mixing (Rosenblatt, 1956) in the time

direction. Let αi(k) for k = 1, 2, . . . be the mixing coefficients of the time series

{(Xit, εit) : t = 1, . . . , T} of the i-th individual. It holds that αi(k) ≤ α(k) for all

i = 1, . . . , n, where the coefficients α(k) decay exponentially fast to zero as k →∞.

(A2) The densities fi of the variables Xit exist and have bounded support, [0, 1] say.

Moreover, they are uniformly bounded away from zero and from above, i.e., 0 <

c ≤ min1≤i≤n infx∈[0,1] fi(x) as well as maxi supx fi(x) ≤ C < ∞ for some pair of

constants 0 < c ≤ C < ∞. Finally, the joint densities fi;l of (Xit, Xit+l) exist and

are also uniformly bounded from above.
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(A3) The functions µ1, . . . , µK are twice continuously differentiable on [0, 1]. Moreover,

the densities fi are twice continuously differentiable on [0, 1] as well with uniformly

bounded first and second derivatives f ′i and f ′′i . Finally, the coefficients βik are

bounded by some constant β < ∞, i.e., |βik| ≤ β for all i = 1, . . . , n and k =

1, . . . , K, which ensures that the functions mi as well as the derivatives m′i and m′′i
are uniformly bounded on [0, 1] as well.

(A4) It holds that E[εit|Xit] = 0. Moreover, for some θ > 5 and for all l ∈ Z,

max
1≤i≤n

sup
x∈[0,1]

E
[
|εit|θ

∣∣Xit = x
]
≤ C <∞ (13)

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εit|
∣∣Xit = x,Xit+l = x′

]
≤ C <∞ (14)

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εitεit+l|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞, (15)

where C is a sufficiently large constant independent of l.

(A5) The cross-section dimension n = n(T ) depends on T and satisfies T 2/3 � n� T 3/2.

(A6) The bandwidth h is of the order (nT )−(1/5+δ) for some small δ > 0.

(A7) The kernelK is bounded, symmetric about zero and has compact support ([−C1, C1],

say). Moreover, it fulfills the Lipschitz condition that there exists a positive constant

L with |K(u)−K(v)| ≤ L|u−v|. Let µ2(K) =
∫
K(ϕ)ϕ2dϕ and ‖K‖2

2 =
∫
K2(ϕ)dϕ.

Note that we do not necessarily require exponentially decaying mixing rates as assumed

in (A1). These could alternatively be replaced by sufficiently high polynomial rates. We

nevertheless make the stronger assumption (A1) to keep the notation and structure of the

proofs as clear as possible.

The cross-sectional independence of the data is maintained for simplicity, one could

however allow some forms of dependence in the cross-section. For example, one could

allow the type of clustering structure used in Connor, Hagmann, and Linton (2012). Our

results would go through with minimal changes in this case. An alternative approach is to

follow Connor and Koraczyk (1993) and to assume that there exists some ordering of the

observations with respect to which the data {(Xit, εit)} are mixing across i. Jenish (2012)

derives pointwise limit theorems for nonparametric regression with near-epoch dependent

mixing processes defined on a general lattice dimension d, which includes that setting as

a special case. Robinson (2011) has proposed an alternative approach based on linear

processes that does not need a measure of cross-sectional distance. His framework allows

for strongly dependent and nonstationary regression disturbances. These types of cross-

sectional dependence are much harder to deal with in our framework and would involve a

great deal of technical and notational effort to cope with. Heuristically speaking, however,

we expect these dependence structures to have no effect on the asymptotic behaviour of our
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estimators provided the dependence is weak. Specifically, the cross-sectional dependence

should wash out of the distribution for the nonparametric estimates and should not affect

the univariate asymptotics for the loading coefficients.

We may also allow for nonstationarity in {(Xit, εit)} of the type proposed in Dahlhaus

(1997). This so-called local stationarity may arise in the time direction, that is, densities

change smoothly in the argument t/T . In addition, it may arise in the cross-section, that

is, densities change smoothly in the argument i/n with respect to an unknown ordering of

the individuals. Vogt (2012) establishes a number of results for nonparametric regression

with locally stationary processes, and we anticipate that his results can be extended to

this case, although the technical effort to accomplish this would be considerable.

It is worth mentioning that our assumptions do not only allow for time series depen-

dence but also for heteroskedasticity in the error terms εit. The errors may for example

have the form εit = σ(Xit)ηit, where ηit are i.i.d. variables independent of Xit and σ is

an unknown volatility function. The moment bounds (13)–(15) on the error terms are

needed to derive a couple of uniform convergence results later on. They are modifications

of standard assumptions required to derive uniform convergence rates for kernel estima-

tors; cp. for example Assumption 2 in Hansen (2008). They are for instance satisfied

when the error terms take the form εit = σ(Xit)ηit, where ηit are i.i.d. with E|ηit|θ < ∞
and σ is a continuous function.

Finally, note that there is a trade-off between the moment condition (13) in (A4) and

the conditions on the relative sample sizes in (A5). For example, if we restrict attention

to the case n = O(T ), we can do with θ > 4 in condition (A4). The restrictions in (A5)

reflect two constraints on the relative sample sizes: Firstly, T needs to be large enough

relative to n such that the preliminary estimators are sufficiently precisely estimated.

Secondly, n needs to be large enough such that the error terms stemming from the fixed

effect transformation can be ignored.

5.2 Asymptotics for the estimator µ̂

Our first result characterizes the asymptotic behaviour of the estimator µ̂. In particular,

it shows that µ̂ uniformly converges to µ and is asymptotically normal. To formulate it,

we define V (x) to be a K ×K matrix with the entries

Vk,l(x) = ‖K‖2
2 lim
n→∞

(
n

n∑
i=1

ωkiωli
σ2
i (x)

fi(x)

)
,

where σ2
i (x) = E[ε2

it|Xit = x].

Theorem 5.1. Let (A1)–(A7) together with (IW1)–(IW3) be satisfied. Then

sup
x∈Ih
‖µ̂(x)− µ(x)‖ = Op

(√ log nT

nTh

)
. (16)
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Here, Ih = [C1h, 1 − C1h] if our procedure is based on the Nadaraya-Watson smoothers

m̂NW
i and Ih = [0, 1] if it is based on the local linear smoothers m̂LL

i . Moreover, for any

fixed point x ∈ (0, 1), √
nTh(µ̂(x)− µ(x))

d−→ N(0, ν(x)) (17)

with ν(x) = (S∗)
ᵀ
V (x)S∗ and S∗ being the limit of S.

The first part of the theorem shows that µ̂ converges to µ at a fast rate based on

the pooled number of observations nT . If we set up our estimation procedure with the

local linear smoothers m̂LL
i , the rate is uniform over the whole support [0, 1]. For the

Nadaraya-Watson based procedure in contrast, the rate is only uniform on the subinterval

[C1h, 1− C1h] which converges to the support [0, 1] as the sample size increases. This is

due to the fact that the Nadaraya-Watson estimators m̂NW
i suffer from slow convergence

rates at the boundary of the support.

The second part of the theorem specifies the asymptotic distribution of µ̂. The asymp-

totic covariance matrix ν(x) can be seen to depend on the weights ωki. The reason for this

is as follows: The normalization of the functions µ depends on the choice of the weighting

matrix W . In particular, different choices of W generally result in different eigenvalues

λk =
∫
µ2
k(x)w(x)dx, i.e., in different values of the L2-norm of the functions µk. This

becomes reflected in the covariance matrix ν(x) through its dependence on the weights

ωki. Moreover, note that ν(x) need not be diagonal in general: If the weighting matrix

W is diagonal, then V (x) is a diagonal matrix as well. However, even then the matrix S∗

may have a more complicated non-diagonal structure. Hence, the components of µ̂ are

asymptotically mutually correlated in general.

