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1 Introduction19

Additive models are an important structured nonparametric regression framework. Com-20

pared to fully nonparametric models, they have the advantage that the regression function21

can be estimated without running into the curse of dimensionality problem. For this rea-22

son, they are particularly useful in applications where the dimensionality of the regressors23

is too high to fit a fully nonparametric model. Examples from economics and finance24

include, e.g., estimating a production function (Liu and Yang; 2010), studying the deter-25

minants of migration (Linton and Härdle; 1996), or modeling volatility (Yang et al.; 1999;26

Linton and Mammen; 2005). Remarkably, there is an abundant literature on estimation,27

but work on testing problems in additive models is scarce. The goal of this paper is to28

develop two diagnostic tests for additive models, and with the help of these, to explore29

the assumptions underlying a classical model for realized variance data.30

We work with the following model setup. We observe a sample of time series data31

{(Yt,X t) : t = 1, . . . , T}, where X t = (Xt,1, . . . , Xt,d)
>. The data are described by the32

additive model33

Yt = m0 +
d∑
j=1

mj(Xt,j) + εt for t = 1, . . . , T, (1)

where E[εt|X t] = 0 and mj are unknown nonparametric functions. We tackle two testing34

problems within this framework: we test (i) whether an additive component function mj35

has a given parametric form; and (ii) whether there is a structural break in an additive36

component mj. To construct the tests, we build on the smooth backfitting estimator37

(SBE) of Mammen et al. (1999). The SBE avoids the drawbacks of the ordinary backfitting38

algorithm of Hastie and Tibshirani (1990), which may break down in strongly correlated39

designs (Nielsen and Sperlich; 2005). This will be important for the applications we have40

in mind. Moreover, the asymptotic properties of the SBE are better understood.141

Our test for parametric specification is introduced in Section 2. Roughly speaking,42

it compares a nonparametric and a parametric fit of the additive component function43

mj under consideration. More specifically, it measures an L2-distance between a smooth44

backfitting estimate and a parametric fit of mj. There is a variety of tests on parametric45

specification in fully nonparametric models; see, among others, Härdle and Mammen46

(1993), González-Manteiga and Cao-Abad (1993), Hjellvik et al. (1998), Zheng (1996)47

and Kreiß et al. (2008). In contrast, the number of testing procedures for parametric48

specification in additive models is limited. Two notable exceptions are Fan and Jiang49

(2005) and Haag (2008). Fan and Jiang (2005) investigate the behavior of generalized50

1Alternative estimators for additive models include kernel based marginal integration techniques

(Newey; 1994; Tjøstheim and Auestad; 1994; Linton and Nielsen; 1995), sieve estimators (Chen; 2007),

and penalized splines (Eilers and Marx; 2002).
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likelihood ratio tests based on classical backfitting estimators and derive a variety of51

asymptotic results for them. Our approach differs from theirs in that we work with an52

L2-type test statistic and base our test on smooth rather than classical backfitting. Haag’s53

approach is more similar to ours, because he also considers an L2-test statistic based on54

the SBE. His method, however, is only able to test whether the entire additive regression55

function m(x) = m0 +
∑d

j=1mj(xj) belongs to a certain parametric family. In contrast,56

our test allows us to ask whether a specific component mj has a given parametric form.57

In Section 3, we tackle the problem of testing for structural breaks in the additive58

model (1). More specifically, we test whether an additive component function mj has the59

same functional form before and after a pre-specified break point in time. Our method is60

based on a similar idea as our test on parametric specification. In particular, we compute61

two smooth backfitting estimates of mj based on the data before and after the break62

point and compare them by means of an L2-distance. The test allows us to check each63

component function separately for an unknown functional change, while the remaining64

functions may or may not undergo a structural break. Testing nonparametric functions65

for structural breaks or, more generally, for functional instability over time has been66

considered, e.g., in Hidalgo (1995) and Delgado and Hidalgo (2000). In additive models,67

the literature is again much more sparse. Indeed, to the best of our knowledge, testing68

for structural breaks in additive models by means of backfitting methods has not been69

considered so far.70

In Section 4, we apply our methods to a major workhorse model for financial market71

volatility: the heterogeneous autoregressive (HAR) model for realized variance (RV) as72

suggested by Corsi (2009). As a core assumption, this model is linear in the regressors.73

But is there empirical support for this assumption? Based on the diagnostic tools that74

we provide in this paper, we can answer this question. In particular, we suggest a non-75

parametric version of the HAR model that belongs to the class of additive models (1) and76

use our tests to investigate the linearity assumption. In addition, we discuss the problem77

of measurement error of RV and provide size and power simulations for our tests.78

In the empirical analysis, we study RV data for 17 global futures contracts and indices79

from 2003 to 2010. Using the structural break test, we decide whether to split up the80

RV time series into a pre-crisis and a crisis sample. We then test for linearity. Recently,81

Lahaye and Shaw (2014) have used conventional methods to test the linear HAR model82

against a fully nonparametric model without any additive structure. Interestingly, the83

authors cannot reject the linear model. With our procedure, in contrast, we can detect a84

number of violations of the linearity assumption, but the actual deviations from linearity85

are mild. We thus conclude that the linear specification of the HAR model is well taken86

in most cases. This evidence may explain why most refinements of the linear HAR model87

3



achieve only tiny improvements in terms of predictive power (Corsi et al.; 2012). A small88

forecasting exercise confirms this expectation.89

2 Testing for a parametric specification90

In what follows, we investigate the question whether one of the additive components91

m1, . . . ,md in model (1) admits a certain parametric form. Without loss of generality,92

we restrict attention to m1, i.e., we test whether m1 belongs to a parametric family of93

functions {mθ : θ ∈ Θ}, where Θ denotes the parameter space. The null hypothesis is94

thus given by95

H0 : m1 ∈
{
mθ : θ ∈ Θ

}
.

To identify the additive component functions m1, . . . ,md in model (1), we normalize them96

to satisfy
∫
mj(xj)pj(xj)dxj = 0. Here, pj is the marginal density of the j-th regressor97

Xt,j. To keep the notation as simple as possible, we assume throughout that the regressors98

X t have bounded support. Without loss of generality, the support is supposed to equal99

the unit cube [0, 1]d. The case of unbounded support can be incorporated by slightly100

modifying the test statistic. We comment on this in Appendix A. In the next subsection,101

we introduce our test statistic. The asymptotic distribution of the statistic is derived in102

the second subsection. Finally, we describe a wild bootstrap procedure to improve the103

small sample behavior of the test. The technical assumptions and proofs of the main104

results can be found in Appendix A.105

2.1 The test statistic106

First suppose that the constant m0 and the functions m2, . . . ,md were known. In this107

situation, we could base our test on the one-dimensional model108

Zt = m1(Xt,1) + εt,

where Zt = Yt−m0−
∑d

j=2mj(Xt,j), and use standard nonparametric procedures to test109

the hypothesis H0. In particular, we could apply the kernel-based test of Härdle and110

Mammen (1993) which measures an L2-distance between a parametric fit and a kernel111

smoother of the function m1.112

As we do not observe m0 and the functions m2, . . . ,md, we replace them by a set of113

estimates, which are obtained by the smooth backfitting procedure introduced in Mammen114

et al. (1999). We focus attention on a version of the smooth backfitting algorithm which115

is based on Nadaraya-Watson smoothers and comment on a local linear version below.116

The smooth backfitting estimators m̃0, . . . , m̃d of the functions m0, . . . ,md are defined as117
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the minimizers of the criterion118

T∑
t=1

∫
[0,1]d

{
Yt − f0 −

d∑
j=1

fj(xj)
}2

Kg(x,X t)dx, (2)

where the minimization runs over all additive functions f(x) = f0 + f1(x1) + · · ·+ fd(xd)119

whose components satisfy
∫ 1

0
fj(xj)p̃j(xj)dxj = 0 for j = 1, . . . , d. Here, p̃j is a standard120

kernel density estimator of pj given by p̃j(xj) = 1
T

∑T
t=1Kg(xj, Xt,j). Moreover, g is the121

bandwidth and Kg(v, w) =
∏d

j=1Kg(vj, wj) is a product kernel. The factors Kg(vj, wj)122

are modified kernel weights of the form123

Kg(vj, wj) =
Kg(vj − wj)∫ 1

0
Kg(s− wj)ds

,

where Kg(s) = g−1K(s/g) and the kernel function K(·) integrates to one. These modified124

kernel weights have the property that
∫ 1

0
Kg(vj, wj)dvj = 1 for all wj, which is needed to125

derive the asymptotic results for the backfitting estimators.126

Given the estimates m̃0, m̃2, . . . , m̃d, the variables Zt can be approximated by Z̃t = Yt−127

m̃0−
∑d

j=2 m̃j(Xt,j). Based on the sample {Z̃t, Xt,1}Tt=1, we can construct a parametric and128

a nonparametric estimator of the function m1. Denote by mθ̂ the parametric estimator,129

which satisfies the high-level condition (A8) in Appendix A, and denote by m̂ a Nadaraya-130

Watson smoother of m1 with bandwidth h, i.e.,131

m̂(w) =

∑T
t=1Kh(w −Xt,1)Z̃t∑T
t=1 Kh(w −Xt,1)

.

As we will see below, the bandwidth h differs from g. In particular, for the theory to132

work, we have to undersmooth the backfitting estimates and thus choose g to converge133

faster to zero than h.134

The idea of our test is to measure the distance between the two estimates mθ̂ and m̂.135

More specifically, we set up a test statistic of the type introduced in Härdle and Mammen136

(1993) which measures an L2-distance between the parametric and the nonparametric137

estimate. The statistic is defined as138

ST = Th1/2

∫ (
m̂(w)−Kh,Tmθ̂(w)

)2
π(w)dw ,

where139

Kh,Tg(·) =

∑T
t=1Kh(· −Xt,1)g(Xt,1)∑T

t=1 Kh(· −Xt,1)

and π is a weight function with bounded support supp(π) ⊆ [0, 1] and
∫
π(x)dx = 1.140

As proposed in Härdle and Mammen (1993), we smooth the parametric estimates mθ̂ by141

applying the operator Kh,T to it. This artificially creates a bias term which cancels with142

the bias part of the kernel smoother m̂.143
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Our test statistic is based on Nadaraya-Watson type estimators. Alternatively, local144

linear estimators could be used. Specifically, we may estimate the functionsm0,m2, . . . ,md145

by a local linear based version of the smooth backfitting approach; see Mammen et al.146

(1999) for a formal definition and the technical details. Let us denote the resulting es-147

timates by m̃LL
0 , m̃LL

2 , . . . , m̃LL
d and write Z̃LL

t = Yt − m̃LL
0 −

∑d
j=2 m̃

LL
j (Xt,j). With this148

notation at hand, we can replace m̂ by the local linear smoother149

m̂LL(w) =

∑T
t=1Wh(w,Xt,1)Z̃LL

t∑T
t=1Wh(w,Xt,1)

,

where Wh(w,Xt,1) = Kh(w − Xt,1)[QT,2 − (w − Xt,1)QT,1] and QT,j =
∑T

t=1Kh(w −150

Xt,1)(w−Xt,1)j for j = 1, 2. Analogously as in the Nadaraya-Watson-based case, we may151

now define our test statistic by152

SLLT = Th1/2

∫ (
m̂LL(w)−KLL

h,Tmθ̂(w)
)2
π(w)dw,

where the operator KLL
h,T is given by153

KLL
h,Tg(·) =

∑T
t=1Wh(·, Xt,1)g(Xt,1)∑T

t=1Wh(·, Xt,1)
.

