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Appendix A The regulatory framework under MiFID

The “Markets in Financial Instruments Directive (MiFID)” is a directive of the European

Union that was adopted by the Council of the European Union and the European Parliament

in April 2004 and became effective in November 2007. It replaces the “Investment Services

Directive (ISD)” of 1993 that has become outdated by the fast speed of innovation in the

financial industry. MiFID is the cornerstone of the “Financial Services Action Plan” that

aims to foster the integration and harmonization of European financial markets. It provides a

common regulatory framework for security markets across the 30 member states of the European

Economic Area1 to encourage the trading of securities and the provision of financial services

across borders. The main pillars of MiFID are market access, transparency and investor

protection.

1. Market access. MiFID abolished the monopoly position that many primary exchanges

in the European Economic Area have had in the trading of equities. Under MiFID, orders

can be executed on either regulated markets (RM), multilateral trading facilities (MTF)

or systematic internalizers (SI). RMs and MTFs have similar trading functionalities but

differ in the level of regulatory requirements. In contrast to MTFs, RMs must obtain

authorization from a competent authority. While some MTFs have a visible (lit) order

book, others operate as regulated dark pools. In a dark pool, traders submit their orders

anonymously and they remain hidden until execution.2 SIs are investment firms that

execute client orders against other client orders or against their own inventories.

The new entrants differentiate themselves on quality, price and technology that are usually

tailored to speed-sensitive high frequency traders. In particular, MTF’s typically adopt he

so-called maker-taker rebates that reward the provision of liquidity to the system, various

types of orders permitted, and small tick sizes. Additionally, their computer systems offer

a lower latency when compared to regulated markets.

While the number of RMs did not significantly increase after the introduction of MiFID,

a large number of MTFs and SIs emerged in the post-MiFID period and successfully

captured market share from the primary markets: At the end of October 2007, the

European Securities and Markets Authority (ESMA) listed 93 RMs, 84 MTFs and 4

SIs. By the end of 2012, the number of MTFs had almost doubled to 151. While SIs are

rare compared to MTFs, their number had grown to 13 by December 2012. In contrast,

the number of RMs had only increased to 94.3

MiFID also extends the single passport concept that was already introduced in the ISD

to establish a homogeneous European market governed by a common set of rules. The

1The European Economic Area consists of the 27 member states of the European Union as well as Norway,
Iceland, and Liechtenstein.

2There are other, unregulated categories of dark pools that are registered as OTC venues or brokers (Gresse,
2012)

3http://mifiddatabase.esma.europa.eu/, accessed on November 11, 2012
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single passport concept enables investment firms that are authorized and regulated in

their home state to serve customers in other EU member states.

2. Transparency. With an increasing level of fragmentation, information on prices and

quantities available in the order books of different venues becomes dispersed. In response,

MiFID introduced pre- and post-trade transparency provisions to enable investors to

optimally decide where to execute their trade. Pre-trade transparency provisions apply to

RMs and MTFs that operate a visible order book and require these venues to publish their

order book in real time. Dark venues, OTC markets and SIs use waivers to circumvent the

pre-trade transparency rules. To comply with post-trade transparency regulations, RMs,

MTFs including regulated dark pools and OTC venues have to report executed trades to

either the primary exchange or to a trade reporting facility (TRF) such as Markit BOAT.

3. Investor protection. MiFID introduces investor protection provisions to ensure that

investment firms keep investors informed about their execution practises in a fragmented

market place. An important part of these regulations is the best execution rule: Invest-

ment firms are required to execute orders that are on behalf of their clients at the best

available conditions taking into account price, transaction costs, speed and likelihood of

execution. Investment firms have to review their routing policy on a regular basis.

However, the financial crisis exposed several shortcomings of MiFID and the European Com-

mission reacted to them by proposing a revision. The most important changes include the

regulation of e.g. derivatives trading on “Organised Trading Facilities”, the introduction of

safeguards for HFT, the improvement of transparency in equity, bonds and derivative markets,

the reinforcement of supervisory powers in e.g. commodity markets and the strengthening of

investor protection (European Commission, 2011).

Appendix B Trading venues

This appendix lists the individual trading venues that are used in our study.

• Lit venues: Bats Europe, Chi-X, Equiduct, LSE, Nasdaq Europe, Nyse Arca, and

Turquoise4

• Regulated dark pools: BlockCross, Instinet BlockMatch, Liquidnet, Nomura NX, Ny-

fix, Posit, Smartpool, and UBS MTF.

• OTC venues: Boat xoff, Chi-X OTC, Euronext OTC, LSE xoff, Plus, XOFF, and

xplu/o.

• Systematic internalizers: Boat SI and London SI.

4On 21 December 2009, the London Stock Exchange Group agreed to take a 60% stake in trading platform
Turquoise.
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Appendix C System latency at the LSE

Table C: System latency at the LSE

System Implementation Date Latency (Microseconds)

SETS <2000 600000

SETS1 Nov 2001 250000

SETS2 Jan 2003 100000

SETS3 Oct 2005 55000

TradElect June 18, 2007 15000

TradElect 2 October 31, 2007 11000

TradElect 3 September 1, 2008 6000

TradElect 4 May 2, 2009 5000

TradElect 4.1 July 20, 2009 3700

TradElect 5 March 20, 2010 3000

Millenium February 14, 2011 113

Source: Brogaard et al. (2013) and own calculations.

Appendix D Econometric justification for quantile CCE

estimation

We sketch an outline of the argument for the consistency of the quantile regression estimators

used above. Harding and Lamarche (2010) consider the case with homogeneous panel data

models; their theory does not apply to the heterogeneous case we consider.

We consider a special case where we observe a sample of panel data {(Yit, Xit) : i =

1, . . . , n, t = 1, . . . , T}. We first assume that the data come from the linear panel regres-

sion model

Yit = αi + βiXit + κift + εit, (1)

where ft denotes the unobserved common factor or factors. The covariates satisfy

Xit = δi + ρift + uit, (2)

where in the Pesaran (2006) model the error terms satisfy the conditional moment restrictions

E(u
ᵀ

it, εit|Xit, ft) = 0 with u independent of ε. The unobserved factors ft are assumed to be

either bounded and deterministic or a stationary ergodic sequence. Then assume that

θi = θ + ηi, (3)

where θi = (αi, βi, κi, δi, ρi)
ᵀ
, θ = (α, β, κ, δ, ρ)

ᵀ
and ηi are iid and independent of all the other

random variables in the system This is a special case of the model considered by Pesaran (2006).
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Letting h0t = δ + ρft, we can write (provided ρ 6= 0)

Yit = α∗i + βiXit + κ∗ih0t + εit, (4)

with α∗i = αi − δκi/ρ and κ∗i = κi/ρ, and note that E(εit|Xit, h0t) = 0.

Taking cross-sectional averages we have

X t = δ + ρft + ut + δ − δ + (ρ− ρ)ft = h0t +Op(n
−1/2), (5)

since ut = Op(n
−1/2) = δ − δ = ρ − ρ. Therefore, we may consider the least squares estimator

that minimizes
∑T

t=1

{
Yit − a− bXit − cX t

}2
with respect to ψ = (a, b, c), which yields a closed

form estimator. This bears some similarities to the approach of Pesaran (2006) except that we

do not include Y t here (in this special case, it would introduce approximate multicollinearity

here, since Y t = α+βδ+(βρ+κ)ft+εt+
(
βu
)
t
). Moon and Weidner (2010) advocate a QMLE

approach, which would involve optimizing a pooled objective function over θi, i = 1, . . . , n and

ft, t = 1, . . . , T. In the QMLE case this may be feasible, but in the case with more nonlinearity

such as quantiles as below this seems infeasible.