Regarding inference, we propose a simple plug-in method. Let ε̂it = Y fe
it − m̂i(Xit) and

V̂k,l(x) = ‖K‖2
2 n

n∑
i=1

ωkiωli
σ̂2
i (x)

f̂i(x)
,

where σ̂2
i (x) is a local constant or local linear time series regression smoother of ε̂ 2

it on

Xit and f̂i(x) = T−1
∑T

t=1 Kh(Xit− x) is the time series kernel density estimator of fi(x).

Then, ν̂(x) = Ŝ
ᵀ
V̂ (x)Ŝ consistently estimates ν(x), and pointwise confidence intervals

based on this are consistent under our assumptions, see Härdle (1991).

To derive the results of Theorem 5.1, we work with the undersmoothing assumption

(A6) on the bandwidth h. Moreover, we use the same bandwidth both to estimate the

average functions g and the matrix Σ. It is however also possible to employ different

bandwidths. In particular, one may use a slightly undersmoothed bandwidth hΣ of the

order (nT )−(1/5+δ) to construct the estimate Σ̂ and a bandwidth hg of the optimal order

(nT )−1/5 to set up the estimator ĝ. Inspecting the proof of Theorem 5.1, it is easily seen

that in this case√
nThg(µ̂(x)− µ(x)) = S

ᵀ[√
nThg

(
ĝ(x)− g(x)

)]
+ op(1)
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with √
nThg

(
ĝ(x)− g(x)

) d−→ N(B(x), V (x)),

where the variance V (x) has already been defined above and the bias term B(x) is given by

BNW(x) and BLL(x) in the Nadaraya-Watson and the local linear based case, respectively.

The latter two expressions are defined by

BNW
k (x) =

c0µ2(K)

2
lim
n→∞

n∑
i=1

ωki
(
2m′i(x)f ′i(x) +m′′i (x)fi(x)

)/
fi(x)

BLL
k (x) =

c0µ2(K)

2
lim
n→∞

n∑
i=1

ωkim
′′
i (x)

for k = 1, . . . , K, where c0 is the limit of the sequence values
√
nTh5

g.

Given the above remarks, we suggest a straightforward rule of thumb for bandwidth

selection. In particular, we first select the bandwidth hg and then choose the bandwidth

hΣ simply by picking a value slightly smaller than the choice of hg. To select the bandwidth

hg (or rather hg,k if we allow a different bandwidth for each function gk), we optimize the

integrated mean-squared error criterion

IMSE(hg,k) = h4
g,k

∫
B2
k(x)dx+

1

nThg,k

∫
Vk,k(x)dx

for k = 1, . . . , K. Minimizing with respect to hg,k, the optimal bandwidth turns out to

be given by

h∗g,k =

( ∫
Vk,k(x)dx

4
∫
B2
k(x)dx

) 1
5

(nT )−1/5.

This expression still depends on some unknown quantities which have to be replaced by

estimators. To do so, we apply a simple plug-in rule similar to the methods discussed in

Fan and Gijbels (1994).

5.3 Asymptotics for the parameter estimators β̂i

The next theorem describes the asymptotic properties of the parameter estimates β̂i for a

fixed individual i. To state the asymptotic distribution of β̂i, we introduce the shorthands

Γi = E[π(Xi0)µ(Xi0)µ(Xi0)
ᵀ
] and Ψi =

∞∑
l=−∞

Cov(χi0, χil),

where χit = {π(Xit)µ(Xit) − E[π(Xit)µ(Xit)]}εit − E[π(Xit)µ(Xit)]mi(Xit) and π is a

bounded weighting function.

Theorem 5.2. Suppose that all the assumptions of Theorem 5.1 are fulfilled and let Γi

17



have full rank. Then for any fixed i,

√
T (β̂i − βi)

d−→ N
(
0,Γ−1

i Ψi(Γ
−1
i )

ᵀ)
.

If our procedure is based on Nadaraya-Watson smoothers, we have to restrict the

weighting function π to equal zero within the boundary region [0, C1h) ∪ (1 − C1h, 1].

This is necessary because the convergence rate of µ̂ is only uniform over the interval

[C1h, 1− C1h] in this case. If the local linear based procedure is applied, we do not have

to impose any restrictions on π.

From the proof of Theorem 5.2, we can see that our parameter estimators β̂i have

some type of oracle property. In particular, it holds that
√
T (β̂i − β̃i) = op(1). Our

estimators β̂i thus have the same asymptotic distribution as the oracle estimators β̃i

which are constructed under the assumption that the functions µ1, . . . , µK are known. To

estimate the asymptotic variance Ψi, we may apply standard long-run variance estimation

procedures to the residuals χ̂it given by

χ̂it = {π(Xit)µ̂(Xit)− π̂µ}ε̂it − π̂µm̂e
i (Xit),

where we define π̂µ = T−1
∑T

t=1 π(Xit)µ̂(Xit), ε̂it = Y fe
it − m̂e

i (Xit) and m̂e
i (x) = β̂

ᵀ

i µ̂(x).

5.4 Asymptotics for the estimators m̂e
i and a parameter of in-

terest

We finally discuss the asymptotic properties of the estimator m̂e
i (x) = β̂

ᵀ

i µ̂(x). It holds

that

m̂e
i (x)−mi(x) = (β̂i − βi)

ᵀ
µ(x) + β

ᵀ

i (µ̂(x)− µ(x)) + op

( 1√
nT

)
. (18)

The first term on the right-hand side is of the order T−1/2, while the second one has

the (pointwise) order (nTh)−1/2 under our conditions. Given assumption (A5) on the

relationship between the dimensions n and T , the leading term is the first one of order

T−1/2. It follows that m̂e
i (x) is asymptotically normal at the rate T−1/2, i.e., at a faster rate

than the preliminary estimator m̂i(x) which converges at the (pointwise) rate (Th)−1/2.

In our application below, we are interested in the parameter ci = mi(1)−mi(0), which

measures the difference between monopoly and competition. Defining ĉi = m̂e
i (1)−m̂e

i (0),

we obtain that

ĉi − ci = (β̂i − βi)
ᵀ
(µ(1)− µ(0)) + β

ᵀ

i (µ̂(1)− µ(1))− βᵀ

i (µ̂(0)− µ(0)) + op

( 1√
nT

)
,

where we restrict attention to the local linear based version of our estimators to avoid

boundary effects. Under the null hypothesis that ci = 0, we should observe that

√
T ĉi

d−→ N (0, τi) with τi = (µ(1)− µ(0))
ᵀ
Γ−1
i Ψi(Γ

−1
i )

ᵀ
(µ(1)− µ(0)),
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which could form the basis of a test. Specifically, we can use the strategy to estimate the

covariance matrix Γ−1
i Ψi(Γ

−1
i )

ᵀ
from the previous subsection together with the estimators

µ̂ to obtain a consistent estimator τ̂i of the asymptotic variance τi and let

ti =
ĉi√
τ̂i/T

,

which is asymptotically standard normal.

6 Robustness of the estimation method

So far, we have worked under the simplifying assumption that the number K of common

component functions µ1, . . . , µK is known. We now drop this assumption and take into

account that K is usually not observed in applications. We only suppose that there is

some known upper bound K of the number of component functions. In what follows, we

investigate how our procedure behaves if we work with this upper bound instead of the

true number of components.

To do so, let W = (ωki) be a K × n weighting matrix satisfying (IW3). Writing

g = Wm and S = WB, we obtain that

g = S µ.