As in the Nadaraya-Watson case, this operator helps to get rid of the bias part of the154

nonparametric estimate.155

2.2 Asymptotic distribution156

We now examine the asymptotic behavior of our test. For simplicity, we focus on the157

theoretical analysis of the Nadaraya-Watson based statistic ST . The statistic SLLT can158

be handled by similar arguments. We derive the limit distribution of ST under local159

alternatives of the form160

m1(w) = m1,T (w) = mθ0(w) + cT∆(w), (3)

where mθ0 is a parametric function with θ0 ∈ Θ, ∆ is a bounded function of w and161

cT = T−1/2h−1/4. This nests the null hypothesis with ∆ ≡ 0.162

Theorem 1. Assume that the conditions (A1)–(A8) of Appendix A are satisfied. Then163

ST −BT
d−→ N

(∫
(Kh∆(w))2π(w)dw, V

)
,

where Khg(·) =
∫
Kh(· − u)g(u)du and

BT = h−1/2κ0

∫
σ2(w)π(w)

p1(w)
dw

V = 2κ1

∫
[σ2(w)]2π2(w)

p2
1(w)

dw.
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Here, p1 is the marginal density of Xt,1, σ2(w) = E[ε2
t |Xt,1 = w], κ0 =

∫
K2(u)du and164

κ1 =
∫

(
∫
K(u)K(u+ v)du)2dv.165

Importantly, our test statistic has the same limit distribution as the test which is based166

on the one-dimensional model Zt = m1(Xt,1) + εt with Zt = Yt − m0 −
∑d

j=2mj(Xt,j).167

Thus, the uncertainty stemming from estimating the additive components m0,m2, . . . ,md168

does not show up in the asymptotic distribution. Put differently, the test has the following169

oracle property: It has the same limit distribution as in the case where the components170

m0,m2, . . . ,md are known.171

2.3 Bootstrap172

To improve the small sample behavior of our test, we set up a wild bootstrap procedure.173

The bootstrap sample is given by {Z∗t , Xt,1}Tt=1 with174

Z∗t = mθ̂(Xt,1) + ε∗t . (4)

The bootstrap residuals are constructed as ε∗t = ε̂t · ηt, where ε̂t = Z̃t − m̂(Xt,1) are the175

estimated residuals and {ηt}Tt=1 is some sequence of i.i.d. variables with zero mean and176

unit variance that is independent of the sample {(Yt,X t)}Tt=1. Denote by mθ̂∗ and m̂∗177

the parametric and nonparametric estimates of m1 calculated from the bootstrap sample178

{Z∗t , Xt,1}Tt=1. Replacing the estimates mθ̂ and m̂ in ST by the bootstrap analogues mθ̂∗179

and m̂∗ yields the bootstrap statistic180

S∗T = Th1/2

∫ (
m̂∗(w)−Kh,Tmθ̂∗(w)

)2
π(w)dw.

The next theorem shows that the bootstrap is consistent.181

Theorem 2. Assume that the conditions (A1)–(A7) and (A8*) of Appendix A are satis-182

fied. Then183

S∗T −BT
d−→ N

(
0, V

)
conditional on the sample {(Yt,X t)}Tt=1 with probability tending to one.184

3 Testing for breaks185

In this section, we discuss how to test for structural breaks in the additive model (1). In186

the presence of a structural break, the model can be written as187

Yt =

mante
0 +

∑d
j=1m

ante
j (Xt,j) + εt for t < t∗

mpost
0 +

∑d
j=1m

post
j (Xt,j) + εt for t ≥ t∗,

(5)
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where t∗ is the break point and the functions mante
j and mpost

j denote the additive compo-188

nents before and after the break. Given the break t∗, we are interested in testing whether189

the various component functions have the same form before and after the break. More190

precisely, for each j ∈ {1, . . . , d}, we want to test the hypothesis191

H0 : mante
j (xj) = mpost

j (xj) for almost all xj.

In the sequel, we assume that t∗ is known. This is motivated by our application where192

we have a natural candidate for the break date. Our theory carries over to the case when193

t∗ is unknown and can be estimated by using additional data. It changes if the break194

point is estimated by using only the observations from the sample {(Yt,X t)}Tt=1 because195

in this case, the break point is not defined under the null hypothesis where mante
j ≡ mpost

j .196

Moreover, the estimators of the additive functions will suffer from an additional bias197

because the break point is estimated such that the curves fitted before and after the198

break differ as strongly as possible.199

Testing for a structural break is particularly difficult to handle when (5) is an autore-200

gression, i.e., when we observe the time series {Yt}Tt=1 and set Xt,j = Yt−j for j = 1, . . . , d201

in (5). The reason is that the autoregressive process {Yt}Tt=1 is nonstationary in the202

presence of structural breaks. Specifically, the variables Yt and Ys will have different dis-203

tributions at time points s 6= t with s, t ≥ t∗. To incorporate the autoregressive case, we204

thus cannot simply assume our data {(Yt,X t)}Tt=1 to be stationary. We rather have to205

take into account potential nonstationarities caused by structural breaks in the additive206

component functions. Appendix B provides the technical details on the nonstationary207

behavior we allow for. Moreover, it contains the proofs and theoretical arguments related208

to our structural break test.209

3.1 The test statistic210

Without loss of generality, we give an explicit definition of our test statistic only for the211

case j = 1. The statistic is based on the comparison of smooth backfitting estimators212

of mante
1 and mpost

1 . To introduce these estimators, we modify the discussion following213

equation (2) in the previous section. The Nadaraya-Watson smooth backfitting estimators214

m̃`
0, . . . , m̃

`
d (` = ante, post) are defined as the minimizers of the criterion215

∑
t∈T`

∫
[0,1]d

{
Yt − f0 −

d∑
j=1

fj(xj)
}2

Kg(x,X t)dx, (6)

where Tante = {t : 1 ≤ t ≤ t∗ − 1} and Tpost = {t : t∗ ≤ t ≤ T}. The minimization runs216

over all additive functions f(x) = f0 + f1(x1) + · · · + fd(xd) whose components satisfy217 ∫ 1

0
fj(xj)p̃

`
j(xj)dxj = 0 for j = 1, . . . , d. Here, p̃`j(xj) is equal to 1

T

∑
t∈T` Kg(xj, Xt,j),218
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where the kernel Kg(vj, wj) is defined as in the previous section. Up to a factor, p̃`j(xj)219

can be interpreted as a kernel estimator of the average density of Xt,j for t ∈ T`.220

To construct our test statistic, we proceed similarly as in Section 2. To start with,221

we consider the variables Z`
t = Yt − m`

0 −
∑d

j=2m
`
j(Xt,j) for t ∈ T` and ` = ante, post.222

These can be approximated by Z̃`
t = Yt − m̃`

0 −
∑d

j=2 m̃
`
j(Xt,j). Based on the sample223

{Z̃`
t , Xt,1}t∈T` , we can construct the Nadaraya-Watson smoother of m`

1 with bandwidth h,224

m̂`
1(w) =

∑
t∈T` Kh(w −Xt,1)Z̃`

t∑
t∈T` Kh(w −Xt,1)

.

Our test statistic is now defined as225

ST = Th1/2

∫ (
K

1,post
h,T m̂ante

1 (x)−K
1,ante
h,T m̂post

1 (x)− δ̂
)2
π(x)dx, (7)

where

K
1,ante
h,T g(·) =

∑t∗−1
t=1 Kh(· −Xt,1)g(Xt,1)∑t∗−1

t=1 Kh(· −Xt,1)
,

K
1,post
h,T g(·) =

∑T
t=t∗ Kh(· −Xt,1)g(Xt,1)∑T

t=t∗ Kh(· −Xt,1)
,

δ̂ =

∫ (
K

1,post
h,T m̂ante

1 (x)−K
1,ante
h,T m̂post

1 (x)
)
π(x)dx

and π is a weight function with bounded support supp(π) ⊆ [0, 1] and
∫
π(x)dx = 1. Note226

that δ̂ is chosen such that227

ST = min
δ∈R

Th1/2

∫ (
K

1,post
h,T m̂ante

1 (x)−K
1,ante
h,T m̂post

1 (x)− δ
)2
π(x)dx.

The construction of this test statistic can be motivated as follows: In a first attempt,228

one could consider a test based on the statistic minδ∈R Th
1/2
∫ (

m̂ante
1 (x) − m̂post

1 (x) −229

δ
)2
π(x)dx. The estimates m̂ante

1 (x) and m̂post
1 (x) in this statistic have different asymptotic230

bias terms. For this reason, the test behaves like a linear test and not like an overall231

goodness-of-fit test; see Härdle and Mammen (1993) for a related discussion. Our test232

statistic corrects for this disadvantage because, as one can show, K
1,post
h,T m̂ante

1 (x) and233

K
1,ante
h,T m̂post

1 (x) have the same asymptotic bias and thus the bias terms cancel when we234

take the difference of the two smoothed estimates.235

As an alternative, we could consider the test statistic minδ∈R Th
1/2
∫ (

m̂LL,ante
1 (x) −236

m̂LL,post
1 (x) − δ

)2
π(x)dx, where m̂LL,ante

1 and m̂LL,post
1 are local linear smoothers based237

on a local linear version of the backfitting algorithm. Now, no additional smoothing238

of the estimates is required because the asymptotic bias terms of the two estimates do239

not differ. The reason is that the bias of a local linear estimator does not depend on the240

design density of the covariates. This holds true both for local linear smoothers in classical241

regression models and for the local linear smooth backfitting estimators in additive models242

(Mammen et al.; 1999).243
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3.2 Asymptotic distribution244

We now derive the asymptotic distribution of ST under local alternatives of the following245

form: The function mante
1 is fixed and246

mpost
1 (x) = mante

1 (x) + cT∆(x),

where cT = T−1/2h−1/4 and ∆ is some bounded function. The other component functions,247

i.e., the functions m`
j for j > 1 and ` = ante, post are assumed to be fixed. Importantly,248

we allow for structural breaks in the other components, i.e., we allow for the possibility249

that mante
j −mpost

j 6= 0 for some j > 1. One can show that the asymptotics of ST do not250

change if mante
j and mpost

j are not fixed and additional uniform smoothness conditions are251

imposed on them. For ∆ ≡ 0, we obtain a specification that lies on our null hypothesis;252

for ∆ 6≡ 0 we get a neighbored point in the alternative. The limit distribution of ST is253

given by the following theorem.254

Theorem 3. Suppose that assumptions (B1)–(B5) of Appendix B are satisfied. Then255

ST −BT
d−→ N(µ, V ),

where µ =
∫

∆2(x)π(x)dx−
[∫

∆(x)π(x)dx
]2

and

BT = h−1/2K(2)(0)

∫ [
c−1σante(x)2 + (1− c)−1σpost(x)2

]
π(x)dx

V = 2K(4)(0)

∫ [
1

c2

σante(x)4

pante1 (x)2
+

2

c(1− c)
σante(x)2σpost(x)2

pante1 (x)ppost1 (x)
+

1

(1− c)2

σpost(x)4

ppost1 (x)2

]
π(x)2 dx.

Here, σante(x)2 is the conditional variance of εt given Xt,1 = x for t < t∗ and σpost(x)2 is256

the conditional variance of εt given Xt,1 = x for t ≥ t∗. Furthermore, K(r) denotes the257

r-times convolution product of K (for r ≥ 1) and c is the limit of t∗/T for T →∞.258

When deriving the above result, we have to take care of the following two points: (i)259

As already discussed above, we cannot simply assume that the process {(Yt,X t)}Tt=1 is260

stationary but have to take into account potential nonstationarities caused by structural261

breaks in the component functions. (ii) We have to show that by the additional smoothing262

operations K
1,ante
h,T and K

1,post
h,T the bias terms cancel in the test statistics. Appendix B263

provides the details on how to deal with these two issues. As for (i), we will assume that264

there exist stationary processes Xante
t and Xpost

t such that Xt is approximated by Xante
t for265

t < t∗ and Xt is approximated by Xpost
t for t > t∗. Appendix B gives a rigorous definition266

of these approximating processes. In addition, it provides conditions under which such267

approximating processes exist in the autoregressive case, in particular when considering268

the nonparametric HAR model of our empirical analysis in Section 4.269
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3.3 Bootstrap270

To improve the small sample behavior, we suggest bootstrapping the test statistic. Denote271

the bootstrap sample by {(Z∗t , Xt,1)}Tt=1, where272

Z∗t = m̄1(Xt,1) + ε∗t

and m̄1 is an average of m̃ante
1 and m̃post

1 . The bootstrap residuals are constructed as273

ε∗t = ε̂t ·ηt, where ε̂t = Z̃ante
t − m̂ante

1 (Xt,1) for t < t∗ and ε̂t = Z̃post
t − m̂post

1 (Xt,1) for t ≥ t∗274

are the estimated residuals and {ηt}Tt=1 is some sequence of i.i.d. variables with zero mean275

and unit variance that is independent of the sample {(Yt,X t)}Tt=1. Denote the bootstrap276

analogue of m̂`
1(x) by m̂∗,`1 (x) for ` = ante, post. The bootstrap statistic is then defined277

as278

S∗T = Th1/2

∫ (
K

1,post
h,T m̂∗,ante1 (x)−K

1,ante
h,T m̂∗,post1 (x)− δ̂∗1

)2
π(x)dx

where279

δ̂∗1 =

∫ (
K

1,post
h,T m̂∗,ante1 (x)−K

1,ante
h,T m̂∗,post1 (x)

)
π(x)dx.