We now turn to quantile regression, and in particular median regression. We shall now

assume that med(εit|Xit, ft) = 0 and maintain the assumptions that E(uit) = 0 with u inde-

pendent of ε, so that X t = δ+ρft+ut = h0t+Op(n
−1/2) as before. We consider a more general

class of estimators based on minimizing the objective function

QT i(ψ) =
1

T

T∑
t=1

λ(Yit − a− bXit − cX t), (6)

over ψ, where λ(t) = |t|. The approximate first order conditions are based on

MT i(ψ;X1, . . . , XT ) =
1

T

T∑
t=1

 1

Xit

X t

 sign
(
Yit − α− βXit − γX t

)

=
1

T

T∑
t=1

mit(ψ,X t) (7)

We discuss now the properties of ψ̂i, the zero of MT i(ψ;X1, . . . , XT ). For this purpose we can

view ψ̂i as an example of a semiparametric estimator as considered in Chen, Linton, and Van

Keilegom (2003). That is, X t is a preliminary estimator of the ”function” h0t = δ + ρft.

An important part of the argument is to show the uniform consistency of this estimate

max
1≤t≤T

∣∣X t − δ − bft
∣∣ ≤ max

1≤t≤T
|ut|+

∣∣δ − δ∣∣+ ( max
1≤t≤T

|ft|) |ρ− ρ| = op(1). (8)

By elementary arguments we have max1≤t≤T |ut| = op(T
κn−1/2) for some κ depending on the

number of moments that uit possesses. Similarly, max1≤t≤T |ft| = Op(T
κ) under the same
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moment conditions.

For compactness, let us denote MT i(ψ;X1, . . . , XT ) by MT i(ψ, ĥ), where ĥ = (X1, . . . , XT ).

The approach of CLV is to approximate the estimator

ψ̂ = arg min
ψ∈Ψ
||MT i(ψ, ĥ)|| (9)

by the estimator

ψ = arg min
ψ∈Ψ
||MT i(θ, h0)||, (10)

where h0 = (h01, . . . , h0T ) is the true sequence. In the case where mit(ψ, h) is smooth in h, this

follows by straightforward Taylor expansion and using the uniform convergence result above. In

the quantile case, some empirical process techniques are needed as usual, but they are standard.

The estimator ψ is just the standard quantile regression estimator of the parameters in the case

where h0t is observed and so consistency follows more or less by a standard route, namely, the

strong law of large numbers implies that

MT i(ψ, h0) =
1

T

T∑
t=1

 1

Xit

δ + ρft

 sign (Yit − α− βXit − γδ − ργft)

→ Ei


 1

Xit

δ + ρft

 sign (Yit − α− βXit − γ(δ + ρft))


≡Mi(ψ), (11)

which is uniquely minimized at the true value of ψ. Here, Ei means expectation conditional on

ψi.

In fact, because of the independence of u, ε, the joint distribution of εit, Xit, ft factors into

the product of the conditional distribution of εit|ft the conditional distribution of uit|ft and the

marginal distribution of ft. We calculate Mi(ψ). We have

M1i(ψ) =Ei [sign (Yit − α− βXit − γδ − ργft)]

=

∫
[1− 2G((αi − α) + (βi − β)(u+ δi + ρif)

+ (γi − γ)(δ + ρf)|f)]r(u|f)q(f)dεdudf, (12)

where G is the c.d.f of ε|f with density g and r is the density of u|f and q is the marginal

density of f. It follows that M1i(ψ0) = 0 by the conditional median restriction. Similarly with

Mji(ψ), j = 2, 3. Under some conditions can establish the uniqueness needed for consistency.

We can further calculate ∂M1i(ψ)/∂ψ.

The next question is whether the estimation of h0 by ĥ affects the limiting distribution. In
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this case we consider the sequence h∗ = (h∗1, . . . , h
∗
T )

Ei [mit(ψ, h
∗
t )|ft] =Ei [mit(ψ, h0t)|ft] +

∂

∂h
Ei [mit(ψ, h0t)|ft] [h∗t − h0t]

+
∂2

∂h2
Ei
[
mit(ψ, ht)|ft

]
[h∗t − h0t]

2 (13)

for intermediate values ht. Then we can show that ∂Ei [mit(ψ, h0t)|ft] /∂h has a finite expecta-

tion and so

1

T

T∑
t=1

∂

∂h
Ei [mit(ψ0, h0t)|ft]

[
ĥt − h0t

]
=

1

T

T∑
t=1

∂

∂h
Ei [mit(ψ0, h0t)|ft]

[
ut + δ − δ + (ρ− ρ)ft

]
= Op(n

−1/2T−1/2) (14)

because Ei
[
ut + δ − δ + (ρ− ρ)ft|ft

]
= 0. Furthermore,

1

T

T∑
t=1

∂2

∂h2
E
[
mit(ψ, ht)|ft

] [
ĥt − h0t

]2

=
1

T

T∑
t=1

∂2

∂h2
E
[
mit(ψ, ht)|ft

] [
ut + δ − δ + (ρ− ρ)ft

]2
= Op(n

−1), (15)

so that we need T/n2 → 0. It follows that the limiting distribution is the same as that of ψ.

The conditions of CLV Theorem 1 and 2 are satisfied. In particular, for:

Γ1(ψ, ho) =
∂

∂ψ
M(ψ) = −2× p lim

T→∞

1

T

T∑
t=1

 1 Xit h0t

Xit X2
it Xith0t

h0t Xith0t h2
0t

 g(0|Xit, ft), (16)

V1 = var[mit(ψ0, h0t))] (17)

=

 1 δi + ρiEft δ + ρEft

δi + ρiEft σ2
u + δ2

i + ρ2
iEf

2
t + 2δiρiEft δiδ + δiρEf

2
t + (δiρ+ δρi)Eft

δ + ρEft δiδ + ρiρEf
2
t + (δiρ+ δρi)Eft δ2 + ρ2Ef 2

t + 2δρEft


we have √

T (ψ̂i − ψi) =⇒ N [0,Ω], where Ω = (Γ
ᵀ

1Γ1)−1Γ
ᵀ

1V1Γ1(Γ
ᵀ

1Γ1)−1. (18)

It follows that for each i √
T (β̂i − βi) =⇒ N(0,Ωββi), (19)

where Ωββi is the appropriate submatrix of above.
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In the case that g(0|Xit, ft) = g(0) we have

Ωi =
1

4g(0)

 1 δi + ρiEft δ + ρEft

δi + ρiEft σ2
u + δ2

i + ρ2
iEf

2
t + 2δiρiEft δiδ + δiρEf

2
t + (δiρ+ δρi)Eft

δ + ρEft δiδ + ρiρEf
2
t + (δiρ+ δρi)Eft δ2 + ρ2Ef 2

t + 2δρEft


−1

.

(20)

Under some additional conditions we may obtain the asymptotic behaviour of the pooled esti-

mator β̂ = n−1
∑n

i=1 β̂i. Specifically, we have

√
n(β̂ − β) =⇒ N(0,Σββ), (21)

where Σββ = var(vβi). This follows because

β̂ − β =
1

n

n∑
i=1

(β̂i − βi) +
1

n

n∑
i=1

(βi − β)

=
1

n

n∑
i=1

vβi +Op(T
−1/2n−1/2) +Op(n

−1), (22)

because the averaging over i reduces the orders, for example

1

n

n∑
i=1

1

T

T∑
t=1

 1

Xit

h0t

 sign (εit) = Op(T
−1/2n−1/2). (23)

The argument extends to the more general specification considered in the text.