Using an analogous normalization as in Section 3, we can assume that (i) the matrix∫
µ(x)µ(x)

ᵀ
w(x)dx is diagonal with positive and distinct diagonal entries and that (ii) S

is a K ×K matrix with orthonormal columns. Note that this normalization is somewhat

different from that used in the previous sections as we have replaced the weighting scheme

W by W . For simplicity, we suppress this difference in the notation in what follows and

again denote the normalized component functions by µ. We thus obtain that

µ = S
ᵀ

g.

As in the case with known K, the matrix S can be characterized by an eigendecom-

position of the K ×K matrix

Σ =

∫
g(x)g(x)

ᵀ
w(x)dx.

In particular, it holds that Σ = SDS
ᵀ

with D =
∫
µ(x)µ(x)

ᵀ
w(x)dx. Note that this way

of writing the spectral decomposition implicitly presupposes that K is known. For this

reason, it is more appropriate to rewrite the decomposition as Σ = U DU
ᵀ

. Here, U is

an orthonormal K × K matrix with the first K columns being equal to S. Moreover,

D =
∫
µ(x)µ(x)

ᵀ
w(x)dx is a diagonal K×K matrix with µ = (µ, 0, . . . , 0) being a vector
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of length K. Similarly to the case with known K, we assume that Σ converges to a matrix

Σ
∗

of rank K.

To estimate the vector of functions µ = (µ, 0, . . . , 0), we mimic the estimation proce-

dure from Subsection 4.2. In particular, we proceed as follows:

Step 1: Estimate the function gk(x) by g̃k(x) =
∑n

i=1 ωkim̂i(x) for k = 1 . . . , K.

Step 2: Estimate the matrix Σ by Σ̃ =
∫
g̃(x)g̃(x)

ᵀ
w(x)dx.

Step 3: Perform an eigendecomposition of Σ̃ to obtain estimators of U and D. In partic-

ular, write Σ̃ = ŨD̃Ũ
ᵀ

with D̃ being diagonal and Ũ being orthonormal.

Step 4: Estimate the vector of functions µ = (µ, 0, . . . , 0) by

µ̃ = Ũ
ᵀ
g̃.

Inspecting the proof of Theorem 5.1, it is straightforward to see that for k = 1, . . . , K,

the estimator µ̃k has analogous asymptotic properties as µ̂k. In particular, it uniformly

converges to µk and is asymptotically normal. The next theorem summarizes the prop-

erties of µ̃k for k = 1, . . . , K. To formulate it, we let V (x) be a K ×K matrix with the

entries

V k,l(x) = ‖K‖2
2 lim
n→∞

(
n

n∑
i=1

ωkiωli
σ2
i (x)

fi(x)

)
,

where ωki are the elements of the weighting matrix W .

Theorem 6.1. Let (A1)–(A7) be fulfilled. Then it holds that

sup
x∈Ih

∣∣µ̃k(x)− µk(x)
∣∣ = Op

(√ log nT

nTh

)
(19)

for all k = 1, . . . , K. As before, Ih = [C1h, 1− C1h] for the Nadaraya-Watson based case

and Ih = [0, 1] for the local linear based procedure. Moreover, for any fixed point x ∈ (0, 1),

√
nTh [µ̃(x)− µ(x)]

d−→ N(0, ν(x)), (20)

where ν(x) = (S
∗
)
ᵀ
V (x)S

∗
and S

∗
is the limit of S.

In addition, we can show that for k = K + 1, . . . , K, the estimators µ̃k converge in an

L2-sense to zero.

Theorem 6.2. Let (A1)–(A7) be fulfilled. Then it holds that∫
µ̃2
k(x)w(x)dx = op

( 1√
nTh

)
(21)

for all k = K + 1, . . . , K.
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The proof of Theorem 6.2 is given in Appendix A. Taken together, Theorems 6.1 and 6.2

show that our procedure is robust to overestimating the number of component functions

K. In particular, applying it with the upper bound K instead of K, the first K compo-

nents of the estimator µ̃ still uniformly converge to the vector of functions µ. Moreover,

the remaining components converge to zero in an L2-sense and thus become negligible as

the sample size grows.

7 Selecting the number of components K

In this section, we propose a simple method to estimate the unknown number of com-

ponents K. To define our estimator, let λ = (λ1, . . . , λK)
ᵀ

be the vector of eigenvalues

of the matrix Σ arranged in descending order. Analogously, let λ̃ be the eigenvalues of

the estimator Σ̃. Finally, let {δn,T} be any null sequence which converges to zero at the

order O(1/
√
nTh) or at a slower rate. With this notation at hand, our estimator of K is

defined as

K̂ = min

{
k ∈ {1, . . . , K}

∣∣∣∣∣ λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
≥ 1− δn,T

}
.

The intuition behind this estimator is simple: Under our assumptions, the matrix Σ

has K non-zero eigenvalues, i.e., the first K entries of λ are non-zero. The first K entries

of the estimator λ̃ thus converge to some positive values, whereas the other ones approach

zero as the sample size increases. Hence, the ratio

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K

should converge to a number strictly smaller than 1 for k < K and to 1 for k ≥ K. This

suggests that K̂ consistently estimates the true number of components K.

This intuition can easily be turned into a formal argument: First of all, it can be

shown that the convergence rate of λ̃ is at least op(1/
√
nTh), i.e., ‖λ̃−λ‖ = op(1/

√
nTh).

As a consequence, it holds that

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
=
λ1 + . . .+ λk
λ1 + . . .+ λK

+ op

( 1√
nTh

)
.

for any k ∈ {1, . . . , K}. In particular,

λ̃1 + . . .+ λ̃K

λ̃1 + . . .+ λ̃K
= 1 + op

( 1√
nTh

)
.

Using these two equations together with some straightforward arguments, it is easily

seen that K̂ is indeed a consistent estimator of the true number of components K, i.e.

K̂ = K + op(1).
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When implementing the estimator K̂ in practice, an important question is how to

choose the constant δn,T . We suggest to pick it by a rule of thumb which is similar to

the procedure usually used in factor analysis for selecting the number of factors. To

understand the intuitive idea behind the rule, first note that λk =
∫
µ2
k(x)w(x)dx for

k = 1, . . . , K and λk = 0 for k = K + 1, . . . , K. The eigenvalues λk are thus equal to

(the square of) a weighted L2-norm of the component functions µ = (µ, 0, . . . , 0). Put

differently, they measure the variation of these functions. As a result, the ratio

λ1 + . . .+ λk
λ1 + . . .+ λK

can be interpreted to capture the percentage of the overall variation in the functions

µ that stems from the first k components. Hence, by picking a certain value of δn,T ,

we select the number of component functions such that at least a certain percentage of

the overall variation is explained by the chosen number of components. For instance, if

we let δn,T = 0.05, we pick the number of components to capture at least 95% of the

total variation. Keeping in mind that our estimation procedure is robust to picking the

number of components too large, we propose to choose the constant δn,T rather small (e.g.

δn,T = 0.01 or δn,T = 0.05). This results in a conservative rule which tends to overestimate

the true number K rather than to underestimate it. As already noted above, this way

of selecting the number of components is very similar to the usual approach in factor

analysis (see e.g. Zhu & Ghodsi (2006) or Chapter 6 of Jolliffe (2002)).