The following theorem states that the bootstrap works.280

Theorem 4. Suppose that assumptions (B1)–(B5) of Appendix B are satisfied. Then281

S∗T −BT
d−→ N

(
0, V

)
conditional on the sample {(Yt,X t)}Tt=1 with probability tending to one.282

4 Additive modeling of realized variance283

In the following, we present a nonparametric extension of the heterogeneous autoregressive284

(HAR) model of Corsi (2009). Section 4.1 introduces the model. Section 4.2 discusses285

whether and how our estimation methods are affected by measurement errors in realized286

variance (RV) data. In Section 4.3, we simulate data from various HAR models and use287

these to investigate the size and power properties of our test procedures. The empirical288

applications follow in Section 4.4.289

4.1 A nonparametric HAR model290

To introduce the nonparametric HAR model, let Vt denote RV or a transformation of it291

such as realized volatility (
√

RV) or logarithmic RV (log RV). Moreover, define V
(n)
t =292

1
n

∑n−1
j=0 Vt−j, n ∈ N+, to be an average of Vt over the past n trading days. Finally, denote293

11



by ι = (ι1, . . . , ιd)
> ∈ Nd

+ an index vector where ι1 < ι2 . . . < ιd. The nonparametric HAR294

model is given by295

V
(ι1)
t = m0 +

d∑
j=1

mj

(
V

(ιj)
t−1

)
+ εt for t = 1, . . . T, (8)

where m0 is a constant, mj (j = 1, . . . , d) are smooth functions of unknown shape, also296

called the variance component functions, and E[εt|V (ι1)
t−1 , . . . , V

(ιd)
t−1 ] = 0. The model is a297

special case of (1) and obtained by setting Yt = V
(ι1)
t and Xt,j = V

(ιj)
t−1 for j = 1, . . . , d. The298

most commonly used index vector is ι = (1, 5, 22)>, which corresponds to a daily lag and299

averages of the daily variances over the last week and the last month, respectively.2 This300

choice is motivated by the idea that market participants that have different investment301

horizons, such as daily, weekly and monthly time scales, provoke different types of variance302

components by their trading activities (Corsi; 2009). As a standard assumption, the303

variance component functions in (8) are assumed to be linear, i.e., mj (x) = θjx, θj ∈ R,304

in which case the model reduces to a restricted AR(ιd) model.305

Despite its simplicity, the linear HAR model is a major benchmark for describing RV306

data. It well captures the principal stylized fact, i.e., the slowly decaying sample autocor-307

relation function of RV, and has a forecasting power that is hard to beat. Few studies have308

addressed the topic of potential nonlinearities in the HAR model for RV. McAleer and309

Medeiros (2008) consider a multiple regime smooth transition HAR model and Corsi et al.310

(2012) propose a tree-structured HAR model. Chen et al. (2013) suggest a linear HAR311

model whose coefficients are allowed to vary slowly in time. With the exception of Lahaye312

and Shaw (2014), who consider the very general model V
(1)
t = m

(
V

(1)
t−1, V

(5)
t−1, V

(22)
t−1

)
+εt, all313

these studies assume a specification that is linear conditionally on the regime or locally314

in time. In spite of these efforts, the actual improvements that are achieved in terms of315

predictive ability vis-à-vis the linear model have proved to be comparably tiny. See Corsi316

et al. (2012) for a survey on the HAR model.3317

4.2 Measurement error318

Under appropriate conditions, RV that is constructed from high-frequency intra-day data319

can be considered as an estimator of the latent variance of the daily return process. There320

are situations, however, in which one may be interested in studying the latent variable321

2This choice is owed to Corsi (2009) and has frequently been adopted. Testing the index itself is

beyond the scope of this text; for linear models, this is investigated in Audrino and Knaus (2014).
3Aside from modeling RV data by means of neglected nonlinearities and structural breaks, an alter-

native strand of the literature uses long memory processes (Andersen et al.; 2001, 2003). Very recent

research of Hillebrand and Medeiros (2014) suggests that both features – long memory and nonlineari-

ties/structural breaks – may also jointly contribute to the observational patterns of RV data.
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rather than its estimate. In what follows, we show that this is possible with the help of322

our methods as long as the estimation error is not too large. For simplicity, we restrict323

attention to the case where V
(1)
t is realized volatility, i.e.

√
RV, at day t and V

∗(1)
t is the324

underlying latent daily volatility estimated by V
(1)
t . Our arguments carry over to the case325

where V
(1)
t is RV or the logarithm thereof.326

Following Asai et al. (2012), the measurement error can be modeled by327

V
(1)
t = V

∗(1)
t +

ut

nβt
, (9)

where nt is the number of high-frequency observations at day t and β satisfies 1/6 ≤ β ≤328

1/2, the exact value of β depending on the assumptions that are adopted for additional329

microstructure noise in the observed logarithmic price process. Instead of V
(1)
t , we may330

want to describe the latent volatility V
∗(1)
t by a HAR model, that is,331

V
∗(ι1)
t = m0 +

d∑
j=1

mj

(
V
∗(ιj)
t−1

)
+ εt. (10)

This model is more complicated than (8) because V
∗(ιj)
t is not observed. To estimate the332

functions mj, we replace the latent variables V
∗(ιj)
t by the RV estimates V

(ιj)
t and apply333

the smooth backfitting algorithm to them.334

We now investigate how the SBE gets affected by the estimation error in RV. Without335

loss of generality, we set d = 2 in (10) and consider the model336

V
∗(1)
t = m0 +m1(V

∗(1)
t−1 ) +m2(V

∗(5)
t−1 ) + εt. (11)

Moreover, we impose the following assumptions:337

(C1) The errors εt have the form εt = σ(V
∗(1)
t−1 , V

∗(5)
t−1 )ξt with i.i.d. residuals ξt and some338

volatility function σ(·). For any t, ξt is independent of {(V ∗(1)
t−j , V

(1)
t−j) : j ≥ 1}.339

(C2) E[|ut−j||V (1)
t−1, V

(5)
t−1] ≤ C <∞ for some constant C, j = 0, . . . , 5, and all t.340

(C3) The derivatives m′1 and m′2 are absolutely bounded.341

(C1) is a very common assumption in the literature on nonlinear AR models; see, e.g.,342

Tjøstheim and Auestad (1994). (C2) and (C3) are technical conditions required to control343

the measurement error.344

Model (11) can be rewritten in terms of realized volatility as follows. Using (9) together345

with a Taylor expansion, we obtain that346

V
(1)
t = m0 +m1(V

(1)
t−1) +m2(V

(5)
t−1) +Wt + εt,
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where347

Wt = − ut
nβt

+m′1

(
Ṽ

(1)
t−1

) ut−1

nβt−1

+m′2

(
Ṽ

(5)
t−1

) 1

5

5∑
j=1

ut−j

nβt−j

and Ṽ
(ι)
t−j denotes an intermediate point between V

(ι)
t−j and V

∗(ι)
t−j for ι = 1, 5. Hence,348

E
[
V

(1)
t

∣∣V (1)
t−1, V

(5)
t−1

]
= m0 +m1(V

(1)
t−1) +m2(V

(5)
t−1) + ρn(V

(1)
t−1, V

(5)
t−1), (12)

where ρn(V
(1)
t−1, V

(5)
t−1) = E[Wt|V (1)

t−1, V
(5)
t−1]. According to (12), the additive structure of349

model (11) gets lost when it is expressed in terms of realized volatility, i.e., the regression350

function m(x) = E[V
(1)
t |V

(1)
t−1 = x1, V

(5)
t−1 = x2] does not have an additive form.351

The SBE has the following property: If the true regression function m is not additive,352

it estimates the L2-projection of m onto the space of additive functions. This projection353

converges to the additive function madd(x) = m0 + m1(x1) + m2(x2) as the sample size354

increases: Under (C2) and (C3), the term ρn(V
(1)
t−1, V

(5)
t−1) can be bounded by355

∣∣ρn(V
(1)
t−1, V

(5)
t−1)
∣∣ ≤ 5∑

j=0

C ′

nβt−j
E
[
|ut−j|

∣∣V (1)
t−1, V

(5)
t−1

]
≤ C ′′

nβ
, (13)

where C ′ and C ′′ are sufficiently large constants and for simplicity, we set nt = n for all356

t, i.e., the number of intraday observations is the same at each day. Equations (12)–(13)357

imply that m approaches the additive function madd as n→∞. In particular, the squared358

L2-distance between m and madd is bounded by359

E
[{
m(V

(1)
t−1, V

(5)
t−1)−madd(V

(1)
t−1, V

(5)
t−1)

}2
]

= E
[
ρ2
n(V

(1)
t−1, V

(5)
t−1)
]
≤ C

n2β
(14)

with some sufficiently large constant C. Hence, madd is asymptotically identical to the360

L2-projection of m. As a result, the SBE converges to the additive function madd, i.e., it361

consistently estimates the variance component functions m1 and m2 of model (11) despite362

the presence of measurement error.363

The term ρn(V
(1)
t−1, V

(5)
t−1) can be interpreted as a bias induced by the measurement error.364

The convergence rate of the SBE heavily depends on how quickly this bias converges to365

zero, or put differently, on how fast n tends to infinity compared to T . If n grows so366

quickly that ((Tg)−1/2 + g2)nβ → ∞, where g is the bandwidth of the SBE, there is no367

loss in terms of the rate. If n grows more slowly, the rate slows down. As a consequence,368

our methods will asymptotically not be affected by the measurement error as long as the369

bias ρn(V
(1)
t−1, V

(5)
t−1) converges to zero sufficiently fast. This finding parallels the results370

in Corradi et al. (2009) who estimate the predictive density of the true daily volatility371

from noisy RV measures. In small samples, the term ρn(V
(1)
t−1, V

(5)
t−1) may of course strongly372

bias the SBE estimator even though it washes out asymptotically. Ideally, we would thus373

like to refine our estimation methods and use techniques that explicitly correct for this374
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bias. Asai et al. (2012) devise such a bias correction for the linear HAR model. In our375

nonparametric setting, it is however much more difficult and not entirely clear how to376

construct such a correction. For the time being, we thus advocate to proceed as described377

above.378

4.3 Simulations379

In order to get some insights into the size and power properties of our testing procedures380

in finite samples, we run simulations both under the null and alternative hypotheses. We381

define the following size and power functions: αT (h) = P (ST > s∗α|H0) and βT (h) =382

P (ST > s∗α|HA), where H0 and HA denote the null and the alternative, respectively, and383

s∗α is the stochastic approximate critical value at the α-level obtained from the bootstrap.384

The set-up we choose is motivated from our applications to RV data.385

4.3.1 Specification tests386

As a first case, we test for linearity of the function m2 and consider the following models:

V
(1)
t = m0 +m1(V

(1)
t−1) +m2,i(V

(5)
t−1) +m3(V

(22)
t−1 ) + εt,

where V
(ιj)
t is defined in Section 4.1; moreover, m0 = 0, m1(x) = 0.3x, m3(x) = 0.3x, and387

m2,i(x) = (bix− ci) · I{x < 0.25} + aix · I{−0.25 ≤ x ≤ 0.25} + (bix + ci) · I{x > 0.25},388

where a0 = 0.3, a1 = 0.4, a2 = 0.5, a3 = 0.6, b0 = 0.3, b1 = 0.2, b2 = 0.1, b3 = 0.0, and ci389

are constants chosen such that the functions are continuous. The case m2,0 corresponds390

to the null, whereas m2,i (i = 1, 2, 3) are alternative hypotheses that diverge from the null391

by getting progressively steeper at the center and flatter in the tails. Since the kinked392

functions m2,i under the alternative do not satisfy the smoothness assumptions of the393

SBE, they are mollified by applying the smoothing operator Kbg(·) =
∫
Kb(· − u)g(u)du394

to them, where Kb(u) = Kqua(u/b)/b with Kqua(v) = 15/16(1 − v2)2I(|v| ≤ 1) and we395

set b = 0.15. For the disturbances εt, we assume (a) i.i.d. normal errors with mean396

zero and variance σ2
ε = 0.352; (b) heteroscedastic errors generated by εt = σ(V

(5)
t−1)ξt,397

where ξt is i.i.d. standard normal, and σ(V
(5)
t−1) = 0.15

{
arctan

(
4V

(5)
t−1

)
+ π

2

}
+ 0.1. This398

parametrization gives about the same unconditional variance as the homoscedastic case.4399

The sample size is T = 1000, which corresponds to about 60% of the sample size for400

the specification tests carried out on the whole sample, the size of the bootstrap samples401

is M = 1000, and the tests are computed N = 1000 times to approximate the size and402

power functions. We construct the bootstrap error using residuals that are perturbed403

4Both parametrizations are motivated by our empirical applications. In an earlier draft of the paper, we

also simulated with GARCH(1,1) errors. Although GARCH errors do not conform with Assumptions (A4)

and (B1) in the appendix, we have obtained very similar results.
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with standard normal random variates, and for all tests, we use the uniform density as404

the weight function of the test statistic.405

As regards the bandwidth selection, we simulate 50 samples under the null. On each406

of these samples, we run the plug-in bandwidth selector of Mammen and Park (2005)407

and take the average of these bandwidths. The plug-in rule selects the bandwidth that408

approximately minimizes the integrated mean squared error of the smooth backfitting409

estimates. Since the asymptotic bias expression of the Nadaraya-Watson SBE is very410

involved, we replace it by the bias expression of the local linear backfitting (Mammen411

et al.; 1999) in the plug-in rule. We obtain the undersmoothed bandwidths of the pilot412

estimates by dividing the plug-in bandwidths by the factor 1.4.5 In the simulations, the413

bandwidths g1 and g3 (for m1 and m3) are kept fixed, but we vary the bandwidth of m2414

in a neighborhood of the bandwidth selected by the plug-in rule. Of course, for each pilot415

estimation step, this bandwidth is divided by the factor 1.4 as well. Because the plug-in416

rule picks very similar bandwidths under both error scenarios, we use the same ones in417

either case. In what follows, we do not only report the estimated bandwidths themselves,418

but in parentheses also the values they amount to when the data are normalized to the419

unit interval. This gives an idea of the effective size of the bandwidths.420

In Table 2, we report the results of the simulations for three common significance421

levels; in addition, Fig. 1 provides size discrepancy plots and power curves on [0, 0.25],422

i.e., for the usual domain of interest. As can be seen in the upper left block of Table 2,423

but also in the upper left frame of Fig. 1, for homoscedastic errors, the actual size is424

held optimally for a bandwidth of 0.5 (about 0.25 on the unit interval), which is a bit425

smaller than the plug-in rule would have suggested (0.6, about 0.3 on the unit interval).426

For smaller test bandwidths, the test tends to reject overly, whereas it is undersized for427

larger ones. These findings are as reported, e.g., in Härdle and Mammen (1993, their428

Table 1). For heteroscedastic errors (upper right block of Table 2, upper right frame of429

Fig. 1), the optimal size is for bandwidths between 0.5 and 0.6. Moreover, the test is more430

sensitive to smaller bandwidths, but it holds the size much better for larger bandwidths.431

This is an important observation, for in our empirical applications, we will operate in a432

heteroscedastic environment. The power results given in the lower panels of Table 2 and433

Fig. 1 are acceptable as well. The power seems to be weak for the case of m2,1, but this434

is only a tiny deviation from the null hypothesis. For the remaining cases, the power435

looks good, with the additional qualification that in the heteroscedastic error scenario436

5This factor is obtained by the following heuristic argument. By our theory, h ≈ c1T
−1/5 and g ≈

c2T
−1/4. Unless the two constants c1 and c2 differ drastically, we have h/g ≈ 1.4 for the sample sizes

relevant for our simulations and empirical applications. The simulations that we provide here suggest

that this heuristic works fine.
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the power is a bit weaker than in the homoscedastic one. This appears natural because437

heteroscedastic errors may create artificial noisy structures on the estimates which make438

it more difficult for the test to detect the deviations from the null hypothesis.439

4.3.2 Structural break tests440

For the structural break test, we consider two cases. In setting (a), we consider the fully

linear model

V
(1)
t =

mante
0 +mante

1 (V
(1)
t−1) +mante

2 (V
(5)
t−1) +mante

3 (V
(22)
t−1 ) + εt , for t < t∗,

mpost
0 +mpost

1 (V
(1)
t−1) +mpost

2,i (V
(5)
t−1) +mpost

3 (V
(22)
t−1 ) + εt , for t ≥ t∗,

where m`
0 = 0, m`

1(x) = 0.3x, m`
3(x) = 0.3x for ` = {ante, post}, mante

2 (x) = 0.3x and441

mpost
2,i (x) = aix with a0 = 0.3, a1 = 0.2, a2 = 0.1, a3 = 0.0. For setting (b), we set442

mante
2 (x) = 0.15x · I(x ≤ 0) + 0.3xI(x > 0) and mpost

2,i (x) = 0.15x · I(x ≤ 0) + aixI(x > 0)443

with a0 = 0.3, a1 = 0.15, a2 = 0.0, a3 = −0.15, with the kinks being mollified as described444

above. Thus, we consider a nonlinear function that only is changed in some parts. For445

both settings, a0 corresponds to the null, and ai (i = 1, 2, 3) are alternative hypotheses446

that increasingly diverge from the null. We use the two error specifications as above, but447

we now have T = 1800, so that the ante and post samples are T = 900. This corresponds448

to the sample sizes of the empirical application. For the bandwidth selection, we proceed449

as discussed above, and the weight function of the test statistic is the uniform density.450

The break point is treated as known.451

Tables 3 and 4 give the detailed results for three levels of significance; Fig. 2 and452

Fig. 3 provide the corresponding plots. For both settings, the test holds the size best at a453

bandwidth of about 0.6 (about 0.3 on the unit interval) which corresponds to about what454

the plug-in rule suggests for estimating these models. In comparison to the specification455

test, the best size accuracy is now achieved for a larger bandwidth. We suspect that456

the reason for this is as follows. The design density of the regressors may differ on the457

ante and the post samples; in particular, there may be regions where one density has458

considerably less mass than the other. In order to avoid poor and instable function fits459

in these regions, larger bandwidths are needed. Considering the simulation results under460

the alternative, we find good power properties, even for the less drastic deviations from461

the null hypothesis. In summary, the simulations suggest that the tests have good size462

and power properties.463
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4.4 Empirical applications464

4.4.1 Data, realized variance measurement, and break date465

The high-frequency data we use are intra-day equity index calculations and intra-day466

trades of futures on equity indices, fixed income instruments, currencies, and commodities;467

see Table 1 for an overview.6 The data range is 2003–2010 for the tests and 2011–2013468

for the forecasting exercise in Section 4.4.3. For the futures contracts, we use the most469

active front-contract as roll-over convention. The raw price data are cleaned as suggested470

in Barndorff-Nielsen et al. (2009). To compute intra-day log-returns, we construct an471

equidistant 5-minutes tick data series from the observed prices by means of the previous472

tick method (Andersen et al.; 2001).473

For this work, we use a robust measure of realized variance. This is because for our474

nonparametric estimation technique, we would like to avoid outliers that might influence475

our inference. For this reason, we also exclude the overnight return from the analysis.476

Our measure of choice is the median RV (MedRV) estimator of Andersen et al. (2012).477

Let {ri,t}Mi=1, be a sample of intra-day returns observed at day t; then478

MedRV =
π

6− 4
√

3 + π

(
M

M − 2

)M−1∑
i=2

med(ri−1,t, ri,t, ri+1,t)
2 .

As recommended in Andersen et al. (2012), we use the MedRV estimator with subsampling479

in order to reduce the effect of market microstructure noise.480

Our sample covers the financial crisis which may have triggered a structural break.481

We therefore split the data set into a pre-crisis and a crisis sample and use our methods to482

test for a structural break. In Fig. 4, we plot the S&P 500 closing prices between 2003 and483

2011 along with the spread of the London interbank offered rate (3 months, USD) over484

the overnight indexed swap (LOIS) which is a recognized measure of credit risk within485

the banking sector (Thornton; 2009). The spread is close to zero up to July/August 2007,486

after which it spikes up. In view of this graph, we set the break date on July 25, 2007,487

which is one of the last days on which the LOIS is reported below 10 basis points.488

4.4.2 Empirical results489

We model log RV7 by means of the HAR model (8) using daily, weekly and monthly490

6They are provided by Tick Data; see http:\\www.tickdata.com.
7This is a typical choice because it makes RV data approximately normal. One may, however, perceive

this case as a particular Box-Cox transform with transformation parameter λ = 0. In an unreported

analysis, we study the results of the specification tests for λ ∈ [−0.25, 0.25]. This interval cannot be

made larger, because the SBE breaks down when the data are too unequally distributed. We find the

results stable for variations in this neighborhood, except in some cases where the evidence is already weak

for log RV.
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variance components. We do not account for measurement error. The tests are imple-491

mented exactly as in the simulations except that we define the uniform density on the492

2%-98% inner quantile range of the data to mitigate the influence of boundary effects.493

The bandwidths selected by the plug-in rule are reported in Table 5.494

We start our discussion with the structural breaks in Table 6. Breaks are identified495

in all three component functions: in CF, TY, and US in the daily component functions;496

in CF, KM, XX, TY, and NG in the weekly component; and in XX, TY, US, NG, and497

SY in the monthly component. Thus, with the exception of natural gas and soybeans,498

most of the breaks are found for the equity and the fixed income instruments. This is a499

plausible finding because assets whose prices are predominantly determined by long-term500

global consumption perspectives may be less affected by a financial crisis.501

In Table 7, we present the specification tests for the linear HAR model. The tests are502

carried out either on the pre-crisis and the crisis samples separately or on the full sample,503

depending on the outcome of the structural break test. The figures show that with the504

exception of three series (FT, GC, JY), there is at least one component function for which505

linearity is rejected. In most cases, the linearity assumption can be questioned for the506

daily variance function.507

To give a better impression of the functional forms that we can document, we display508

the estimates for which linearity is rejected in Fig. 5. The estimates are normalized to a509

common support on the unit interval in order to make them visually better comparable.510

Most of the nonlinear estimates of m1 exhibit mild convex forms (see top panel in Fig. 5).511

Thus, the marginal impact of lagged daily log RV on tomorrow’s log RV is smaller in512

low volatility regimes and increases as volatility rises. According to the motivation of513

the HAR model, this means that at higher variance levels, daily trading activities drive514

future log RV more predominantly than in calm markets. Considering that crises times515

require more frequent hedging activities also by long-term investors, this appears to be516

a reasonable finding. See Table 15.3 in Corsi et al. (2012) for similar evidence. For the517

m1 estimates of the two US fixed income futures (TY, US), this interpretation, however,518

does not hold.519

For the estimates of the weekly and monthly variance functions, the picture is less520

coherent. As shown in the lower left panel of Fig. 5, three of the m2-estimates (CF, SP,521