Appendix E: Robustness

Alternative measures of market quality

Measuring market quality is inherently difficult, and there is an ongoing debate on what con-

stitutes a good measure of market quality. In view of this controversy, this section investigates

the robustness of the main results in the main paper to a variety of alternative measures of

market quality. The particular measures we consider are total (Parkinson) volatility, idiosyn-

cratic volatility, within day and overnight volatility, efficiency, and Amihud illiquidity. Table 14

reports summary statistics of these measures together with the variable used in the regressions

in the main paper.
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Market quality measures

Volatility. In the main paper, total volatility is measured by the Rogers-Satchell estimator. An

alternative measure is due to Parkinson (2002).5 The Parkinson estimator of total volatility

can be computed as

V P
itj

=
1

4 ln 2

(
lnPH

itj
− lnPL

itj

)2

(24)

As shown in Figure 1, the Parkinson volatility estimator is highly correlated with the Rogers-

Satchell estimator.

We also decompose volatility into overnight volatility and intraday volatility that we com-

pute as

V day
itj

= (lnPC
itj
− lnPO

itj
)2 (25)

V night
itj

= (lnPO
itj
− lnPC

it−1j
)2 (26)

Some have argued that HFT activity and the associated market fragmentation leads to higher

volatility through the endogenous trading risk process, (Foresight, 2012). Therefore, we also

obtained measures of overnight volatility that reflect changes in prices that occur between

the closing auction and the opening auction and are therefore not subject to the influence of

the continuous trading process. Unfortunately, we can’t completely separate out the auction

component and the continuous trading component, which would also be of interest. Figure 2

reports the time series of the cross-sectional quantiles of (the log of) overnight and within day

volatility, as well as their ratio. The two series move quite closely together. There is an increase

during the early part of the series followed by a decrease later, as with total volatility. The

ratio of the two series shows no discernible trend at any quantile over this period. It seems that

volatility increases and decreases but in no sense has become concentrated intraday relative to

overnight.

In addition, we computed a measure of idiosyncratic volatility. In principle, idiosyncratic

risk is diversifiable and should not be rewarded in terms of expected returns. We consider

whether the effects of fragmentation take place on volatility through the common or idiosyn-

cratic part. If it is on the idiosyncratic component of returns then it should have less impact on

diversified investors, i.e., big funds and institutions. Idiosyncratic volatility is calculated as the

squared residuals from a regression of individual close-to-close returns on index close-to-close

returns. Common volatility is then obtained as the square of the slope coefficient multiplied

by the variance of the index return. Cross-sectional quantiles of idiosyncratic and common

volatility are shown in Figure 3. The sharp increase in volatility during the financial crisis is

more pronounced for the common component.

Liquidity. While in the main paper, liquidity is measured by the bid-ask spread, this ap-

5We also measured total volatility by the simple range estimator Vitj =
PH

itj
−PL

itj

PL
itj

. The results for this

estimator are very similar to the Parkinson estimator and are available upon request.
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pendix considers a measures of liquidity based on daily transaction data. In particular, we use

the Amihud (2002) measure that is defined as

ILitj =
|Ritj |
V olitj

, (27)

where V olitj is the daily turnover, and Ritj are daily close to close returns. Goyenko, Holden,

and Trzcinka (2009) argue that the Amihud measure provides a good proxy for the price impact.

Figure 4 compared the cross-sectional quantiles of the Amihud measure and bid-ask spreads.

The two measures seem to move quite closely together and share a similar trajectory with

volatility measures. Towards the end of the sample there does seem to be a narrowing of the

cross sectional distribution of bid ask spreads.

Efficiency. A market that is grossly “inefficient” would be indicative of poor market qual-

ity. Hendershott (2011) gives a discussion of market efficiency and how it can be interpreted

in a high frequency world. We shall take a rather simple approach and base our measure of

inefficiency/predictability on just the daily closing price series (weak form) and confine our

attention to linear methods. In this world, efficiency or lack thereof, can be measured by the

degree of autocorrelation in the stock return series. We compute an estimate of the weekly lag

one autocorrelation denoted by ρit(k) = corr(Ritj , Ritj−k
), k = 1, 2, where Rtj denotes the close

to close return for stock i on day j within week t; the variance and covariance are computed

with daily data within week t. Under the efficient markets hypothesis this quantity should be

zero, but in practice this quantity is different from zero and sometimes statistically significantly

different from zero. Since the series is computed from at most five observations it is quite noisy,

we use the small sample adjustment from Campbell, Lo and MacKinlay (2012, eq. 2.4.13)

ρ̂Ait = ρ̂it +
1

Nit − 1
[1− ρ̂2

it], (28)

where ρ̂it is the sample autocorrelation based on Nit ≤ 5 daily observations. In this case, ρ̂Ait

is an approximately unbiased estimator of weekly efficiency. We take the absolute value of the

efficiency measure. Figure 5 reports cross-sectional quantiles of our efficiency measure. The

median inefficiency is around 0.3.6 The variation of the efficiency measures over time does

not suggest that the efficiency of daily stock returns either improves or worsens over this time

period.

Results for alternative measures of market quality

Our finding that visible fragmentation and dark trading have a negative effect on total and

temporary volatility is robust to using alternative measures of volatility such as Parkinson

or within-day volatility (Tables 1-2). If we measure market quality by the Amihud (2002)

6Note that when ρ̂it = 0, ρ̂Ait = 0.25 because Nit = 5 most of the time. Therefore, the bias adjusted level is
quite high.
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illiquidity measure, we find that a higher degree of overall or visible fragmentation is associated

with less liquid markets. Dark trading is found to improve liquidity. Because the Amihud

(2002) liquidity measure is closely related to LSE volume, these results probably in part reflect

our findings for LSE volume in the main paper. For efficiency, we cannot find significant effects.

Turning to the effect of fragmentation on the variability of market quality (Tables 3-4),

we find that dark trading increases the variability of total (Parkinson) volatility, which is

consistent with our main results in the main paper. We also document that a higher level of

overall fragmentation reduces the variability of Amihud illiquidity.

FTSE 100 and FTSE 250 subsamples

In the main paper, we only report results for a pooled sample of the FTSE 100 and 250 firms.

In this appendix, we complement our main results by splitting the sample into FTSE 100 and

FTSE 250 stocks. The FTSE 100 index is composed of the 100 largest firms listed on the LSE

according to market capitalization, while the FTSE 250 index comprises the “mid-cap” stocks.

When comparing the effect of market fragmentation on market quality for FTSE 100 and

FTSE 250 firms, interesting differences emerge: The effects of overall fragmentation on tem-

porary volatility and global volume can be attributed to FTSE 100 firms (Tables 5-6). The

negative effect of dark trading on volatility is only observed for FTSE 250 firms (Tables 7-8).

That effect is even positive for FTSE 100 firms. But in contrast with FTSE 250 firms, visible

fragmentation is associated with lower volatility for FTSE 100 firms. Inspecting the effects on

the volatility of market quality, overall fragmentation reduces the variability of LSE trading

volume only for FTSE 250 firms, while dark trading increases the variability of LSE volumes

for FTSE 100 firms (Tables 9-12).

Methods used in Related Research

This subsection relates the econometric methods used to produce our main results to methods

used elsewhere in the literature. Most authors use panel data specifications that are similar

to the fixed effects and difference-in-difference estimators discussed above. Some use two stage

least squares to instrument the covariate of interest (fragmentation or the related quantity,

High Frequency Trading (HFT) activity). They do not however instrument other included

covariates, which are just as likely to be jointly determined along with the outcome variable.

Specifically, some include volume and volatility as exogenous covariates in equations for liquidity

or execution cost, see below. In our case, both volume and volatility enter into their own

regression equations and should be considered “as endogenous as” fragmentation and liquidity.

De Jong et al. (2011) considered a specification of the form

Yit = αi + γq(t) + β1Xit + β2X
2
it + β

ᵀ

3Zit + εit, (29)

where Z contained: volatility, price level, market capitalization, volume, number of electronic

messages, and the percentage of trading in the darkside. They allow only quarterly time
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dummies in their specification perhaps because they have more information in the time series

dimension and so allowing different dummy variables for each time point would reduce the

degrees of freedom in their method. They assume homogeneous coefficients on the covariates

and do not investigate heterogeneity of effect in any way. Their sample was 52 firms and 1022

trading days from 2006-2009.