8 Application

The implementation of the “Markets in Financial Instruments Directive (MiFID)” ended

the monopoly of primary security exchanges in Europe and served as a catalyst for the

soaring of competition between marketplaces we observe today. The first round of MiFID

was implemented on November 1st, 2007, but fragmentation of the UK equity market

began sometime before that, and by 13th July, 2007, Chi-X was actively trading all of

the FTSE 100 stocks. In October 2012, the volume of the FTSE 100 stocks traded via

the London Stock Exchange had declined to 64%.3

There are theoretical reasons why the current trend towards fragmentation of order

flow can improve market quality. Higher competition generally promotes technological

innovation, improves efficiency and reduces the fees that have to be paid by investors. On

the other hand, there are reasons to think that security exchanges are natural monopolies.

Consolidated exchanges enjoy economies of scale because establishing a new exchange

requires the payment of high fixed costs. Every additional trade lowers the average cost

of the exchange. In addition, a single, consolidated exchange market creates network

externalities. The larger the market, the more trading opportunities exist that attract

3www.batstrading.co.uk/market data/market share/index, assessed on October 20, 2012
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even more traders.4

In view of these ambiguous theoretical predictions, many researchers have examined

the effect of order flow fragmentation on market quality with empirical methods. Gresse

(2011) finds that increased competition between trading venues creates more liquidity –

measured by spreads and best-quote depth – in a sample of stocks listed on the LSE

and Euronext exchanges in Amsterdam, Paris and Brussels. The results of Degryse et al.

(2014) suggest that fragmentation on trading venues with a visible order book improves

global liquidity, but has a negative effect on local liquidity. On “dark” platforms with

an invisible order book, liquidity is lower in more fragmented markets. O’Hara and Ye

(2011) study the effect of market fragmentation on market quality in US equity markets

and find that more fragmented stocks are associated with lower transaction costs and

higher volatility.

The previous literature is subject to several methodological caveats. First, both Gresse

(2011) and Degryse et al. (2014) assume that the conditional expectation of market qual-

ity on fragmentation is homogeneous across all stocks. However, O’Hara and Ye (2011)

provide evidence that the effect of fragmentation on market quality varies significantly

across stocks. If there is indeed heterogeneity in the conditional expectation of mar-

ket quality on fragmentation, the estimates are biased and policy implications can be

misleading (Pesaran and Smith, 1995). In addition, previous studies use a parametric

econometric model that presupposes a functional form for the effect of fragmentation on

market quality. Gresse (2011) and O’Hara and Ye (2011) assume a linear functional form,

while Degryse et al. (2014) specify a quadratic relationship. If the true regression model

has a different functional form, then these studies suffer from misspecification which ques-

tions the validity of the results. The semiparametric model for heterogeneous panel data

we develop in this paper can address these limitations of previous work.

8.1 Data

Data on the volume of the individual FTSE 100 and FTSE 250 stocks traded on each

equity venue was supplied to us by Fidessa. The data is recorded on a weekly basis

and covers the period from May 2008 to June 2011. In total, we have n = 350 and

T = 152 observations, which is broadly consistent with our assumptions. We use the

volume traded on different venues to compute the Herfindahl index as a measure of market

fragmentation.5 In May 2008, equity trading in the UK was consolidated at the LSE as

reflected by a Herfindahl index of 0.6 (Figure 1). By June 2011, the entry of new trading

venues has changed the structure of the UK equity market dramatically: The Herfindahl

index has fallen by about half over the sample period.

4These network externalities, however, are weakened as traders can now simultaneously access multiple
markets via Smart Order Routing Technologies.

5The Herfindahl index of a stock is calculated as the sum of the squared market shares of the exchanges
where the stock was traded. A value of 1 indicates a perfectly monopolistic market.
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Figure 1: The Herfindahl index for the FTSE 100 and FTSE 250 stock indices. Data
source: Fidessa.

The data allows us to distinguish between public exchanges with a visible order book

(“lit venues”), venues with an invisible order book (“dark pools”), over the counter

(“OTC”) venues, and systematic internalizers (“SI venues”).6 It is interesting to in-

spect the evolution of volume traded at the different venue categories (Figure 2). The

share of volume traded at dark, OTC and SI venues increased over the sample period,

while the share of volume traded at lit venues has fallen considerably. For all categories,

the observed changes are largest in the year 2009. In the period after 2009, volumes have

approximately stabilized with the exception of dark venues. Quantitatively, the majority

of trades are executed on lit and OTC venues while dark and SI venues attract only about

1% of the order flow.

We measure market quality by volatility and bid-ask spreads of the FTSE 100 and

250 stocks. Both measures of market quality are constructed as weekly medians of the

daily measures. Volatility is calculated as the difference between price high and price low,

scaled by price low. Bid-ask spreads are constructed as the difference between ask and bid

price scaled by the midpoint. The evolution of volatility over the sample period clearly

shows the effect of the global financial crisis in 2008/2009 (Figure 3).7

6The list of lit venues includes: Bats Europe, Chi-X, Equiduct, LSE, Nasdaq Europe, Nyse Arca,
and Turquoise. The list of dark pools includes: BlockCross, Instinet BlockMatch, Liquidnet, Nomura
NX, Nyfix, Posit, Smartpool, and UBS MTF. The list of OTC venues includes: Boat xoff, Chi-X OTC,
Euronext OTC, LSE xoff, Plus, XOFF, and xplu/o. The list of SI venues includes: Boat SI and London
SI.

7We do not show the evolution of the bid-ask spread as it does not exist for the index.
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Figure 2: Share of volume traded by venue category. Data source: Fidessa.

8.2 The effect of market structure on market quality

The descriptive analysis documents a profound change in the organization of the UK

equity market. In this section, we apply our model to assess the consequences of it for

market quality. To do so, let {(Yit, Xit)} be the data sample at hand, where Yit denotes

market quality and Xit is a measure of market structure, namely the Herfindahl index or

the share of volume traded on lit venues. The effect of Xit on Yit for firm i is captured

by the individual regression function mi. The functions µ can be interpreted as the

common components of this effect, which for each firm i are weighted differently by the

coefficients βi. The common components are interesting because they measure the degree

of heterogeneity that is hidden in the average effect, which is defined as n−1
∑n

i=1 mi(x).

The fixed effects γt and αi capture the time trends of and cross-sectional exposure to

High Frequency Trading, for example. As argued in Gresse (2011) among others, High

Frequency Trading affects both the amount of fragmentation as well as the quality of the

market outcomes and thus introduces a simultaneity in the data.

To estimate the parameters and functions of interest, we use our methods based on

the local linear smoothers m̂LL
i . Prior to estimation, we eliminate stocks with a very

small time series dimension, in particular with less than 50 observations. In addition,

we exclude stocks whose support of the observations Xit is particularly small, specifically
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Figure 3: Volatility of the FTSE 100 and FTSE 250 stock indices. Data source: Datas-
tream.

whose support of Xit does not span the interquartile range of the pooled distribution.

The number of common components K is chosen according to the rule of thumb described

in Section 7, where we pick δn,T = 0.05 and K = 100. The bandwidth is determined

by a plug-in method as discussed in Subsection 5.2. Finally, the weighting matrix W is

specified as in equation (9). As a robustness check, we have repeated the estimation for

alternative matrices W . The results suggest that our procedure is not very sensitive to

the choice of W .

The average effect of market fragmentation and of the volume share traded on lit

venues on (logarithmic) volatility is shown in Figure 4. We find that volatility is lower

when equity venues compete for volume as compared to a monopolistic market, see Panel

a) in Figure 4. However, the transition between these extreme forms of market organi-

zation is complicated: When new trading venues enter a monopolistic market, volatility

first increases until the Herfindahl index reaches a value of 0.4 and then falls. Figure 5

decomposes the average effect into the common components µk. We find that the initial

increase in volatility when competition increases – or when the value of the Herfindahl

index falls – can be attributed to the first and second component while the decline in

volatility at low values of the Herfindahl index is driven by the first component.