XX) become flatter for higher volatility levels; if anything, they display a gently concave522

shape. In contrast, the m2 function of NG exhibits two plateaus. As regards m3 in the523

lower right panel, two estimates show a convex shape for low variance levels (HG, CN),524

yet the estimates of KM, HG, and EC again flatten with higher variance levels. In terms525

of the HAR model, the flattening of the weekly and monthly variance functions at the526

highest variance levels implies that the marginal impact of weekly and monthly trading527
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activities on future log RV diminishes. In some senses, this observation complements our528

interpretation of the convex daily variance function.529

For a few cases, we finally present all function estimates of the nonparametric HAR530

model. In Fig. 6 and Fig. 7, we contrast the nonparametric fits against the linear model,531

which we display along with the pointwise asymptotic 95% confidence intervals of the532

nonparametric fits. The top panel of Fig. 6 shows the estimates of the S&P500 (SP) data,533

the lower panel those of the Euro-USD currency future (EC). In Fig. 7, two model fits are534

presented after accounting for structural breaks. We display the KOSPI 200 index (KM,535

top panel), for which a structural break is detected in the weekly variance function, and536

the 30yrs US-TBond (US, lower panel), which has a break in the daily and the monthly537

variance functions.538

Summarizing, on the one hand, we find compelling statistical evidence for nonlinear539

variance component functions. This suggests that the linear HAR model is misspecified.540

On the other hand, visual inspection reveals that the actual deviations from linearity are541

moderate. This finding may explain why nonlinear extensions of the HAR model typically542

attain only slight improvements over the baseline model in terms of predictive ability.543

4.4.3 Does the additive HAR model have any predictive value?544

It could well be that the nonlinear forms we detect in our diagnostic analysis do not545

provide any out-of-sample value, because the deviation from linearity is too small or tied546

to the given sample period. To investigate the predictive ability of our model compared547

to the linear HAR model, we proceed as follows. We increase all bandwidths, which we548

obtain from the plug-in rule, by 15% and estimate the models with a local linear SBE. The549

larger bandwidths vis-à-vis the in-sample results are chosen to avoid overfitting, which the550

in-sample fits could suffer from. We do not use the Nadaraya-Watson SBE, because its551

estimates tend toward a constant the larger the bandwidths. This is an undesirable feature552

for prediction purposes. In contrast, the local linear SBE tends toward the linear model,553

which is our benchmark here. Taken to the extreme, for infinitely large bandwidths, we554

would even recover the linear HAR model and would obtain the same predictive ability.555

Using the entire sample from January 2003 to December 2010, we estimate the linear556

and the nonlinear HAR model for the series for which no structural breaks are found.8557

The predictions are evaluated on data dating from 2011 to 2013 (about 730 sample days).558

For the weekly and monthly predictions, we use a direct modeling approach, i.e., in (8), we559

set Yt = V
(5)
t+4 and Yt = V

(22)
t+21, respectively. These aggregates are computed from log RV.560

8The series with a structural break drop out, because the ranges of the functions estimated on the

post-samples are too small for the predictions to be computed; the same applies to the series CL and HG.

For some dates, this problem still occurs for the series under investigation; we then linearly extrapolate

the estimated nonparametric functions.
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We determine new bandwidths and re-estimate the models.561

In Table 8, we display the root mean squared error (RMSE, top panel) and the mean562

absolute error (MAE, middle panel) of the exercise. In about two-thirds of all tests,563

the forecast error of the nonlinear model is smaller than that of the linear model. The564

lowest panel of Table 8 shows the p-values of the test of superior predictive ability of565

Hansen (2005). We employ the studentized version of the test and block-bootstrap its566

distribution using 1000 draws and a block size of twelve. About one third of the 30 tests567

are statistically significant. Given the difficulties to beat the linear HAR with nonlinear568

approaches, see, e.g., McAleer and Medeiros (2008), we read these results as encouraging569

evidence for our nonlinear modeling approach. Clearly, more ample investigations and570

comparisons with other nonlinear modeling approaches are necessary to fully ascertain571

the benefits.572

A Appendix573

In this appendix, we prove the results concerning the test on parametric specification from574

Section 2. Throughout, the symbol C is used to denote a universal real constant that575

may take a different value on each occurrence. Without loss of generality, we consider the576

case d = 2, i.e., we work with the model577

Yt = m0 +m1(Xt,1) +m2(Xt,2) + εt.

We make the following assumptions:578

(A1) The process {(X t, εt)} is strictly stationary and strongly mixing with mixing coef-579

ficients α satisfying α(k) ≤ ak for some 0 < a < 1.580

(A2) The variables X t = (Xt,1, Xt,2) have compact support, w.l.o.g. [0, 1]2. The density581

p of X t and the densities p(0,l) of (X t,X t+l), l = 1, 2, . . . , are uniformly bounded.582

Furthermore, p is bounded away from zero on [0, 1]2.583

(A3) The functions m1 and m2 are twice continuously differentiable. The second deriva-584

tives are Lipschitz continuous of order β for some small β > 0, i.e. |m′′i (u)−m′′i (v)| ≤585

C|u− v|β for i = 1, 2. Moreover, p is twice continuously differentiable.586

(A4) The residuals are of the form εt = σ(X t)ξt. Here, σ is a Lipschitz continuous587

function and {ξt} is an i.i.d. process having the property that ξt is independent of588

Xs for s ≤ t. The variables ξt satisfy E[ξ4+δ
t ] < ∞ for some small δ > 0 and are589

normalized such that E[ξ2
t ] = 1.590
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(A5) There exists a real constant C and a natural number l∗ such that E[|ξt||X t,X t+l] ≤591

C for all l ≥ l∗.592

(A6) The kernel K is bounded, symmetric about zero and has compact support [−C1, C1]593

for some C1 > 0. Moreover, it fulfills the Lipschitz condition that |K(u)−K(v)| ≤594

L|u− v| for some L > 0.595

(A7) The bandwidth g is of the order T−(1/4+δ) for some small δ > 0 and h is such that596

g � h� T−2/11, where aT � bT means that aT/bT → 0.597

(A8) It holds that598

mθ0(w)−mθ̂(w) =
1

T

T∑
t=1

〈q(w), r(Xt,1)〉ε̃t + op

(√ g

T (log T )h

)
uniformly in w, where θ0 is defined in (3), ε̃t = εt + (m2(Xt,2) − m̃2(Xt,2)) and q599

and r are bounded functions taking values in Rk for some k. Here, 〈·, ·〉 denotes the600

usual Euclidean inner product for vectors.601

For the results on the wild bootstrap procedure, we replace (A8) by an analogous assump-602

tion in the bootstrap world.603

(A8*) Let θ̂∗ be the parameter estimate based on the bootstrap sample {(Y ∗t ,X t)}. It604

holds that uniformly in w,605

mθ̂(w)−mθ̂∗(w) =
1

T

T∑
t=1

〈q∗(w), r∗(Xt,1)〉ε∗t + op

(√ g

T (log T )h

)
,

where q∗ and r∗ are bounded functions taking values in Rk for some k.606

Note that we do not necessarily require exponentially decaying mixing rates as assumed607

in (A1). These could alternatively be replaced by sufficiently high polynomial rates at608

the cost of a more involved notation. It is also possible to relax (A2) and to allow609

for unbounded support of X t. In this case, however, we have to restrict our test to a610

compact subset of the potentially unbounded support. In particular, let A = A1 ×A2 be611

a compact subset of R2 contained in the support of X t and suppose we want to test m1612

for parametric specification on the compact set A1, i.e., we want to test the hypothesis613

H
(A1)
0 that m1 : A1 → R has a given parametric form. To do so, we have to modify the614

smoother m̂ and the pilot estimators of the backfitting algorithm. Specifically, we replace615

m̂ by616 ∑T
t=1 I(X t ∈ A)Kh(w −Xt,1)Z̃t∑T
t=1 I(X t ∈ A)Kh(w −Xt,1)
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and modify the pilot estimates of the backfitting procedure in an analogous way; see617

Section 5 in Mammen et al. (1999) who work with the same modification. Rewriting618

the test statistic in terms of these modified estimators allows one to test H
(A1)
0 . (A1)–619

(A3) are standard conditions in the smooth backfitting literature (Mammen et al.; 1999).620

(A4) is a quite common assumption in the literature on kernel-based nonparametric tests;621

see, e.g., Fan and Li (1999) or Li (1999). It imposes a martingale difference structure622

on the residuals, which is needed to cope with the time series dependence of the model623

variables when deriving the limit distribution of the test statistic. (A5) is required to624

derive the uniform convergence rates of the Nadaraya-Watson estimators that enter the625

smooth backfitting procedure as pilot smoothers. Finally, condition (A8) is fulfilled, e.g.,626

for weighted least squares estimators in linear models and under appropriate smoothness627

conditions for weighted least squares estimators in nonlinear settings; see Härdle and628

Mammen (1993) for details.629

Before we come to the proof of Theorems 1 and 2, we list some properties of the630

backfitting estimators m̃1 and m̃2. For technical reasons, we undersmooth them by choos-631

ing the bandwidth g to be of the order O(T−(1/4+δ)) for some small δ > 0. Moreover,632

we decompose m̃i (i = 1, 2) into a stochastic part m̃A
i and a bias part m̃B

i according to633

m̃i(xi) = m̃A
i (xi) + m̃B

i (xi). The two components are defined by634

m̃S
i (xi) = m̃S,NW

i (xi)−
∑
k 6=i

∫ 1

0

m̃S
k (xk)

p̃(xk, xi)

p̃i(xi)
dxk − m̃S

0 (15)

for S = A,B. Here, p̃ is a kernel density estimator of the joint density of X t = (Xt,1, Xt,2)

and p̃i is a kernel estimator of the marginal density pi of Xt,i. Moreover, m̃A,NW
i and

m̃B,NW
i denote the stochastic and the bias part of a Nadaraya-Watson estimator,

m̃A,NW
i (xi) =

∑T
t=1 Kg(w,Xt,i)εt∑T
t=1Kg(w,Xt,i)

(16)

m̃B,NW
i (xi) =

∑T
t=1 Kg(w,Xt,i)[m0 +m1(Xt,1) +m2(Xt,2)]∑T

t=1Kg(w,Xt,i)
. (17)

Finally we let m̃A
0 = 1

T

∑T
t=1 εt and m̃B

0 = 1
T

∑T
t=1{m0 +m1(Xt,1) +m2(Xt,2)}. Under the635

assumptions from above, the stochastic part m̃A
i has the expansion636

m̃A
i (w) = m̃A,NW

i (w) +
1

T

T∑
t=1

rt,i(w)εt + op(T
−1/2) (18)

uniformly for w ∈ [0, 1]. Here, rt,i(·) = ri(X t, ·) are random functions that are absolutely

uniformly bounded and fulfill the Lipschitz condition |rt,i(w)− rt,i(w′)| ≤ C|w−w′|. The

expansion (18) has been derived in Mammen and Park (2005) in an i.i.d. setup. The

proving strategy can however be easily extended to our stationary mixing framework.
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We provide the details at the end of this appendix after the proof of Theorems 1 and

2. For the bias part m̃B
i , we have the following uniform convergence result: Let Ih =

[2C1g, 1−2C1g] and Ich = [0, 1]\Ih be the interior and the boundary region of the support

of Xt,i, respectively. Then

sup
w∈Ih
|mi(w)− m̃B

i (w)| = Op(g
2) (19)

sup
w∈Ich
|mi(w)− m̃B

i (w)| = Op(g). (20)

This can be shown following the lines of the proof for Theorem 4 in Mammen et al. (1999).637

Proof of Theorem 1638

Let m1(·) = mθ0(·) + cT∆(·) with cT = T−1/2h−1/4 and denote by p1 the marginal density639

of Xt,1. To shorten notation, we set m0 = 0, i.e., we drop the model constant. Moreover,640

without loss of generality, we let π(w) = I(w ∈ [0, 1]) and write
∫

=
∫ 1

0
for short.641

Straightforward calculations yield that642

ST = Th1/2

∫ (
UT,1(w) + . . .+ UT,5(w)

)2
dw + op(1)

with

UT,1(w) =
1

T

T∑
t=1

Kh(w −Xt,1)cT∆(Xt,1)
/
p1(w)

UT,2(w) =
1

T

T∑
t=1

Kh(w −Xt,1)εt
/
p1(w)

UT,3(w) =
1

T

T∑
t=1

Kh(w −Xt,1)
(
m2(Xt,2)− m̃2(Xt,2)

)/
p1(w)

UT,4(w) =
1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

〈q(Xt,1), r(Xs,1)〉εs
)/
p1(w)

UT,5(w) =
1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

〈q(Xt,1), r(Xs,1)〉
(
m2(Xs,2)− m̃2(Xs,2)

))/
p1(w).