Gresse (2011) considered the following two equation specification

Yit = αi + β1Xit + β
ᵀ

2Zit + εit

Xit = a+ bMV i + c
ᵀ
Wit + ηit (30)

where Z included: volatility, price level, volume, and market value, and W included trade size

and the number of markets quoting the stock. She aggregated the (high frequency) data to the

monthly level for the panel regressions. The method involved two stage least squares where

predicted X was used in the Y equation. The sample was 140 non-financial equities from the

FTSE100, CAC40 and SBF120 for three months: January, June, and September 2009.

Zhang (2010) considered panel regressions of the form

Yit = αi + γt + β1Xit + β
ᵀ

3Zit + εit, (31)

where the cross-sectional dimension was large (around 5000 stocks) and the time series dimen-

sion was low frequency (quarterly observations from 1995Q1-2009Q2). His outcome variable

was volatility and X was ”High Frequency Trading Activity” (measured as some residual cal-

culated from stock turnover and institutional holdings) and Z included: price level, market

value, and a number of accounting variables. For some reason he winsorized all variables at 1%

and 99%, which at least bears out the relevance of robust methods.

Brogaard et al. (2013) considered a specification of the form

Yit = αi + γit+ β1Xit + β3Zit + wdt + εit

Xit = ai + bit+ cLt + eZit + ηit (32)

where Xit was HFT percentage, dt was a dummy variable for the short sale ban put into

place after the Lehman collapse, Lt was a measure of latency and Zit was volume. The panel

regressions were estimated with seven portfolios (i = 1, . . . , 7) formed according to market value

and the estimation was done in four event windows (separately and combined) that are defined

by latency upgrades of the LSE. The method involved two stage least squares where predicted

X was used in the Y equation.

O’Hara and Ye (2009) used the Davies and Kim (2007) matching methodology. Specifically,

they chose every tenth stock in their dataset and matched it with a stock that was most similar

in terms of a distance based on market capitalization and price level. They put the higher

fragmentation stock into bucket A and the lower fragmentation stock into bucket B. Then,

they tested for the difference in the mean level of market quality of stocks in bucket A versus

12



stocks in bucket B using a Wilcoxon nonparametric test. In principle, the underlying model

is nonparametric allowing different functional response of the market quality of ”fragmented

stocks” to observed covariates from the functional response of the market quality of ”consol-

idated stocks” to observed covariates. The parameter of interest is the average difference of

market quality between the two groups. Their data was high frequency from the first two

quarters of 2008.

We re-estimate our results using a heterogeneous panel data model without common factors.

This model can be obtained as a special case of our econometric model where ft is a vector of

ones and there are no observed common factors dt. A version of this model with homogenous

coefficients has been used by Gresse (2011), among others. However, that model cannot account

for unobserved, common shocks in the data and gives inconsistent results in the presence of

common shocks that are correlated with the regressors (Pesaran, 2006). As reported in Table

13, omitting observed and unobserved common factors leads to results that differ in magnitude

and statistical significance with the exception of LSE volume. However, the large increase

in our measure of cross-sectional dependence (CSD) indicates that this model is misspecified

because unobserved common shocks such as changes in trading technology or high frequency

trading are omitted that are likely to affect both market quality and fragmentation.

Stochastic Dominance

Finally, we investigated if the distribution of market quality under competition stochastically

dominates its distribution in a monopolistic market using the method in Linton et al., 2006).

If market quality is measures by bid-ask spreads, we find evidence of second order stochastic

dominance of competition over monopoly, and vice versa for volatility. However, this evidence

is only indicative as we did not formally obtain critical values for the test statistic.

13



Table 1: The effect of fragmentation on market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.713 -6.987 -5.507 -14.926 0.562 -13.652
(-8.817) (-4.855) (-3.025) (-10.13) (2.738) (-14.019)

Fragmentation 0.208 0.416 -0.11 -1.916 -0.025 -0.524
(0.383) (0.518) (-0.134) (-1.919) (-0.23) (-1.112)

Fragmentation sq. -0.534 -0.988 -0.368 1.1 0.056 1.341
(-1.269) (-1.446) (-0.55) (1.356) (0.579) (3.315)

Market cap. -0.499 -0.48 -0.591 -0.48 -0.039 -0.322
(-6.936) (-3.694) (-5.561) (-4.238) (-2.539) (-4.528)

Lagged index return 0.13 -0.236 -0.303 -0.048 0.037 0.415
(1.094) (-1.042) (-1.293) (-0.226) (1.2) (3.381)

VIX 1.126 1.022 1.153 1.845 -0.018 0.556
(39.602) (19.726) (20.79) (28.379) (-2.507) (19.476)

Christmas and New Year -0.267 -0.976 -0.135 0.166 0.016 0.588
(-12.004) (-19.751) (-3.704) (4.78) (3.157) (19.262)

Fragmentation (avg.) -1.991 -2.514 -2.777 -1.57 0.058 -1.026
(-10.776) (-6.743) (-8.061) (-4.449) (1.492) (-4.086)

Market cap. (avg.) -0.004 0.174 0.227 0.607 -0.044 -0.033
(-0.062) (1.139) (1.758) (4.329) (-1.79) (-0.465)

Marginal effect -0.349 -0.615 -0.495 -0.768 0.033 0.875
(-2.634) (-3.146) (-2.478) (-3.43) (1.303) (8.422)

∆Frag. -0.238 -0.408 -0.418 -0.998 0.021 0.595
(-1.154) (-1.457) (-1.402) (-2.821) (0.592) (3.797)

Adjusted R2 0.755 0.41 0.419 0.442 0.022 0.866

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in parenthesis. Dependent variables are in logs with the
exception of idiosyncratic volatility and efficiency. Market capitalization, index return and VIX are in logs too. ∆Frag. is defined as β̂1+β̂2(H+L)
and evaluated at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total
and residual sums of squares, adjusted for the number of regressors.
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Table 2: The effects of visible fragmentation and dark trading on market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.061 -7.039 -3.303 -14.786 0.348 -12.065
(-8.882) (-4.277) (-2.046) (-9.409) (1.423) (-12.319)

Vis. fragmentation 0.263 -1.023 -0.797 0.04 0.019 -0.249
(0.934) (-1.878) (-1.697) (0.081) (0.238) (-0.506)

Vis. fragmentation sq. -0.815 0.361 0.04 -0.422 -0.011 0.873
(-2.472) (0.547) (0.066) (-0.672) (-0.106) (1.631)

Dark 0.061 -0.237 0.98 -1.033 0.046 -0.752
(0.264) (-0.482) (1.877) (-2.467) (0.59) (-3.023)

Dark sq. -0.202 0.367 -1.398 1.125 -0.031 -0.096
(-0.858) (0.757) (-2.749) (2.555) (-0.384) (-0.397)

Market cap. -0.405 -0.441 -0.497 -0.3 -0.04 -0.217
(-5.698) (-3.066) (-4.329) (-2.447) (-2.228) (-2.989)

Lagged index return 0.13 -0.245 -0.302 -0.228 0.075 0.111
(1.273) (-1.149) (-1.604) (-1.101) (2.285) (0.931)

VIX 1.036 1.007 0.93 1.704 -0.011 0.474
(32.802) (15.204) (15.412) (26.517) (-1.169) (13.207)

Christmas and New Year -0.407 -1.049 -0.404 -0.073 0.017 0.551
(-17.035) (-19.138) (-9.463) (-1.791) (2.974) (16.647)

Vis. fragmentation (avg.) -0.84 -1.233 -0.039 -0.279 -0.062 0.712
(-4.805) (-4.197) (-0.12) (-0.838) (-1.385) (3.377)