In addition to fragmentation of order flow, it is interesting to investigate how the share

of volume traded on lit venues affects market quality. Interestingly, we find that volatility

is higher if a larger share of volume is traded on lit venues as in Linton (2012), cp. Panel

b) in Figure 4. While the average effect is linear, Figure 6 reveals that the second common
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Figure 4: The average effect n−1
∑n

i=1 mi(x) of changes in market structure on logarithmic
volatility.

0.4 0.6 0.8 1.0

−
0.

05
0.

00
0.

05

µ 1

0.4 0.6 0.8 1.0

−
0.

06
−

0.
02

0.
02

µ 2

0.4 0.6 0.8 1.0

−
0.

03
−

0.
01

0.
01

µ 3

Figure 5: Component functions for the effect of market fragmentation on logarithmic
volatility.
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Figure 6: Component functions for the effect of the share of volume traded on lit venues
on logarithmic volatility.

component function has a quadratic shape.

Besides volatility, bid-ask spreads provide a good proxy for market quality. We find

that bid-ask spreads are lower in a competitive market in comparison with a monopolistic

market. During the transition to a competitive market structure, bid-ask spreads increase

initially by a small magnitude before falling rapidly for values of the Herfindahl index
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Figure 7: The average effect n−1
∑n

i=1mi(x) of changes in market structure on bid-ask
spreads.
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Figure 8: Component functions for the effect of market fragmentation on bid-ask spreads.
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Figure 9: Component functions for the effect of the share of volume traded on lit venues
on bid-ask spreads.

below 0.6, see Panel a) in Figure 7. A disaggregation of this effect into its common

components is provided in Figure 8.

As shown in Panel b) in Figure 7, an increase in the share of volume traded at lit

venues lowers bid-ask spreads, but not monotonically. As the share of volume traded at

lit venues increases, bid-ask spreads fall until 60% of all shares are traded on lit venues

and increase thereafter. The decline is primarily driven by the first component function,
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Figure 10: Kernel density of the differences ĉi between monopoly and competition.

which can be seen from Figure 9.

8.3 Is there a difference between monopoly and competition?

One interesting question is whether market quality is significantly different under compe-

tition when compared to a monopolistic market. To answer that question, we calculate the

statistic ĉi/
√
τ̂i/T , where ĉi = m̂i(1)− m̂i(0) measures the difference between monopoly

and competition (see Section 5.4). Here, we only consider the Herfindahl index as an in-

dependent variable, but we use both measures of market quality, (logarithmic) volatility

and bid-ask spreads, as a dependent variable. Recall that the Herfindahl index is 1 for

a monopolistic market and 0 under perfect competition. To estimate τi, one requires an

estimate of the long-run variance of the residuals χ̂it. We estimate the long-run variance

by the HAC method with a quadratic spectral kernel (Andrews, 1991) where the band-

width is chosen optimally. For α-mixing random variables as assumed in this paper, the

HAC estimator based on the quadratic spectral kernel with an optimally chosen growth

rate of the bandwidth parameter is consistent if the 2 1/2th moment is finite (Hansen,

1992). In our application, ĉi/
√
τ̂i/T is below the critical value even at a significance level

of 10% suggesting that there is no statistically significant difference between monopoly

and competition (Figure 10).

In addition to a stock-by-stock analysis, we also investigate whether on average, market

quality is different under competition when compared to a monopolistic market. In this
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Figure 11: Comparison of cdfs for mi(1) and mi(0) coefficients in the bid-ask spread case.

case, the test statistic is given by

t̂ =

√
nTh[m̂av(1)− m̂av(0)]√

V̂ (1) + V̂ (0)
,

which is asymptotically standard normal. Here, m̂av(x) = n−1
∑n

i=1 m̂i(x) is an esti-

mator of the average regression function and V̂ (x) is the sample analogue of V (x) =

‖K‖2
2 limn→∞( 1

n

∑n
i=1

σ2
i (x)

fi(x)
) with σ2

i (x) = E[ε2
it|Xit = x]. In our data, t̂ is 4.15 if volatil-

ity is used as a measure of market quality and 16.09 if market quality is measured by

bid-ask spreads. These results are consistent with the findings in Figures 4a) and 7a)

but counter to the evidence from individual stocks. When compared to a stock-by-stock

analysis, pooling the data increases the power of the test in detecting a difference between

competitive and monopolistic markets.

An alternative approach to assess the difference between competitive and monopolistic

market structures is to compare the marginal distributions of the coefficients mi(1) and

mi(0) according to stochastic dominance orderings, cp. Linton, Maasoumi, and Whang

(2005). We find that the comparison between cdfs and integrated cdfs for volatility is

inconclusive (meaning the two curves cross at least once), whereas the bid-ask spread

case is clearer. In particular, the distribution of bid-ask spreads under the monopoly case

dominates to first order the distribution under competition, which since bid-ask spread

is a bad, means that competition would be preferred to monopoly by any non-satiated

utility maximizer (Figure 11). We do not provide a formal test of this hypothesis, since

the derivation of appropriate critical values would appear to be a substantial project in
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itself.

9 Conclusion

Our model captures in a general way two important features in many applications: het-

erogeneity and nonlinearity. We also allow for a limited type of endogeneity through the

unobserved time and cross-section fixed effects. Nevertheless, our estimation procedures

are particularly simple, and are in fact closed form at each step. We have provided the

tools to conduct inference and to select tuning and order parameters. We applied our

method to a question of recent policy interest and our results revealed substantial nonlin-

earity in the relationship between fragmentation of order flow and market quality, which

is not unexpected. Overall, we may find weak evidence that competition between trading

venues reduces bid-ask spreads and lowers volatility for traders. Additionally, we find

that a higher share of volume traded on lit venues is associated with higher volatility and

lower bid-ask spreads. We believe that these results will be of interest for policy makers

to evaluate MiFID I and to stimulate further debate on MiFID II.

We close the paper by commenting on some extensions of our model. In our analysis,

we have focused on the case of univariate regressors Xit. If the regressors are multivariate,

the usual curse of dimensionality problem arises, cp. Stone (1980). One way to circum-

vent this problem is to assume that the regression functions mi split up into additive

components according to

mi(x) = m
(1)
i (x1) + . . .+m

(d)
i (xd),

where d is the dimension of the regressors. Analogously to the univariate case, we may

suppose that for each j, the individual functions m
(j)
i have the common component struc-

ture

m
(j)
i (xj) =

K∑
k=1

β
(j)
ik µ

(j)
k (xj),

where K could also be allowed to differ across j. The additive functions m
(1)
i , . . . ,m

(d)
i can

be estimated by time series backfitting for each individual i, see Mammen et al. (1999).

These backfitting estimators may be used as preliminary estimators in our procedure. In

particular, the common functions µ(j) = (µ
(j)
1 , . . . , µ

(j)
K ) may be estimated separately for

each j by repeating the estimation steps of Section 4 based on the backfitting estimators.

Perhaps one is also concerned that we do not allow for sufficiently general time effects,

since we have assumed homogeneous such effects. A more general model which allows for

additional interactive (exogenous) time effects is given by

Yit = µ0 + αi + γt + gi(t/T ) +mi(Xit) + εit,
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where gi(·) is a smooth function of rescaled time. In practice, a number of authors adopt

parametric specifications for gi(t/T ) such as gi(t/T ) = ζit+ηit
2, see for example Brogaard

et al. (2013). In this case, we obtain

Y fe
it = gi(t/T ) +mi(Xit) + εit +Op(T

−1/2) +Op(n
−1/2),

where we have assumed that
∑T

t=1 gi(t/T ) = 0. Similarly to the multivariate case dis-

cussed above, we here have an additive regression model that could be estimated by time

series backfitting. Moreover, one could restrict gi(·) to rely on a small number of principal

components as we do for mi(·), and do parallel analysis for both functions.