The two terms UT,3(w) and UT,5(w) capture the estimation error resulting from approx-

imating the function m2 by m̃2. They can thus be regarded as measuring the difference

between our test statistic and the statistic of the oracle case where the function m2 is

known. In what follows, we show that UT,3(w) and UT,5(w) are asymptotically negligible

in the sense that

Th1/2

∫
UT,j(w)UT,3(w)dw = op(1) (21)

Th1/2

∫
UT,j(w)UT,5(w)dw = op(1) (22)
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for all j = 1, . . . , 5. We thus arrive at643

ST = Th1/2

∫ (
UT,1(w) + UT,2(w) + UT,4(w)

)2
dw + op(1) =: S ′T + op(1) (23)

with S ′T basically being the statistic of the oracle case. (23) shows that our statistic ST644

has the same limit distribution as that of the oracle case.645

To complete the proof, we need to derive the asymptotic distribution of S ′T . The latter646

has exactly the same structure as the statistic from Proposition 1 in Härdle and Mammen647

(1993). Even though Härdle and Mammen derive their results in an i.i.d. setting, their648

proving strategy easily carries over to our mixing setup. We need only make some minor649

adjustments. Most importantly, we cannot apply a central limit theorem for quadratic650

forms of i.i.d. variables as they do. Nevertheless, assumption (A4) on the error terms651

allows us to work with a central limit theorem for martingale differences instead (e.g.652

with Theorem 1 in Chapter 8 of Pollard (1984)). On this basis we can proceed along the653

lines of their arguments to complete the proof. The details are omitted.654

Proof of (21) and (22). We limit our attention to the proof of (21), the arguments for

(22) being fully analogous. Using the uniform expansion (18) for the stochastic part of

the backfitting estimator m̃2, we can write UT,3(w) = UB
T,3(w)−UA,NW

T,3 (w)−UA,SBE
T,3 (w)+

UR
T,3(w), where the remainder term UR

T,3(w) is of the order op(T
−1/2) and

UA,NW
T,3 (w) =

1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

Kg(Xt,2, Xs,2)
1
T

∑T
v=1 Kg(Xt,2, Xv,2)

εs

)/
p1(w)

UA,SBE
T,3 (w) =

1

T

T∑
t=1

Kh(w −Xt,1)
( 1

T

T∑
s=1

rs,2(Xt,2)εs

)/
p1(w)

UB
T,3(w) =

1

T

T∑
t=1

Kh(w −Xt,1)
(
m2(Xt,2)− m̃B

2 (Xt,2)
)/
p1(w).

We now show that for j = 1, . . . , 5,

Th1/2

∫
UT,j(w)UA,NW

T,3 (w)dw = op(1) (24)

Th1/2

∫
UT,j(w)UA,SBE

T,3 (w)dw = op(1) (25)

Th1/2

∫
UT,j(w)UB

T,3(w)dw = op(1). (26)

The arguments for these three claims also imply that Th1/2
∫
UT,j(w)UR

T,3(w)dw = op(1),655

thus completing the proof of (21).656

We start with the proof of (24) which consists of several steps. In the first step, we657

show that658

Th1/2

∫
UT,j(w)UA,NW

T,3 (w)dw = WT,j + op(1) (27)
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with659

WT,j = Th1/2

∫
UT,j(w)

1

T

T∑
t=1

Kh(w −Xt,1)

p1(w)

( 1

T

T∑
s=1

Kg(Xt,2, Xs,2)

κ(Xt,2)
εs

)
dw

and κ(u) = E[Kg(u,X0,2)]. We thus replace the sum 1
T

∑T
v=1Kg(Xt,2, Xv,2) in UA,NW

T,3

by the moment κ(Xt,2) and show that the resulting error is asymptotically negligible.

To do so, write 1
T

∑T
v=1Kg(u,Xv,2) = κ(u) + R(u) with R(u) = 1

T

∑T
v=1(Kg(u,Xv,2) −

E[Kg(u,Xv,2)]). As supu∈[0,1] |R(u)| = Op(
√

log T/Tg), it holds that

( 1

T

T∑
v=1

Kg(u,Xv,2)
)−1

=
1

κ(u)

(
1 +

R(u)

κ(u)

)−1

=
1

κ(u)

(
1− R(u)

κ(u)
+Op

( log T

Tg

))
uniformly in u. Plugging this into the term UA,NW

T,3 (w), we easily arrive at (27).660

In the next step, we split up WT,j into a leading term and a remainder which is661

asymptotically negligible. In particular, letting Et[ · ] denote the expectation with respect662

to the variables indexed by t, we show that663

WT,j = Th1/2

∫
UT,j(w)

p1(w)

( 1

T

T∑
s=1

E0

[Kh(w −X0,1)Kg(X0,2, Xs,2)

κ(X0,2)

]
εs

)
dw +RT,j, (28)

where the remainder term RT,j is given by664

RT,j = Th1/2

∫
UT,j(w)

p1(w)

{ 1

T 2

T∑
s,t=1

ψt,s(w)εs

}
dw

with665

ψt,s(w) =
Kh(w −Xt,1)Kg(Xt,2, Xs,2)

κ(Xt,2)
− Et

[Kh(w −Xt,1)Kg(Xt,2, Xs,2)

κ(Xt,2)

]
and satisfies RT,j = op(1). (28) can be seen as follows: To start with, apply the Cauchy-666

Schwarz inequality to obtain that |RT,j| ≤ C(
∫
UT,j(w)2dw)1/2 ·Q1/2

T , where667

QT =

∫ {h1/2

T

T∑
s,t=1

ψt,s(w)εs

}2

dw.

Below, we show that Q
1/2
T = Op(aT ) with aT = κT (log T )g−3/4, where κT slowly diverges668

to infinity, e.g., κT = log log T . As (
∫
UT,j(w)2dw)1/2 = Op(g) for all j = 1, . . . , 5, this669

immediately implies that RT,j = op(1).670

Our strategy to verify that Q
1/2
T = Op(aT ) is to exploit the second moment structure671

of the term Q
1/2
T . More specifically, let M be a positive constant. Then by Chebychev’s672

inequality,673

P
(
|Q1/2

T | > MaT
)
≤ E[QT ]

(MaT )2
=

h

(MTaT )2

T∑
s,s′,t,t′=1

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw.
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We now write

h

(TaT )2

T∑
s,s′,t,t′=1

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

+
h

(TaT )2

∑
(s,s′,t,t′)∈Γc

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

=: EΓ + EΓc .

Here, Γ is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′, t, t′ ≤ T such that (at least) one index674

is separated from the others and Γc is its complement. We say that an index, for instance675

t, is separated from the others if min{|t− t′|, |t− s|, |t− s′|} > C2 log T , i.e., if it is further676

away from the other indices than C2 log T for a constant C2 to be specified later.677

We now analyze EΓ and EΓc separately. By definition, the set Γc contains all index

tuples (s, s′, t, t′) such that no index is separated. Hence, the number of tuples contained

in Γc is smaller than C(T log T )2 for some sufficiently large constant C. This together

with some straightforward calculations yields that EΓc ≤ C/κ2
T → 0. We next turn to

EΓ. Writing Γ as the union of the disjoint sets

Γ1 = {(s, s′, t, t′) ∈ Γ | the index t is separated}

Γ2 = {(s, s′, t, t′) ∈ Γ | (s, s′, t, t′) /∈ Γ1 and the index s is separated}

Γ3 = {(s, s′, t, t′) ∈ Γ | (s, s′, t, t′) /∈ Γ1 ∪ Γ2 and the index t′ is separated}

Γ4 = {(s, s′, t, t′) ∈ Γ | (s, s′, t, t′) /∈ Γ1 ∪ Γ2 ∪ Γ3 and the index s′ is separated},

we get that EΓ = EΓ1 + EΓ2 + EΓ3 + EΓ4 with678

EΓr =
h

(TaT )2

∑
(s,s′,t,t′)∈Γr

∫
E
[
ψt,s(w)ψt′,s′(w)εsεs′

]
dw

for r = 1, . . . , 4. In what follows, we show that EΓr = o(1) for r = 1, . . . , 4. Since the

proof is exactly the same for r = 1, . . . , 4, we focus attention on the term EΓ1 . Let {In}NTn=1

be a cover of the compact support [0, 1] of Xt,2. The elements In are intervals of length

1/NT given by In = [n−1
NT

, n
NT

) for n = 1, . . . , NT − 1 and INT = [1− 1
NT
, 1]. The midpoint

of the interval In is denoted by un. With this, we can write

Kg(Xt,2, Xs,2) =

NT∑
n=1

I(Xs,2 ∈ In)
[
Kg(Xt,2, un) + (Kg(Xt,2, Xs,2)−Kg(Xt,2, un))

]
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and thus ψt,s(w) = ψAt,s(w) + ψBt,s(w) with

ψAt,s(w) =

NT∑
n=1

{Kh(w −Xt,1)Kg(Xt,2, un)

κ(Xt,2)
− Et

[Kh(w −Xt,1)Kg(Xt,2, un)

κ(Xt,2)

]}
I(Xs,2 ∈ In)

ψBt,s(w) =

NT∑
n=1

{Kh(w −Xt,1)(Kg(Xt,2, Xs,2)−Kg(Xt,2, un))

κ(Xt,2)

− Et
[Kh(w −Xt,1)(Kg(Xt,2, Xs,2)−Kg(Xt,2, un))

κ(Xt,2)

]}
I(Xs,2 ∈ In).

Inserting this into the expression for EΓ1 , we obtain EΓ1 = EA
Γ1

+ EB
Γ1

with

EA
Γ1

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ1

∫
E
[
ψAt,s(w)εsψt′,s′(w)εs′

]
dw

EB
Γ1

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ1

∫
E
[
ψBt,s(w)εsψt′,s′(w)εs′

]
dw.

We first consider EB
Γ1

: The Lipschitz continuity of the kernelK yields that |Kg(Xt,2, Xs,2)−679

Kg(Xt,2, un)| ≤ C
g2
|Xs,2 − un|, which in turn gives that |ψBt,s(w)| ≤ C

hg2NT
. Plugging this680

into the expression for EB
Γ1

and letting NT grow at a sufficiently fast rate, we obtain that681

|EB
Γ1
| = o(1). To deal with EA

Γ1
, we write682

EA
Γ1

=
h

(TaT )2

∑
(s,s′,t,t′)∈Γ1

( NT∑
n=1

∫
γn(w)dw

)
with

γn(w) = E
[{Kh(w −Xt,1)Kg(Xt,2, un)

κ(Xt,2)
− Et

[Kh(w −Xt,1)Kg(Xt,2, un)

κ(Xt,2)

]}
× I(Xs,2 ∈ In)εsψt′,s′(w)εs′

]
.