Dark (avg.) -1.742 0.088 -2.991 -3.004 0.119 -0.049
(-11.51) (0.279) (-11.123) (-10.812) (2.685) (-0.293)

Market cap. (avg.) -0.133 0.062 -0.066 0.696 -0.06 -0.023
(-1.642) (0.393) (-0.51) (5.298) (-2.125) (-0.268)

Marg. effect (Vis. frag) -0.313 -0.768 -0.769 -0.258 0.011 0.368
(-2.99) (-4.004) (-4.029) (-1.23) (0.394) (2.058)

Marg. effect (Dark) -0.124 0.1 -0.303 0 0.018 -0.84
(-1.891) (0.585) (-1.991) (0.004) (0.746) (-9.526)

∆V is.frag. -0.306 -0.771 -0.769 -0.255 0.011 0.361
(-2.899) (-3.991) (-4.029) (-1.211) (0.396) (1.99)

∆Dark -0.14 0.129 -0.417 0.092 0.015 -0.848
(-2.111) (0.758) (-2.804) (0.721) (0.62) (-9.679)

Adjusted R2 0.773 0.417 0.429 0.455 0.031 0.871

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in parenthesis. Dependent variables are in logs with the
exception of idiosyncratic volatility and efficiency. Market capitalization, index return and VIX are in logs too. ∆X is defined as β̂1 + β̂2(H+L)
and evaluated at H = max(X) and L = min(X), for X = {Vis. frag, Dark} with max(Vis. frag) = 0.698,min(Vis. frag) = 0,max(Dark) =
1,min(Dark) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums of squares, adjusted for the number
of regressors.
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Table 3: The effect of fragmentation on the variability of market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -0.091 1.119 -0.38 -1.47 0.097 0.949
(-0.366) (0.871) (-0.421) (-1.503) (3.753) (2.679)

Fragmentation 0.015 -0.234 -0.671 -0.004 -0.031 -0.48
(0.154) (-0.418) (-1.413) (-0.007) (-2.057) (-2.377)

Fragmentation sq. -0.015 0.178 0.708 0.04 0.031 0.404
(-0.158) (0.343) (1.681) (0.08) (2.391) (2.251)

Market cap. -0.008 -0.152 -0.001 0.088 -0.003 -0.023
(-0.366) (-1.663) (-0.018) (1.052) (-1.506) (-0.915)

Lagged index return 0.03 0.249 0.129 0.091 -0.012 0.023
(0.833) (1.662) (0.894) (0.653) (-3.349) (0.474)

VIX 0.014 -0.069 0.014 0.067 -0.003 -0.039
(1.336) (-1.457) (0.393) (1.665) (-2.615) (-2.412)

Christmas and New Year 0.057 0.914 0.378 0.308 0.007 0.16
(3.734) (4.924) (4.107) (3.068) (3.895) (4.914)

Fragmentation (avg.) -0.033 -0.2 0.244 -0.159 -0.001 -0.08
(-0.498) (-0.691) (1.12) (-0.616) (-0.197) (-0.283)

Market cap. (avg.) 0.002 -0.154 -0.04 0.064 0.007 -0.07
(0.092) (-1.205) (-0.336) (0.622) (2.255) (-2.154)

Marginal effect 0 -0.048 0.068 0.038 0.001 -0.058
(-0.003) (-0.4) (0.59) (0.225) (0.172) (-1.175)

∆Frag. 0.003 -0.085 -0.08 0.029 -0.006 -0.143
(0.095) (-0.516) (-0.509) (0.139) (-1.034) (-2.125)

Adjusted R2 0.002 -0.04 -0.084 -0.068 -0.088 -0.004

Notes: Dependent variables are squared median regression residuals. Coefficients are median CCE mean group estimates. t-statistics are shown
in parenthesis. Market capitalization, index return and VIX are in logs. ∆Frag. is defined as β̂ + γ̂(H +L) and evaluated at H = max(Frag.) =
0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums of squares, adjusted
for the number of regressors.
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Table 4: The effect of visible fragmentation and dark trading on the variability of market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -0.356 2.445 0.863 -2.094 0.089 0.547
(-1.383) (1.88) (0.834) (-2.168) (2.686) (1.54)

Vis. fragmentation -0.165 -1.724 -2.016 0.268 0.005 -0.379
(-1.374) (-1.321) (-2.447) (0.747) (0.482) (-3.733)

Vis. fragmentation sq. 0.17 1.433 2.382 -0.299 0.001 0.591
(1.219) (1.213) (2.985) (-0.598) (0.054) (3.535)

Dark 0.025 -0.396 -0.65 -0.838 -0.017 -0.243
(0.362) (-0.963) (-1.683) (-2.827) (-2.129) (-2.465)

Dark sq. 0.056 0.544 0.711 0.927 0.022 0.257
(0.775) (1.356) (1.825) (2.757) (2.453) (2.671)

Market cap. -0.005 -0.104 -0.026 -0.083 0 0.007
(-0.253) (-1.086) (-0.328) (-0.949) (-0.074) (0.274)

Lagged index return 0.007 0.104 0.082 0.252 -0.017 -0.02
(0.195) (0.632) (0.596) (1.812) (-3.734) (-0.464)

VIX 0.025 -0.112 -0.005 0.097 -0.001 -0.013
(2.187) (-2.361) (-0.105) (2.282) (-0.97) (-0.926)

Christmas and New Year 0.038 0.508 0.237 0.156 0.003 0.136
(3.89) (5.638) (3.023) (4.157) (2.398) (4.945)

Vis. fragmentation (avg.) 0.143 0.497 0.447 -0.429 -0.006 0.037
(2.163) (1.589) (2.137) (-1.981) (-1.085) (0.555)

Dark (avg.) -0.005 0.106 0.087 0.373 0.008 0.177
(-0.096) (0.445) (0.467) (2.026) (1.5) (2.811)

Market cap. (avg.) 0.044 -0.166 -0.06 0.117 0.01 -0.029
(1.41) (-1.231) (-0.496) (1.172) (2.54) (-0.967)

Marg. effect (Vis. frag) -0.045 -0.711 -0.333 0.057 0.005 0.039
(-1.009) (-1.394) (-0.984) (0.376) (1.361) (0.605)

Marg. effect (Dark) 0.076 0.104 0.003 0.013 0.003 -0.008
(3.447) (0.784) (0.025) (0.149) (1.046) (-0.256)

∆V is.frag. -0.047 -0.724 -0.354 0.059 0.005 0.033
(-1.033) (-1.394) (-1.031) (0.395) (1.355) (0.531)

∆Dark 0.081 0.148 0.061 0.088 0.005 0.013
(3.457) (1.129) (0.507) (0.898) (1.588) (0.452)

Adjusted R2 -0.026 -0.027 -0.074 -0.064 -0.075 -0.037

Notes: Dependent variables are squared median regression residuals. Coefficients are median CCE mean group estimates. t-statistics are shown
in parenthesis. Market capitalization, index return and VIX are in logs. ∆X is defined as β̂ + γ̂(H + L) and evaluated at H = max(X) and
L = min(X), for X = {Vis. frag, Dark} with max(Vis. frag) = 0.0698,min(Vis. frag) = 0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is
the R2 calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.
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Table 5: The effect of fragmentation on market quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.74 -8.643 9.955 1.286 3.546
(-2.296) (-10.29) (5.771) (1.032) (3.332)

Fragmentation 1.141 -2.935 -0.02 1.711 2.197
(1.181) (-3.147) (-0.035) (3.076) (4.326)

Fragmentation sq. -1.216 2.365 0.184 -1.232 -3.115
(-1.616) (3.252) (0.38) (-2.457) (-7.203)

Market cap. -0.44 -0.38 -0.335 -0.533 -0.52
(-3.857) (-4.993) (-2.952) (-6.469) (-6.71)