Supplementary Material

In the supplementary material, we investigate the small sample performance of our estima-

tion procedures in a series of simulation experiments. Moreover, we provide the technical

details which are omitted in the appendix.

Appendix A

In this appendix, we derive the main results of our theory. In particular, we provide a

detailed proof of Theorems 5.1 and 5.2, which characterize the asymptotic behaviour of

our estimators. For the proof, we require a series of uniform convergence results which

are derived in Appendix B. Throughout the appendix, the symbol C is used to denote a

universal real constant which may take a different value on each occurrence. Moreover,

we let Ih = [C1h, 1 − C1h] denote the interior of the support of the regressors Xit and

use Ich = [0, 1] \ Ih to denote the boundary region. Finally, we frequently make use of the

shorthand κ0(x) =
∫ (1−x)/h

−x/h K(ϕ)dϕ.

Proof of Theorem 5.1

We restrict attention to the proof for the Nadaraya-Watson based estimators. The local

linear case can be handled by similar arguments.

To start with, we list some auxiliary results needed to derive the statements (16) and

(17) of Theorem 5.1. The proof of these results is postponed until the arguments for

Theorem 5.1 are completed. The following uniform expansion of ĝk(x)− gk(x) forms the

basis of our arguments.

Proposition A1. It holds that

ĝk(x)− gk(x) =
n∑
i=1

ωki
κ0(x)fi(x)

1

T

T∑
t=1

Kh(Xit − x)εit +Rk(x), (22)
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where the remainder satisfies supx∈Ih |Rk(x)| = op(1/
√
nTh) and supx∈Ich |Rk(x)| = Op(h).

Using the uniform expansion of Proposition A1, we are able to derive the asymptotic

properties of ĝ. These are summarized in the next proposition.

Proposition A2. It holds that

sup
x∈Ih

∥∥ĝ(x)− g(x)
∥∥ = Op

(√ log nT

nTh

)
(23)

sup
x∈Ich

∥∥ĝ(x)− g(x)
∥∥ = Op(h). (24)

Moreover, for any fixed x ∈ (0, 1),

√
nTh(ĝ(x)− g(x))

d−→ N(0, V (x)), (25)

where V (x) = (Vk,l(x))k,l=1,...,K and Vk,l(x) = ‖K‖2
2 limn→∞(n

∑n
i=1 ωkiωli

σ2
i (x)

fi(x)
) with σ2

i (x)

= E[ε2
it|Xit = x].

Proposition A1 can further be used to characterize the convergence behaviour of the

matrices Σ̂.

Proposition A3. It holds that

‖Σ̂− Σ‖ = op

( 1√
nTh

)
. (26)

Finally, Proposition A3 together with a Taylor expansion argument yields the following

result.

Proposition A4. It holds that

‖Ŝ − S‖ = op

( 1√
nTh

)
(27)

‖λ̂− λ‖ = op

( 1√
nTh

)
(28)

with λ = (λ1, . . . , λK)
ᵀ

and λ̂ = (λ̂1, . . . , λ̂K)
ᵀ
.

With the help of the above propositions, it is straightforward to prove the statements

(16) and (17) of Theorem 5.1. We start with the proof of (16): Recalling that the matrix

of eigenvectors S converges to a limit S∗ and using (23) together with (27), we arrive at

sup
x∈Ih
‖µ̂(x)− µ(x)‖ ≤ ‖Ŝᵀ − Sᵀ‖ sup

x∈Ih
‖ĝ(x)‖

+ ‖Sᵀ‖ sup
x∈Ih
‖ĝ(x)− g(x)‖ = Op

(√ log nT

nTh

)
.
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Similarly, we obtain that

√
nTh(µ̂(x)− µ(x)) =

√
nTh(Ŝ

ᵀ − Sᵀ
)ĝ(x) + S

ᵀ√
nTh(ĝ(x)− g(x))

= S
ᵀ√
nTh(ĝ(x)− g(x)) + op(1).

Since S converges to S∗, the normality result (25) implies that

S
ᵀ√
nTh(ĝ(x)− g(x))

d−→ N(0, (S∗)
ᵀ
V (x)S∗),

which yields (17). �

Proof of Proposition A1

Let f̂i(x) = T−1
∑T

t=1Kh(Xit − x), Y fe
it = Yit − Y i − Y t + Y and write

ĝk(x)− gk(x) = Qk,V (x) +Qk,B(x) +Qk,γ(x) +Qk,α +Qk,µ0 ,

where

Qk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
f̂i(x)

Qk,B(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
mi(Xit)−mi(x)

}/
f̂i(x)

Qk,γ(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
µ0 + γt − Y t

}/
f̂i(x)

Qk,α =
n∑
i=1

ωki
{
µ0 + αi − Y i

}
Qk,µ0 =

( n∑
i=1

ωki

){
Y − µ0

}
.

In what follows, we analyze these five terms one after the other.

(i) It holds that

Qk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
κ0(x)fi(x) +Rk,V (x),

where the remainder term is given by

Rk,V (x) =
M∑
m=1

R
(m)
k,V (x) +R

(M+1)
k,V (x) +R

(B)
k,V (x)
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with

R
(m)
k,V (x) =

n∑
i=1

ωki

((E[f̂i(x)]− f̂i(x))m

E[f̂i(x)]m+1

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
for m = 1, . . . ,M ,

R
(M+1)
k,V (x) =

n∑
i=1

ωki

((E[f̂i(x)]− f̂i(x))M+1

E[f̂i(x)]M+1f̂i(x)

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
and

R
(B)
k,V (x) =

n∑
i=1

ωki

(κ0(x)fi(x)− E[f̂i(x)]

κ0(x)fi(x)E[f̂i(x)]

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
.

The remainder term has the property that

sup
x∈Ih

∣∣Rk,V (x)
∣∣ = op

( 1√
nTh

)
(29)

sup
x∈Ich

∣∣Rk,V (x)
∣∣ = Op(h). (30)

We first derive (29): To start with, straightforward calculations yield that max1≤i≤n

supx∈Ih |κ0(x)fi(x) − E[f̂i(x)]| = Op(h
2). Together with Lemma B1 in Appendix B, this

directly implies that supx∈Ih |R
(B)
k,V (x)| = op(1/

√
nTh). Moreover, by Lemma B3, it holds

that supx∈Ih |R
(m)
k,V (x)| = op(1/

√
nTh) form = 1, . . . ,M . Finally, ifM is chosen sufficiently

large, then an application of Lemma B1 immediately shows that supx∈Ih |R
(M+1)
k,V (x)| =

op(1/
√
nTh) as well. (30) follows by analogous arguments.

(ii) We next show that

sup
x∈Ih
|Qk,B(x)| = op

( 1√
nTh

)
sup
x∈Ich
|Qk,B(x)| = Op(h).