By Davydov’s inequality,

γn(w) = Cov
(Kh(w −Xt,1)Kg(Xt,2, un)

κ(Xt,2)
− Et

[Kh(w −Xt,1)Kg(Xt,2, un)

κ(Xt,2)

]
,

I(Xs,2 ∈ In)εsψt′,s′(w)εs′
)

≤ C

(gh)2

(
α(C2 log T )

)1− 2
r ≤ C

(gh)2

(
aC2 log T

)1− 2
r ≤ C

(gh)2
T−C3

with some C3 > 0, where r is chosen slightly larger than 2. Note that we can make683

C3 arbitrarily large by choosing C2 sufficiently large. From this, it easily follows that684

EA
Γ1

= o(1). Putting everything together yields that QT = Op(aT ), which in turn shows685

that RT,j = op(1).686
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Thus far, we have shown that equation (28) holds with RT,j = op(1), i.e.,∣∣∣Th1/2

∫
UT,j(w)UA,NW

T,3 (w)dw
∣∣∣

= Th1/2

∫
UT,j(w)

p1(w)

( 1

T

T∑
s=1

E0

[Kh(w −X0,1)Kg(X0,2, Xs,2)

κ(X0,2)

]
εs

)
dw + op(1). (29)

It is now straightforward to obtain (24) for j = 1, 2, 4. To get (24) for j = 3, 5, we repeat687

the arguments from above to simplify the expressions UT,3(w) and UT,5(w) which show up688

in (29) for j = 3, 5. Once this has been done, (24) easily follows for j = 3, 5 as well.689

Proof of Theorem 2690

The proof has the same structure as the proof of Theorem 1. By arguments analogous to691

those above, we can replace the estimator m̃2 by the true function m2 in the bootstrap692

statistic and show that the resulting error is asymptotically negligible. Once this has been693

done, the proof follows the line of the arguments in Härdle and Mammen (1993).694

Proof of (18)695

For the proof, we outline the arguments needed to extend Theorem 6.1 of Mammen696

and Park (2005) which is in the context of i.i.d. data. For an additive function g(x) =697

g1(x1) + g2(x2), let698

ψ̃1g(x) = g∗1(x1) + g2(x2)

with699

g∗1(x1) = −
∫ 1

0

g2(x2)
p̃(x1, x2)

p̃1(x1)
dx2 +

2∑
k=1

∫ 1

0

gk(xk)p̃k(xk)dxk

and define ψ̂2g(x) analogously. Using standard uniform convergence results for kernel700

estimators and exploiting our model assumptions, we can show that Lemma 3 in Mammen701

et al. (1999) applies in our case. For m̃A(x) = m̃A
1 (x1) + m̃A

2 (x2), we therefore have the702

expansion703

m̃A(x) =
∞∑
r=0

S̃rτ̃(x),

where S̃ = ψ̃2ψ̃1 and τ̃(x) = ψ̃2[m̃A,NW
1 (x1) − m̃A,NW

0,1 ] + [m̃A,NW
2 (x2) − m̃A,NW

0,2 ] with

m̃A,NW
0,i =

∫ 1

0
m̃A,NW
i (xi)p̃i(xi)dxi. Now decompose m̃A(x) according to

m̃A(x) = m̃A,NW (x)− m̃A,NW
0 +

∞∑
r=0

S̃r
(
τ̃(x)− (m̃A,NW (x)− m̃A,NW

0 )
)

+
∞∑
r=1

S̃r
(
m̃A,NW (x)− m̃A,NW

0

)
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with m̃A,NW (x) = m̃A,NW
1 (x1) + m̃A,NW

2 (x2) and m̃A,NW
0 = m̃A,NW

0,1 + m̃A,NW
0,2 . We show704

that there exist absolutely bounded functions at(x) with |at(x)− at(y)| ≤ C‖x− y‖ for a705

constant C s.t.706

∞∑
r=1

S̃r(m̃A,NW (x)− m̃A,NW
0 ) =

1

T

T∑
t=1

at(x)εt + op

( 1√
T

)
(30)

uniformly in x. A similar claim holds for the term
∑∞

r=0 S̃
r(τ̃(x)− (m̃A,NW (x)−m̃A,NW

0 )).707

From this, (18) easily follows.708

The idea behind the proof of (30) is as follows: From the definition of the operators709

ψ̃i, it can be seen that710

S̃(m̃A,NW (x)− m̃A,NW
0 ) = ψ̃2S1,2(x1) (31)

with711

S1,2(x1) = −
∫ 1

0

p̃(x1, x2)

p̃1(x1)
(m̃A,NW

2 (x2)− m̃A,NW
0,2 )dx2.

In what follows, we show that S1,2(x1) has the representation712

S1,2(x1) = − 1

T

T∑
t=1

( p(x1, Xt,2)

p1(x1)p2(Xt,2)
− 1
)
εt + op

( 1√
T

)
(32)

uniformly in x1. Thus, it essentially has the desired form 1
T

∑
twt,2(x1)εt with some713

weights wt,2. This allows us to infer that714

S̃(m̃A,NW (x)− m̃A,NW
0 ) =

1

T

T∑
t=1

bt(x)εt + op

( 1√
T

)
(33)

uniformly in x with some absolutely bounded functions bt satisfying |bt(x) − bt(y)| ≤715

C‖x − y‖ for some C > 0. Moreover, using standard uniform convergence results for716

kernel estimators, it can be shown that717

∞∑
r=1

S̃r(m̃A,NW (x)− m̃A,NW
0 ) =

∞∑
r=1

Sr−1S̃(m̃A,NW (x)− m̃A,NW
0 ) + op

( 1√
T

)
(34)

uniformly in x, where S is defined analogously to S̃ with the density estimators replaced718

by the true densities. Combining (33) and (34) completes the proof.719

To show (32), we exploit the mixing behavior of the variables X t. Plugging the720

definition of m̃A,NW
2 into the term S1,2, we can write721

S1,2(x1) = − 1

T

T∑
t=1

(∫ 1

0

p̃(x1, x2)

p̃1(x1)p̃2(x2)
Kg(x2, Xt,2)dx2 − 1

)
εt.
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Again applying standard uniform convergence results for kernel estimators, we can further

replace the density estimates in the above expression by the true densities. This yields

S1,2(x1) = − 1

T

T∑
t=1

(∫ 1

0

p(x1, x2)

p1(x1)p2(x2)
Kg(x2, Xt,2)dx2 − 1

)
εt + op

( 1√
T

)
=: S∗1,2(x1) + op

( 1√
T

)
uniformly for x1 ∈ [0, 1]. In the final step, we show that722

S∗1,2(x1) = − 1

T

T∑
t=1

( p(x1, Xt,2)

p1(x1)p2(Xt,2)
− 1
)
εt + op

( 1√
T

)
uniformly in x1. This is done by applying a covering argument together with an expo-723

nential inequality for mixing variables.724

B Appendix725

We now provide the proofs for the results on the structural break test from Section 3. As726

in Appendix A, we assume for simplicity that d = 2. We make the following assumptions.727

(B1) The residuals εt are of the form εt = σante(X t)ξt for t < t∗ and εt = σpost(X t)ξt for728

t ≥ t∗. Here, σ` are Lipschitz continuous functions and {ξt} is an i.i.d. process with729

the same properties as in (A4) from Appendix A.730

(B2) For ` ∈ {ante, post}, there exist strictly stationary and strongly mixing processes731

{(Y `
t ,X

`
t) : t ∈ T`} which satisfy the equation732

Y `
t = m`

0 +m`
1(X`

t,1) +m`
2(X`

t,2) + ε`t, (35)

where E[ε`t|X`
t] = 0 with ε`t = σ`(X`

t)ξt and X`
t = (X`

t,1, X
`
t,2). The processes733

{(Y ante
t ,Xante

t ) : t ∈ Tante} and {(Y post
t ,Xpost

t ) : t ∈ Tpost} are independent and have734

mixing coefficients α` with the property that α`(k) ≤ ak for some 0 < a < 1 and735

` ∈ {ante, post}.736

(B3) There exist constants γ ∈ (1/2, 1) and Cγ > 0 such that for j = 1, 2,

sup{|Xpost
t,j −Xt,j| : t∗ + Cγ log T ≤ t ≤ T} = Op(hT

−γ)

sup{|Y post
t − Yt| : t∗ + Cγ log T ≤ t ≤ T} = Op(T

−γ)

sup{|Xante
t,j −Xt,j| : Cγ log T ≤ t ≤ t∗} = Op(hT

−γ)

sup{|Y ante
t − Yt| : Cγ log T ≤ t ≤ t∗} = Op(T

−γ)

sup{|Yt| : 0 ≤ t ≤ Cγ log T or t∗ ≤ t ≤ t∗ + Cγ log T} = Op(log T ).

31



(B4) Assumptions (A2)–(A7) from Appendix A apply with (X t, εt), (p, p(0,l)) and (m0,737

m1,m2, σ) replaced by (X`
t, ε

`
t), (p`, p`(0,l)) and (m`

0,m
`
1,m

`
2, σ

`) for ` ∈ {ante, post}.738

Here, p` is the density of X`
t and p`(0,l) is the joint density of (X`

t,X
`
t+l). The739

marginal density of X`
t,j is denoted by p`j.740

(B5) It holds that t∗/T → c with c ∈ (0, 1) for T →∞.741

Taken together, assumptions (B1)–(B3) essentially say that the potentially nonstation-742

ary process {(Yt,X t)} can be approximated by the stationary process {(Y ante
t ,Xante

t )} on743

the ante sample, i.e., at time points t < t∗, and by {(Y post
t ,Xpost

t )} on the post sample,744

i.e., at time point t ≥ t∗. At the end of this appendix, we give a more detailed discussion745

of (B2) and (B3). In particular, we provide conditions under which (B2) and (B3) hold746

in an autoregressive setup which nests the nonparametric HAR model from Section 4 as747

a special case. Note that the distribution of {(Y post
t ,Xpost

t )} depends on n if we consider748

local alternatives, since the regression function depends on n in this case. To keep the749

proofs readable, we however do not reflect this in the notation.750

Some technical lemmas751

We first introduce some notation. By m̃ante
1 and m̃ante

2 , we denote the backfitting esti-752

mators of mante
1 and mante

2 , respectively, which are based on the observations {(Yt,X t) :753

1 ≤ t ≤ t∗ − 1}. Analogously, we let m̃post
1 and m̃post

2 be the backfitting estimators754

of mpost
1 and mpost

2 which are based on the observations {(Yt,X t) : t∗ ≤ t ≤ T}. In755

our asymptotic analysis, we compare these estimators with the corresponding infeasi-756

ble backfitting estimators of mante
1 ,mante

2 and mpost
1 ,mpost

2 that are based on the samples757

{(Y ante
t ,Xante

t ) : 1 ≤ t ≤ t∗−1} and {(Y post
t ,Xpost

t ) : t∗ ≤ t ≤ T}, respectively. These are758

denoted by m̃†,ante1 , m̃†,ante2 and m̃†,post1 , m̃†,post2 . In our next lemma, we argue that m̃`
j−m̃

†,`
j759

is small for ` = ante, post and j = 1, 2.760

Lemma 1. Suppose that (B1)–(B5) are satisfied. Then for ` = ante, post and j = 1, 2,761

sup
x∈[0,1]

|m̃†,`j (x)− m̃`
j(x)| = Op(T

−γ).