Lagged index return 1.675 1.988 -0.099 0.9 1.153
(7.51) (9.466) (-0.949) (6.024) (8.29)

VIX 1.102 0.79 -0.239 0.283 0.217
(21.961) (19.127) (-4.642) (6.563) (5.529)

Christmas and New Year -0.352 -0.33 0.387 -1.332 -1.346
(-10.879) (-11.689) (11.849) (-50.646) (-57.374)

Fragmentation (avg.) -0.971 1.233 -0.169 0.913 0.364
(-2.458) (3.49) (-0.909) (1.578) (0.968)

Market cap. (avg.) -2.01 -0.731 -1.386 -0.257 -0.722
(-7.536) (-3.733) (-4.634) (-1.312) (-4.294)

Marginal effect -0.501 0.26 0.229 0.046 -2.012
(-2.403) (1.36) (1.417) (0.269) (-15.503)

∆Frag. 0.087 -0.883 0.14 0.642 -0.506
(0.245) (-2.627) (0.752) (4.153) (-3.223)

Adjusted R2 0.777 0.173 0.605 0.801 0.831

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in parenthesis. Dependent variables are in logs with the
exception of idiosyncratic volatility and efficiency. Market capitalization, index return and VIX are in logs too. ∆Frag. is defined as β̂1+β̂2(H+L)
and evaluated at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total
and residual sums of squares, adjusted for the number of regressors. .
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Table 6: The effect of fragmentation on market quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -8.503 -10.327 3.584 2.195 2.18
(-8.268) (-13.225) (3.743) (2.639) (2.336)

Fragmentation -0.193 -0.16 0.072 -0.658 -0.276
(-0.282) (-0.316) (0.258) (-1.876) (-0.837)

Fragmentation sq. -0.162 0.012 -0.164 0.707 -1.091
(-0.297) (0.029) (-0.651) (2.012) (-3.298)

Market cap. -0.437 -0.293 -0.326 -0.058 -0.084
(-4.379) (-4.599) (-3.772) (-0.682) (-0.979)

Lagged index return 0.297 0.837 -0.921 -0.359 -0.385
(1.965) (6.876) (-6.442) (-2.043) (-2.118)

VIX 1.042 0.789 0.095 0.264 0.295
(26.254) (25.717) (2.745) (7.134) (7.461)

Christmas and New Year -0.182 -0.149 0.395 -1.144 -1.134
(-6.693) (-6.713) (17.525) (-37.005) (-35.65)

Fragmentation (avg.) -1.424 0.216 -0.758 -0.273 -0.351
(-5.659) (1.345) (-4.471) (-0.915) (-1.224)

Market cap. (avg.) -0.219 0.438 0.033 0.556 0.571
(-1.285) (3.192) (0.201) (3.103) (3.244)

Marginal effect -0.359 -0.148 -0.096 0.064 -1.392
(-2.102) (-1.296) (-1.258) (0.635) (-14.205)

∆Frag. -0.328 -0.15 -0.065 -0.069 -1.186
(-1.301) (-0.852) (-0.682) (-0.635) (-11.469)

Adjusted R2 0.713 0.094 0.706 0.738 0.714

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in parenthesis. Dependent variables are in logs with the
exception of idiosyncratic volatility and efficiency. Market capitalization, index return and VIX are in logs too. ∆Frag. is defined as β̂1+β̂2(H+L)
and evaluated at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total
and residual sums of squares, adjusted for the number of regressors.

19



Table 7: The effects of visible fragmentation and dark trading on market quality for FTSE
100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.643 -7.637 8.131 4.08 5.067
(-1.852) (-7.171) (4.587) (4.744) (5.14)

Vis. fragmentation -0.3 -4.244 0.221 -0.87 -0.734
(-0.445) (-8.073) (0.628) (-2.12) (-1.825)

Vis. fragmentation sq. -0.597 4.121 0.001 0.916 -0.679
(-0.903) (7.412) (0.002) (2.015) (-1.498)

Dark -0.003 1.217 0.052 0.98 0.864
(-0.009) (3.507) (0.14) (3.189) (2.185)

Dark sq. 0.315 -1.395 -0.015 1.504 0.546
(0.676) (-3.213) (-0.037) (4.333) (1.269)

Market cap. -0.332 -0.29 -0.326 -0.46 -0.47
(-2.539) (-3.069) (-3.094) (-5.995) (-5.859)

Lagged index return 1.552 1.598 0.061 1.081 1.052
(7.909) (8.597) (0.638) (7.074) (8.273)

VIX 1.031 0.81 -0.174 0.271 0.207
(22.721) (23.318) (-3.981) (7.556) (5.648)

Christmas and New Year -0.398 -0.344 0.43 -1.386 -1.372
(-11.033) (-11.343) (13.148) (-56.478) (-54.94)

Vis. fragmentation (avg.) 0.591 1.746 -0.676 0.11 0.408
(1.488) (5.073) (-2.988) (0.453) (1.385)

Dark (avg.) -1.453 -0.154 0.362 -1.111 -1.568
(-7.065) (-0.935) (2.516) (-7.48) (-10.632)

Market cap. (avg.) -1.973 -0.589 -1.356 -0.68 -0.756
(-7.426) (-3.022) (-5.426) (-3.809) (-5.124)

Marg. effect (vis. frag) -0.91 -0.028 0.222 0.068 -1.428
(-4.674) (-0.16) (1.12) (0.525) (-10.759)

Marg. effect (dark) 0.234 0.165 0.041 2.114 1.275
(2.098) (1.668) (0.329) (21.692) (9.818)

∆V is.frag. -0.715 -1.378 0.222 -0.233 -1.206
(-2.67) (-6.945) (1.585) (-1.731) (-9.234)

∆Dark 0.303 -0.139 0.038 2.442 1.394
(2.02) (-1.041) (0.321) (23.905) (11.101)

Adjusted R2 0.784 0.193 0.617 0.846 0.848

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in paren-
thesis. Dependent variables are in logs with the exception of idiosyncratic volatility and
efficiency. Market capitalization, index return and VIX are in logs too. ∆X is defined as
β̂1 + β̂2(H + L) and evaluated at H = max(X) and L = min(X), for X = {V is.frag,Dark}
with max(V is.frag) = 0.0698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The ad-
justed R2 is the R2 calculated from pooling the individual total and residual sums of squares,
adjusted for the number of regressors.
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Table 8: The effects of visible fragmentation and dark trading on market quality for FTSE
250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -9.696 -11.53 0.588 1.368 3.05
(-9.159) (-12.407) (0.465) (1.692) (3.456)

Vis. fragmentation 1.277 0.839 0.565 0.334 0.03
(3.855) (3.419) (2.107) (1.511) (0.115)

Vis. fragmentation sq. -1.969 -1.164 -0.787 -1.035 -1.706
(-4.665) (-3.574) (-2.222) (-3.561) (-5.192)

Dark -0.531 0.032 -0.42 -0.071 -0.073
(-1.775) (0.121) (-1.446) (-0.275) (-0.28)

Dark sq. 0.221 -0.325 0.297 1.972 1.312
(0.879) (-1.403) (1.137) (9.367) (5.59)

Market cap. -0.487 -0.371 -0.318 -0.343 -0.311
(-5.184) (-5.328) (-3.531) (-4.021) (-3.494)

Lagged index return -0.166 0.717 -0.999 -0.597 -0.427
(-1.151) (5.344) (-6.243) (-4.071) (-2.599)

VIX 1.142 0.886 0.2 0.374 0.286
(28.397) (24.714) (4.458) (12.267) (7.619)

Christmas and New Year -0.27 -0.173 0.466 -1.192 -1.222
(-8.899) (-7.128) (17.456) (-37.077) (-34.246)

Vis. fragmentation (avg.) -1.631 -0.461 -1.245 -0.824 -0.771
(-8.201) (-2.762) (-7.958) (-5.024) (-4.02)