To see this, decompose Qk,B(x) into the following two components:

Qk,B(x) = Q
(1)
k,B(x) +Q

(2)
k,B(x)

with

Q
(1)
k,B(x) =

n∑
i=1

ωki
1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])/
f̂i(x)

Q
(2)
k,B(x) =

n∑
i=1

ωki
1

T

T∑
t=1

E
[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}]/
f̂i(x).
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Exploiting the smoothness conditions on the functions mi and fi in a standard way, the

term Q
(2)
k,B(x) can be shown to satisfy supx∈Ih |Q

(2)
k,B(x)| = Op(h

2) = op(1/
√
nTh) and

supx∈Ich |Q
(2)
k,B(x)| = Op(h). Moreover, Q

(1)
k,B(x) = Q

(1,a)
k,B (x) +Q

(1,b)
k,B (x) with

Q
(1,a)
k,B (x) =

n∑
i=1

ωki
1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])/
κ0(x)fi(x)

Q
(1,b)
k,B (x) =

n∑
i=1

ωki

(κ0(x)fi(x)− f̂i(x)

κ0(x)fi(x)f̂i(x)

) 1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])
.

Using the proving strategy of Lemma B2, the term Q
(1,a)
k,B (x) can be shown to be of the

order Op(h
√

log nT/nTh) = op(1/
√
nTh) uniformly for x ∈ [0, 1]. Moreover, applying

Lemma B1, it is straightforward to see that supx∈[0,1] |Q
(1,b)
k,B (x)| = op(1/

√
nTh) as well.

(iii) We now turn to the analysis of Qk,γ(x). In particular, we show that

sup
x∈[0,1]

|Qk,γ(x)| = op

( 1√
nTh

)
.

To do so, first note that

Qk,γ(x) = −
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}/
f̂i(x).

This expression can be decomposed as follows: Qk,γ(x) = Q
(1)
k,γ(x) + Q

(2)
k,γ(x) + Q

(3)
k,γ(x),

where

Q
(1)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}/
κ0(x)fi(x)

Q
(2)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n
(mi(Xit) + εit)

}( 1

f̂i(x)
− 1

κ0(x)fi(x)

)
Q

(3)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1
j 6=i

(mj(Xjt) + εjt)
}( 1

f̂i(x)
− 1

κ0(x)fi(x)

)
.

To analyze the term Q
(1)
k,γ(x), we further split it up into two components: Q

(1)
k,γ(x) =
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Q
(1,a)
k,γ (x) +Q

(1,b)
k,γ (x), where

Q
(1,a)
k,γ (x) = − 1

T

T∑
t=1

( n∑
i=1

ωki
κ0(x)fi(x)

(Kh(Xit − x)− E[Kh(Xit − x)])
)

×
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}

Q
(1,b)
k,γ (x) = −

n∑
i=1

ωki
κ0(x)fi(x)

( 1

nT

n∑
j=1

T∑
t=1

E[Kh(Xit − x)](mj(Xjt) + εjt)
)
.

The term Q
(1,a)
k,γ (x) can be handled by similar techniques as applied in Lemma B3. The de-

tails are summarized in Lemma B4 which yields that supx∈[0,1] |Q
(1,a)
k,γ (x)| = op(1/

√
nTh).

Moreover, it is straightforward to verify that supx∈[0,1] |Q
(1,b)
k,γ (x)| = Op(1/

√
nT ). Turning

to the expressionQ
(2)
k,γ(x), we can easily see with the help of Lemma B1 that supx∈[0,1] |Q

(2)
k,γ(x)| =

op(1/
√
nTh). To prove that supx∈[0,1] |Q

(3)
k,γ(x)| = op(1/

√
nTh), some rather involved ar-

guments are needed which are presented in Lemma B5. Setting φ̂i(x) = (f̂i(x))−1 −
(κ0(x)fi(x))−1 in this lemma yields the result.

Finally, it is trivial to see that Qk,α = Op(1/
√
nT ) as well as Qk,µ0 = Op(1/

√
nT ).

Together with (i)–(iii), this yields the expansion (22). �

Proof of Proposition A2

The proof easily follows with the help of the uniform expansion from Proposition A1. The

latter says that

ĝk(x)− gk(x) = Wk,V (x) +Rk(x),

where

Wk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
κ0(x)fi(x)

and the remainder termRk(x) satisfies supx∈Ih |Rk(x)| = op(1/
√
nTh) as well as supx∈Ich |Rk(x)| =

Op(h). Applying Lemma B2 to Wk,V (x), we immediately obtain that supx∈[0,1] |Wk,V (x)| =
Op(
√

log nT/nTh). This yields the uniform convergence results (23) and (24). Further-

more, standard arguments show that

√
nThWk,V (x)

d−→ N
(

0, ‖K‖2
2 lim
n→∞

n

n∑
i=1

ω2
ki

σ2
i (x)

fi(x)

)
.

From this, the normality result (25) easily follows. �
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Proof of Proposition A3

It holds that

Σ̂kl − Σkl =

∫
ĝk(x)ĝl(x)w(x)dx−

∫
gk(x)gl(x)w(x)dx

=

∫ [
ĝk(x)− gk(x)

]
ĝl(x)w(x)dx+

∫
gk(x)

[
ĝl(x)− gl(x)

]
w(x)dx

=

∫ [
ĝk(x)− gk(x)

]
gl(x)w(x)dx+

∫
gk(x)

[
ĝl(x)− gl(x)

]
w(x)dx

+ op

( 1√
nTh

)
,

where the last equality follows by Proposition A2. Using the uniform expansion of Propo-

sition A1, we obtain ∫ [
ĝk(x)− gk(x)

]
gl(x)w(x)dx = JV +R

with

JV =
n∑
i=1

ωki
1

T

T∑
t=1

(∫
Kh(Xit − x)gl(x)(κ0(x)fi(x))−1w(x)dx

)
εit

and R =
∫
gl(x)Rk(x)w(x)dx. As supx∈Ih |Rk(x)| = op(1/

√
nTh) and supx∈Ich |Rk(x)| =

Op(h), we have that R = op(1/
√
nTh). Moreover, applying Chebychev’s inequality and

exploiting the mixing conditions on the data with the help of Davydov’s inequality (see

Corollary 1.1 in Bosq (1998)), it is not difficult to see that JV = op(1/
√
nTh). This

completes the proof. �

Proof of Proposition A4

Let v(A) = vec(A) be the vectorized representation of a K×K matrix A. There are fixed

vector-valued functions fk(·) and scalar functions ψk(·) with first and second derivatives

existing and being continuous in a neighbourhood of v(Σ∗) such that

sk = fk(v(Σ)) and λk = ψk(v(Σ))

ŝk = fk(v(Σ̂)) and λ̂k = ψk(v(Σ̂))

(cp. Magnus (1985)). In what follows, we show that ‖ŝk − sk‖ = op(1/
√
nTh) for all

k = 1, . . . , K, which immediately yields (27). The result (28) for the estimates of the

eigenvalues follows by exactly the same argument. From Proposition A3, we know that

‖v(Σ̂)− v(Σ)‖ = op

( 1√
nTh

)
.
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As fk is continuously differentiable in a neighbourhood of v(Σ∗), a first-order Taylor

expansion yields

ŝk − sk = fk(v(Σ̂))− fk(v(Σ)) = f ′k(ξ)
[
v(Σ̂)− v(Σ)

]
with ξ being an intermediate point between v(Σ̂) and v(Σ). Since f ′k(ξ) − f ′k(v(Σ∗)) =

op(1), we immediately arrive at

‖ŝk − sk‖ = op

( 1√
nTh

)
. �

Proof of Theorem 5.2

We again restrict attention to the Nadaraya-Watson based case, the arguments for the

local linear case being essentially the same. Write

√
T (β̂i − βi) =

√
T (β̂i − β̃i) +

√
T (β̃i − βi),

where β̃i is the infeasible parameter estimator defined in (11). In what follows, we analyze

the two terms on the right-hand side separately.

(i) First consider the term
√
T (β̂i − β̃i). It holds that

√
T (β̂i − β̃i)

=
( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1 1√

T

T∑
t=1

π(Xit)
{
µ̂(Xit)− µ(Xit)

}
Y fe
it

+
{( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1

−
( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1}

× 1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it .

Here,

1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it = L1 + L2 + L3 + L4

with

L1 =
1√
T

T∑
t=1

π(Xit)µ(Xit)εit

L2 =
1√
T

T∑
t=1

π(Xit)µ(Xit)mi(Xit)

L3 =
1√
T

T∑
t=1

π(Xit)µ(Xit)
(
µ0 + γt − Y t

)
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L4 =
( 1

T

T∑
t=1

π(Xit)µ(Xit)
)√

T
(
αi − Y i + Y

)
.

It is straightforward to see that L1 = Op(1), L2 = Op(
√
T ), L3 = op(1) and L4 = Op(1).

Hence,

1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it = Op(

√
T ). (31)

As supx∈Ih ‖µ̂(x)− µ(x)‖ = Op(
√

log nT/nTh) = op(1/
√
T ), we further obtain that

1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ − 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ

= Op

(√ log nT

nTh

)
= op

( 1√
T

)
(32)

as well as
1√
T

T∑
t=1

π(Xit)
{
µ̂(Xit)− µ(Xit)

}
Y fe
it = op(1). (33)

Combining (31)–(33) yields
√
T (β̂i − β̃i) = op(1).

(ii) We next turn to
√
T (β̃i − βi). Write

√
T (β̃i − βi) =

( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1

(L1 + L3 + L4)

with L1, L3 and L4 introduced above. Since T−1
∑T

t=1 π(Xit)µ(Xit)
P−→ E[π(Xit)µ(Xit)],

we can rewrite L4 as

L4 = −E[π(Xit)µ(Xit)]
1√
T

T∑
t=1

(mi(Xit) + εit) + op(1).

With this, we obtain that

L1 + L3 + L4 =
1√
T

T∑
t=1

χit + op(1),

where χit = (π(Xit)µ(Xit) − E[π(Xit)µ(Xit)])εit − E[π(Xit)µ(Xit)]mi(Xit). Applying a

central limit theorem, we now arrive at

√
T (β̃i − βi)

d−→ N(0,Γ−1
i Ψi(Γ

−1
i )

ᵀ
),

where the matrices Γi and Ψi are given by Γi = E[π(Xit)µ(Xit)µ(Xit)
ᵀ
] and Ψi =∑∞

l=−∞Cov(χi0, χil). �
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Proof of Theorem 6.2

The same arguments as for the proof of Proposition A3 show that

‖Σ̃− Σ‖ = op

( 1√
nTh

)
.

Moreover, letting λ1 ≥ . . . ≥ λK be the eigenvalues of the matrix Σ and λ̃1 ≥ . . . ≥ λ̃K
the eigenvalues of Σ̃, we have that

λ̃k =

∫
µ̃2
k(x)w(x)dx

and λk = 0 for k = K+1, . . . , K. Finally, note that the mapping of symmetric matrices to

their eigenvalues is Lipschitz continuous. In particular, let A and B be any real symmetric

K×K matrices and let λ1(A) ≥ λ2(A) ≥ . . . ≥ λK(A) and λ1(B) ≥ λ2(B) ≥ . . . ≥ λK(B)

be the corresponding eigenvalues. Then there exists a constant L independent of A and

B such that

|λk(A)− λk(B)| ≤ L‖A−B‖.

Combining the above remarks, we arrive at∫
µ̃2
k(x)w(x)dx = λ̃k = |λ̃k − λk| ≤ L‖Σ̃− Σ‖ = op

( 1√
nTh

)
for all k = K + 1, . . . , K. �

Appendix B

In this appendix, we list some results on uniform convergence which are needed to derive

the main theorems. As the proofs are rather lengthy and involved, they are deferred to

the Supplementary Material. We formulate the results for a general array {(Xit, Zit)} =

{(Xit, Zit) : i = 1, . . . , n, t = 1, . . . , T} which satisfies the following conditions:

(A1’) The data {(Xit, Zit)} are independent across i. Moreover, they are strictly station-

ary and strongly mixing in the time direction. Let αi(k) for k = 1, 2, . . . be the

mixing coefficients of the time series {(Xit, Zit) : t = 1, . . . , T} of the i-th individ-

ual. It holds that αi(k) ≤ α(k) for all i = 1, . . . , n, where the coefficients α(k)

decay exponentially fast to zero as k →∞.

(A4’) For some θ > 5 and for all l ∈ Z,

max
1≤i≤n

sup
x∈[0,1]

E
[
|Zit|θ

∣∣Xit = x
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|Zit|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞
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max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|ZitZit+l|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞,

where C is a sufficiently large constant independent of l.

In addition, we suppose that the variables Xit and (Xit, Xit+l) have densities fi and fi;l

which satisfy (A2) and that the kernel K and the dimensions n and T fulfill (A5)–(A7).

Throughout the appendix, we assume that the above conditions are satisfied. We now

formulate the various results:

Lemma B1. For kernel averages Ψi(x) of the form

Ψi(x) =
1

T

T∑
t=1

Kh(Xit − x)Zit,

it holds that

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ = op(1). (34)

If the variables Zit are bounded, i.e., if |Zit| ≤ C for some constant C independent of i

and t, then we even have that

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ = Op

(√ log T

Th

)
. (35)

Lemma B2. Let Ψ(x) be a kernel average of the form

Ψ(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)Zit.

It holds that

sup
x∈[0,1]

∣∣Ψ(x)− E[Ψ(x)]
∣∣ = Op

(√ log nT

nTh

)
.

Lemma B3. Let

Ψ(x) =
1

n

n∑
i=1

Vi(x)Wi(x)

with

Vi(x) =
( 1

T

T∑
t=1

(
Kh(Xit − x)− E[Kh(Xit − x)]

))ν
Wi(x) =

1

T

T∑
t=1

Kh(Xit − x)Zit

for some fixed natural number ν and assume that the variables Zit satisfy E[Zit|Xit] = 0.
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Then

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Lemma B4. Let

Ψ(x) =
1

T

T∑
t=1

Vt(x)Wt,

where Wt = 1
n

∑n
i=1 Zit and

Vt(x) =
1

n

n∑
i=1

(
Kh(Xit − x)− E[Kh(Xit − x)]

)
.

Assume that the variables Zit have mean zero. Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Lemma B5. Let

Ψ(x) =
1

n

n∑
i=1

( 1

nT

n∑
j=1
j 6=i

T∑
t=1

ϕit(x)Zjt

)

with ϕit(x) = Kh(Xit − x)φ̂i(x) and φ̂i(x) an estimator based on the data {Xit : t =

1, . . . , T}. Assume that φ̂i(x) has the following two properties:

(a) P(max1≤i≤n supx∈[0,1] |φ̂i(x)| > Cbn,T ) = o(1) for a sufficiently large constant C and a

null sequence {bn,T} which satisfies b2
n,T/h ≤ C(nT )−η for some small η > 0.

(b) max1≤i≤n |φ̂i(x) − φ̂i(x′)| ≤ cn,T |x − x′| with probability tending to one for some se-

quence {cn,T} which satisfies cn,T ≤ (nT )C for some positive constant C.

In addition, let the variables Zit have mean zero. Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

To prove the above lemmas, we use a covering argument together with an exponential

inequality, thus following the common strategy to be found for example in Bosq (1998),

Masry (1996) or Hansen (2008). For the proof of Lemmas B1 and B2, these standard

arguments have to be modified only slightly. For the proof of Lemmas B3–B5 in contrast,

some rather intricate and non-standard arguments are needed to get the overall strategy

to work.
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