Dark (avg.) -0.669 0.281 0.599 -1.777 -1.992
(-3.334) (1.928) (3.367) (-11.211) (-11.218)

Market cap. (avg.) 0.557 0.799 0.48 1.256 0.794
(3.501) (6.149) (2.412) (7.844) (4.817)

Marg. effect (vis. frag) 0.031 0.102 0.067 -0.321 -1.05
(0.223) (0.98) (0.654) (-2.879) (-9.37)

Marg. effect (dark) -0.308 -0.295 -0.121 1.916 1.25
(-4.202) (-4.625) (-1.644) (26.542) (18.581)

∆V is.frag. -0.097 0.026 0.015 -0.389 -1.161
(-0.728) (0.253) (0.155) (-3.472) (-10.722)

∆Dark -0.31 -0.292 -0.123 1.899 1.238
(-4.162) (-4.519) (-1.665) (25.949) (18.291)

Adjusted R2 0.735 0.114 0.671 0.831 0.764

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in paren-
thesis. Dependent variables are in logs with the exception of idiosyncratic volatility and
efficiency. Market capitalization, index return and VIX are in logs too. ∆X is defined as
β̂1 + β̂2(H + L) and evaluated at H = max(X) and L = min(X), for X = {V is.frag,Dark}
with max(V is.frag) = 0.698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The ad-
justed R2 is the R2 calculated from pooling the individual total and residual sums of squares,
adjusted for the number of regressors.
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Table 9: The effect of fragmentation on the variability of market quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.58 -0.353 0.585 -0.175 -0.122
(-1.958) (-1.076) (1.834) (-1.324) (-0.662)

Fragmentation -0.092 0.211 0.135 0.229 0.174
(-0.452) (1.026) (1.164) (2.329) (1.874)

Fragmentation sq. 0.088 -0.188 -0.111 -0.215 -0.142
(0.463) (-1.079) (-1.09) (-2.532) (-1.766)

Market cap. 0.043 0.014 -0.027 -0.006 -0.007
(1.627) (0.588) (-0.861) (-0.442) (-0.626)

Lagged index return 0.099 -0.052 0.116 0.018 0.037
(1.386) (-0.995) (2.743) (0.506) (1.219)

VIX 0.035 0.025 -0.001 -0.002 -0.002
(2.58) (2.128) (-0.086) (-0.304) (-0.212)

Christmas and New Year 0.017 0.03 0.052 0.049 0.033
(1.767) (2.972) (4.416) (5.578) (4.577)

Fragmentation (avg.) 0.098 0.033 0.144 0.054 -0.025
(0.815) (0.3) (2.31) (1.748) (-0.375)

Market cap. (avg.) -0.073 0.07 -0.15 0.006 -0.01
(-0.867) (1.069) (-3.37) (0.151) (-0.253)

Marginal effect 0.027 -0.043 -0.015 -0.06 -0.017
(0.362) (-0.685) (-0.36) (-2.138) (-0.621)

∆Frag. -0.016 0.048 0.039 0.043 0.051
(-0.277) (0.685) (0.978) (1.387) (1.732)

Adjusted R2 -0.061 -0.07 -0.037 -0.023 -0.022

Notes: Dependent variables are squared median regression residuals. Coefficients are median CCE mean group estimates. t-statistics are
shown in parenthesis. Market capitalization, index return and VIX are in logs. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated at
H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors.
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Table 10: The effect of fragmentation on the variability of market quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.021 -0.381 0.346 0.607 0.178
(-0.041) (-0.682) (1.485) (1.204) (0.53)

Fragmentation -0.171 -0.225 -0.068 -0.457 -0.412
(-1.24) (-1.884) (-0.745) (-2.165) (-2.676)

Fragmentation sq. 0.147 0.21 0.087 0.432 0.333
(1.168) (1.833) (0.926) (2.409) (2.475)

Market cap. -0.043 -0.047 0.004 -0.081 -0.084
(-1.31) (-1.685) (0.196) (-3.734) (-4.271)

Lagged index return -0.035 0.158 0.053 0.026 -0.003
(-0.401) (1.676) (0.958) (0.331) (-0.058)

VIX 0.021 -0.014 -0.01 -0.011 -0.004
(1.154) (-0.901) (-0.754) (-1.019) (-0.264)

Christmas and New Year 0.08 0.069 0.111 0.115 0.104
(3.916) (4.011) (3.26) (4.652) (4.637)

Fragmentation (avg.) -0.018 -0.053 0.02 -0.196 -0.082
(-0.162) (-0.499) (0.331) (-1.584) (-1.061)

Market cap. (avg.) 0.107 -0.056 -0.098 0.015 0.107
(1.321) (-0.874) (-1.539) (0.241) (1.841)

Marginal effect -0.021 -0.01 0.02 -0.015 -0.071
(-0.589) (-0.378) (0.883) (-0.333) (-1.787)

∆Frag. -0.049 -0.05 0.004 -0.097 -0.134
(-1.069) (-1.453) (0.157) (-1.383) (-2.526)

Adjusted R2 -0.009 -0.011 -0.06 0.048 0.055

Notes: Dependent variables are squared median regression residuals. Coefficients are median CCE mean group estimates. t-statistics are
shown in parenthesis. Market capitalization, index return and VIX are in logs. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated at
H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors.
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Table 11: The effect of visible fragmentation and dark trading on the variability of market
quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.879 -0.36 0.663 0.01 0.2
(-2.133) (-0.851) (2.255) (0.079) (1.355)

Vis. fragmentation 0.366 -0.209 -0.045 0.264 0.259
(2.588) (-0.518) (-0.474) (3.244) (2.709)

Vis. fragmentation sq. -0.498 0.039 0.047 -0.318 -0.308
(-2.845) (0.111) (0.462) (-3.699) (-3.078)

Dark -0.095 -0.23 -0.046 -0.037 -0.042
(-0.74) (-2.136) (-0.542) (-0.838) (-0.909)

Dark sq. 0.252 0.393 0.038 0.057 0.109
(1.552) (2.932) (0.387) (1.076) (1.855)

Market cap. 0.012 0.006 0.005 -0.003 0.005
(0.41) (0.22) (0.237) (-0.284) (0.381)

Lagged index return 0.069 -0.073 0.095 -0.012 -0.063
(0.922) (-1.297) (1.952) (-0.51) (-1.88)

VIX 0.045 0.029 -0.002 -0.009 -0.013
(2.594) (1.945) (-0.192) (-1.66) (-2.194)

Christmas and New Year 0.009 0.008 0.044 0.015 0.017
(0.932) (0.874) (3.836) (3.344) (2.927)

Vis. fragmentation (avg.) 0.195 0.15 0.073 0.024 0.035
(2.157) (1.626) (1.505) (0.82) (0.978)

Dark (avg.) -0.127 -0.186 0.112 -0.035 -0.056
(-1.723) (-3.332) (2.278) (-1.632) (-2.214)

Market cap. (avg.) 0.006 0.115 -0.161 0.016 0.038
(0.063) (1.452) (-3.217) (0.686) (1.252)

Marg. effect (Vis. frag) -0.143 -0.17 0.004 -0.061 -0.056
(-2.029) (-1.914) (0.1) (-2.795) (-2.382)

Marg. effect (Dark) 0.095 0.066 -0.017 0.006 0.04
(2.477) (2.069) (-0.644) (0.53) (2.616)

∆V is.frag. 0.02 -0.182 -0.012 0.043 0.045
(0.378) (-1.048) (-0.331) (1.56) (1.403)

∆Dark 0.15 0.152 -0.009 0.019 0.064
(2.869) (3.605) (-0.305) (1.225) (3.137)

Adjusted R2 -0.049 -0.055 -0.022 -0.012 -0.003

Notes: Dependent variables are squared median regression residuals. Coefficients are median
CCE mean group estimates. t-statistics are shown in parenthesis. Market capitalization, index
return and VIX are in logs. ∆X is defined as β̂1 + β̂2(H + L) and evaluated at H = max(X)
and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) = 0.698,min(V is.frag) =
0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calculated from pooling the
individual total and residual sums of squares, adjusted for the number of regressors.
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Table 12: The effect of visible fragmentation and dark trading on the variability of market
quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.436 -0.045 0.163 0.294 0.054
(-1.004) (-0.101) (0.412) (1.316) (0.185)

Vis. fragmentation -0.333 -0.28 0.064 -0.126 -0.145
(-2.897) (-1.97) (0.668) (-1.457) (-1.377)

Vis. fragmentation sq. 0.379 0.318 -0.013 0.153 0.173
(2.169) (1.619) (-0.107) (1.275) (1.192)

Dark 0.046 -0.021 -0.139 -0.183 -0.283
(0.328) (-0.169) (-1.645) (-2.7) (-3.58)

Dark sq. 0.029 0.082 0.125 0.149 0.268
(0.238) (0.752) (1.527) (2.749) (4.031)

Market cap. -0.042 -0.02 0.026 -0.053 -0.052
(-1.359) (-0.703) (1.085) (-3.301) (-2.272)

Lagged index return -0.02 0.046 0.004 0.013 0.043
(-0.206) (0.64) (0.067) (0.321) (0.631)

VIX 0.041 0.005 -0.007 -0.023 -0.018
(1.796) (0.206) (-0.433) (-2.483) (-1.477)

Christmas and New Year 0.053 0.045 0.02 0.042 0.029
(3.639) (3.058) (1.799) (3.575) (3.191)

Vis. fragmentation (avg.) 0.143 0.059 -0.039 0.017 -0.003
(1.624) (0.994) (-0.678) (0.404) (-0.067)

Dark (avg.) 0.118 0 -0.018 -0.014 0.019
(1.824) (-0.003) (-0.265) (-0.377) (0.416)

Market cap. (avg.) 0.119 -0.013 -0.023 0.028 0.026
(0.968) (-0.157) (-0.358) (0.821) (0.318)

Marg. effect (Vis. frag) -0.093 -0.078 0.056 -0.029 -0.036
(-1.975) (-1.869) (1.564) (-1.342) (-1.375)

Marg. effect (Dark) 0.076 0.062 -0.013 -0.033 -0.013
(2.241) (2.185) (-0.701) (-1.77) (-0.653)

∆V is.frag. -0.068 -0.058 0.055 -0.019 -0.024
(-1.372) (-1.431) (1.608) (-0.946) (-1.032)

∆Dark 0.075 0.061 -0.014 -0.034 -0.015
(2.203) (2.135) (-0.757) (-1.809) (-0.755)

Adjusted R2 -0.011 -0.02 -0.044 0.04 0.015

Notes: Dependent variables are squared median regression residuals. Coefficients are median
CCE mean group estimates. t-statistics are shown in parenthesis. Market capitalization, index
return and VIX are in logs. ∆X is defined as β̂1 + β̂2(H + L) and evaluated at H = max(X)
and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) = 0.698,min(V is.frag) =
0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calculated from pooling the
individual total and residual sums of squares, adjusted for the number of regressors.
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Table 13: The effect of fragmentation on market quality when common factor are omitted

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant 4.678 2.375 0.01 4.619 4.932
(9.282) (11.593) (0.03) (15.379) (15.781)

Fragmentation 2.803 -0.179 0.98 0.176 0.741
(4.749) (-0.541) (3.572) (0.528) (2.226)

Fragmentation sq. -3.896 0.25 -1.235 -0.055 -2.22
(-7.488) (0.887) (-4.929) (-0.179) (-7.246)

Market cap. -1.737 -0.308 -0.901 -0.176 -0.242
(-27.077) (-14.912) (-20.027) (-4.541) (-5.87)

Marginal effect -1.624 0.105 -0.424 0.113 -1.782
(-13.806) (1.677) (-6.188) (1.19) (-18.874)

∆Frag. -0.448 0.03 -0.051 0.129 -1.111
(-2.409) (0.275) (-0.584) (1.192) (-10.003)

Adjusted R2 0.625 0.015 0.736 0.681 0.648
CSD 0.065 0.051 0.018 0.149 0.154

Notes: Coefficients are median CCE mean group estimates. t-statistics are shown in paren-
thesis. Dependent variables are in logs with the exception of idiosyncratic volatility and
efficiency. Market capitalization, index return and VIX are in logs too. ∆X is defined as
β̂1 + β̂2(H + L) and evaluated at H = max(X) and L = min(X), for X = {V is.frag,Dark}
with max(V is.frag) = 0.698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The ad-
justed R2 is the R2 calculated from pooling the individual total and residual sums of squares,
adjusted for the number of regressors.
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Table 14: Summary statistics

a) Market quality measures

Obs. Min Max Median Mean St. dev.

Total volatility 51038 -14.827 -1.917 -7.879 -7.820 1.142
Temp. volatility 51038 -5.307 7.431 -0.014 -0.003 0.574
BA spreads 51141 -9.196 -2.023 -6.351 -6.247 1.037
Global volume 51141 -7.049 8.388 3.222 3.079 0.982
LSE volume 51117 -8.198 7.988 2.594 2.523 0.941
Total (Parkinson) volatility 51129 -20.360 -2.001 -7.932 -7.875 1.131
Idiosync. Volatility 51141 0.000 0.076 0.000 0.000 0.001
Daily volatility 50927 -16.986 -2.332 -8.831 -8.886 1.521
Overnight volatility 50722 -18.465 -2.492 -10.124 -10.153 1.559
Illiquidity 50974 -17.990 -2.428 -11.172 -11.121 1.786
Efficiency 51131 0.000 0.792 0.224 0.267 0.176

b) Fragmentation, dark trading and observed common factors

Obs. Min Max Median Mean St. dev.

Fragmentation 51141 0.000 0.834 0.568 0.522 0.188
Visible fragmentation 51141 0.000 0.698 0.366 0.335 0.199
Dark trading 51141 0.000 1.000 0.463 0.474 0.186
Dark fragmentation 51112 0.000 0.842 0.526 0.496 0.154
Market capitalization 51141 3.383 11.769 6.850 7.122 1.386
Index return 162 7.751 8.399 8.188 8.155 0.172
VIX 162 2.738 4.273 3.164 3.244 0.369

Notes: Market quality measures are in logs with the exception of temporary volatility, id-
iosyncratic volatility and efficiency. Market capitalization, index return and VIX are in logs
too.
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Figure 1: Cross-sectional quantiles for Parkinson and Rogers-Satchell volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Volatilities are in logs. The panels on the right hand side show a nonparametric trend mi(t/T )
with bandwidth parameter 0.03.
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Figure 2: Cross-sectional quantiles for within day and overnight volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Within day and overnight volatilities are in logs and the ratio is the difference between the two
logged variables. The panels on the right hand side show a nonparametric trend mi(t/T ) with
bandwidth parameter 0.03.
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Figure 3: Cross-sectional quantiles for idiosyncratic and common volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
We took square roots of idiosyncratic and common volatilities. The panels on the right hand
side show a nonparametric trend mi(t/T ) with bandwidth parameter 0.03.
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Figure 4: Cross-sectional quantiles for illiquidity measures
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Bid-ask spreads and Amihud illiquidity are in logs. The panels on the right hand side show a
nonparametric trend mi(t/T ) with bandwidth parameter 0.03.
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Figure 5: Cross-sectional quantiles for market efficiency measures
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Efficiency is defined as weekly autocorrelations computed from daily data a small sample cor-
rection as in Campbell, Lo and MacKinlay (2012).
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