Proof of Lemma 1. We argue that for ` = ante, post and j = 1, 2,762

sup
x∈[0,1]

|m̄†,`j (x)− m̄`
j(x)| = Op(T

−γ), (36)

where we compare the ‘marginal estimators’

m̄†,antej (x) =

∑t∗−1
t=1 Kg(x,X

ante
t,l )Y ante

t∑t∗−1
t=1 Kg(x,Xante

t,l )
, m̄ante

j (x) =

∑t∗−1
t=1 Kg(x,Xt,l)Yt∑t∗−1
t=1 Kg(x,Xt,l)

,

m̄†,postj (x) =

∑T
t=t∗ Kg(x,X

post
t,l )Y post

t∑T
t=t∗ Kg(x,X

post
t,l )

, m̄post
j (x) =

∑T
t=t∗ Kg(x,Xt,l)Yt∑T
t=t∗ Kg(x,Xt,l)

.
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We prove (36) for ` = post: An application of (B3) yields that∣∣∣∣∣ 1

T

T∑
t=t∗

Kg(x,X
post
t,j )Y post

t − 1

T

T∑
t=t∗

Kg(x,Xt,j)Yt

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

T

∑
t∈T−

Kg(x,X
post
t,j )Y post

t

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

T

∑
t∈T−

Kg(x,Xt,j)Yt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

T

∑
t∈T+

{
Kg(x,X

post
t,j )Y post

t −Kg(x,Xt,j)Yt
}∣∣∣∣∣∣

= Op((Tg)−1(log T )2 + T−γ) = Op(T
−γ)

uniformly in x, where T− = {t : t∗ ≤ t ≤ t∗ + Cγ log T} and T+ = {t : t∗ + Cγ log T < t ≤763

T}. This shows (36) for ` = post.764

The statement of the lemma now follows from (36) together with the theory developed765

in Mammen et al. (1999) for the smooth backfitting estimators. There it is explained that766

the smooth backfitting estimators result from the ‘marginal estimators’ by the application767

of an operator with the following property: a bounded function is mapped onto a bounded768

function. This can be seen from arguments given in Mammen et al. (1999); see, e.g., the769

proof of their equation (88).770

We now define

K
†,j,ante
h,T g(·) =

∑t∗−1
t=1 Kh(· −Xante

t,j )g(Xante
t,j )∑t∗−1

t=1 Kh(· −Xante
t,j )

,

K
†,j,post
h,T g(·) =

∑T
t=t∗ Kh(· −Xpost

t,j )g(Xpost
t,j )∑T

t=t∗ Kh(· −Xpost
t,j )

,

δ̂† =

∫ (
K
†,j,post
h,T m̂†,antej (x)−K

†,j,ante
h,T m̂†,postj (x)

)
π(x)dx,

where m̂†,antej and m̂†,postj are the infeasible Nadaraya-Watson estimators based on the771

samples {(Y ante
t ,Xante

t ) : 1 ≤ t ≤ t∗ − 1} and {(Y post
t ,Xpost

t ) : t∗ ≤ t ≤ T}, respectively.772

By using similar arguments as for the proof of (36), we can show the following lemma.773

Lemma 2. Let (B1)–(B5) be satisfied. Then for ` = ante, post and j = 1, 2,

sup
x∈[0,1]

∣∣{Kj,post
h,T m̂ante

j (x)−K
j,ante
h,T m̂post

j (x)− δ̂
}

−
{
K
†,j,post
h,T m̂†,antej (x)−K

†,j,ante
h,T m̂†,postj (x)− δ̂†

}∣∣ = Op(T
−γ).

From Lemma 2, we get that S†T = ST + op(1), where774

S†T = Th1/2

∫ (
K
†,1,post
h,T m̂†,ante1 (x)−K

†,1,ante
h,T m̂†,post1 (x)− δ̂†

)2
π(x)dx.

Thus, for the statement of Theorem 3, it suffices to show that S†T − BT has a limiting775

normal distribution with mean µ and variance V .776
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Proof of Theorems 3 and 4777

We restrict attention to the proof of Theorem 3. The proof of Theorem 4 follows by778

analogous arguments. As discussed above, we have to show that779

S†T −BT
d−→ N

(
µ, V

)
.

To do so, we derive the expansion780

S†T = S∆,T + Sε,T + op(1), (37)

where

S∆,T =

∫ (
K
†,1,ante
h,T K

†,1,post
h,T ∆(x)− δ∆

)2
π(x)dx

Sε,T = Th1/2

∫ (
K
†,1,post
h,T mε,ante

1 (x)−K
†,1,ante
h,T mε,post

1 (x)− δε
)2
π(x)dx

with

mε,ante
1 (x) =

∑t∗−1
t=1 Kh(x−Xante

t,1 )εantet∑t∗−1
t=1 Kh(x−Xante

t,1 )

mε,post
1 (x) =

∑T
t=t∗ Kh(x−Xpost

t,1 )εpostt∑T
t=t∗ Kh(x−Xpost

t,1 )

δ∆ =

∫
K
†,1,ante
h,T K

†,1,post
h,T ∆(x)π(x)dx

δε =

∫ (
K
†,1,post
h,T mε,ante

1 (x)−K
†,1,ante
h,T mε,post

1 (x)
)
π(x)dx.

The theorem then follows from the two asymptotic statements

S∆,T
p−→ µ

Sε,T −BT
d−→ N

(
0, V

)
,

which can be shown by analogous arguments as in the proof of Theorem 1.781

Proof of (37). It can be shown that782

S†T = Th1/2

∫ (
K
†,1,post
h,T m+,ante

1 (x)−K
†,1,ante
h,T m+,post

1 (x)− δ†
)2
π(x)dx+ op(1), (38)

where m+,ante
1 (x) = mm,ante

1 (x) + m∆,ante
1 (x) + mε,ante

1 (x) and m+,post
1 (x) = mm,post

1 (x) +
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m∆,post
1 (x) +mε,post

1 (x) with m∆,ante
1 (x) = 0,

m∆,post
1 (x) = T−1/2h−1/4

∑T
t=t∗ Kh(x−Xpost

t,1 )∆(Xpost
t,1 )∑T

t=t∗ Kh(x−Xpost
t,1 )

mm,ante
1 (x) =

∑t∗−1
t=1 Kh(x−Xante

t,1 )mante
1 (Xante

t,1 )∑t∗−1
t=1 Kh(x−Xante

t,1 )

mm,post
1 (x) =

∑T
t=t∗ Kh(x−Xpost

t,1 )mpost
1 (Xpost

t,1 )∑T
t=t∗ Kh(x−Xpost

t,1 )

δ
†

=

∫ (
K
†,1,post
h,T m+,ante

1 (x)−K
†,1,ante
h,T m+,post

1 (x)
)
π(x)dx.

We omit the proof of (38). The basic argument is that the estimation error coming from

the pilot smooth backfitting estimation can be asymptotically neglected. This can be seen

as in the proofs of Theorems 1 and 2. Next, we show that

Th1/2

∫ (
K
†,1,post
h,T ml,ante

1 (x)−K
†,1,ante
h,T ml,post

1 (x)− δl
)

×
(
K
†,1,post
h,T mk,ante

1 (x)−K
†,1,ante
h,T mk,post

1 (x)− δk
)
π(x)dx = op(1) (39)

for (l, k) ∈ {(ε,∆), (ε,m), (m,∆), (m,m)} with783

δl =

∫ (
K
†,1,post
h,T ml,ante

1 (x)−K
†,1,ante
h,T ml,post

1 (x)
)
π(x)dx.

For (l, k) = (ε,∆), claim (39) follows by direct calculations and standard kernel smoothing

theory. For the other cases, it is implied by the two statements

sup
x∈[2C1h,1−2C1h]

∣∣∣K†,1,posth,T mm,ante
1 (x)−K

†,1,ante
h,T mm,post

1 (x)
∣∣∣ = op(T

−1/2) (40)

sup
x∈[0,1]

∣∣∣K†,1,posth,T mm,ante
1 (x)−K

†,1,ante
h,T mm,post

1 (x)
∣∣∣ = op(h

−3/4T−1/2), (41)

which we verify below. (37) now follows from (38) and (39).784

It remains to show (40) and (41). To simplify notation, we write µ(x) = mante
1 (x)

as well as p̂ante1 (x) = t−1
ante

∑t∗−1
t=1 Kh(x − Xante

t,1 ) and p̂post1 (x) = t−1
post

∑T
t=t∗ Kh(x − Xpost

t,1 )

with tante = t∗ − 1 and tpost = T − t∗ + 1. In addition, we let pante1,h (x) = E[p̂ante1 (x)]

and ppost1,h (x) = E[p̂post1 (x)]. We first give a proof of (40): It holds that uniformly for

x ∈ [2C1h, 1− 2C1h],(
K
†,1,post
h,T mm,ante

1

)
(x)−mante

1 (x)

= t−1
antet

−1
post

T∑
t=t∗

t∗−1∑
s=1

Kh(x−Xpost
t,1 )Kh(X

ante
s,1 −X

post
t,1 )

p̂post1 (x)p̂ante1 (Xpost
t,1 )

(
µ(Xante

s,1 )− µ(x)
)

= t−1
antet

−1
post

T∑
t=t∗

t∗−1∑
s=1

Kh(x−Xpost
t,1 )Kh(X

ante
s,1 −X

post
t,1 )

p̂post1 (x)p̂ante1 (Xpost
t,1 )
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×

(
µ′(x)

(
Xante
s,1 − x

)
+

∫ Xante
s,1

x

µ′′(u)(Xante
s,1 − u) du

)

= t−1
antet

−1
post

T∑
t=t∗

t∗−1∑
s=1

Kh(x−Xpost
t,1 )Kh(X

ante
s,1 −X

post
t,1 )

ppost1,h (Xpost
t,1 )pante1,h (Xante

s,1 )

×

(
µ′(x)

(
Xante
s,1 − x

)
+

(pante1,h )′(x)

pante1,h (x)
(Xante

s,1 −X
post
t,1 )µ′(x)

(
Xante
s,1 − x

)
+

(ppost1,h )′(x)

ppost1,h (x)
(Xpost

t,1 − x)µ′(x)
(
Xante
s,1 − x

)
+

∫ Xante
s,1

x

µ′′(u)(Xante
s,1 − u) du

)
+ op(T

−1/2)

= µ′(x)A1(x) + µ′(x)
(pante1 )′(x)

pante1 (x)
A2(x) + µ′(x)

(ppost1 )′(x)

ppost1 (x)
A3(x) + A4(x) + op(T

−1/2),

where

A1(x) =

∫ 1

0

Kh(x− u)Kh(v − u)(v − x) du dv,

A2(x) =

∫ 1

0

Kh(x− u)Kh(v − u)(v − u)(v − x) du dv,

A3(x) =

∫ 1

0

Kh(x− u)Kh(v − u)(v − x)(u− x) du dv,

A4(x) =

∫ 1

0

Kh(x− u)Kh(v − u)

∫ v

x

µ′′(w)(v − w) dw du dv.

Note that A1(x) = 0 and A2(x) = A3(x). By the same type of arguments, one gets that(
K
†,1,ante
h,T mm,post

1

)
(x)−mante

1 (x)

= µ′(x)A1(x) + µ′(x)
(ppost1 )′(x)

ppost1 (x)
A2(x) + µ′(x)

(pante1 )′(x)

pante1 (x)
A3(x) + A4(x) + op(T

−1/2).

This shows (40). We finally turn to the proof of (41): Uniformly for x ∈ [0, 2C1h],785 (
K
†,1,post
h,T mm,ante

1

)
(x)−mante

1 (x)

= µ′(x)

∫ 1

0

Kh(x− u)Kh(v − u)(v − x)
pante1 (v)ppost1 (u)

pante1,h (u)ppost1,h (x)
du dv + op(h

−3/4T−1/2)

= µ′(x)

∫ 1

0

Kh(x− u)Kh(v − u)(v − x)∫ 1

0
Kh(u− w) dw

∫ 1

0
Kh(x− z) dz

du dv + op(h
−3/4T−1/2).

This can be shown similarly as in the proof of (40). By analogous arguments, we further786

get that uniformly for x ∈ [0, 2C1h],787 (
K
†,1,ante
h,T mm,post

1

)
(x)−mante

1 (x)

= µ′(x)

∫ 1

0

Kh(x− u)Kh(v − u)(v − x)∫ 1

0
Kh(u− w) dw

∫ 1

0
Kh(x− z) dz

du dv + op(h
−3/4T−1/2)

=
(
K
†,1,post
h,T mm,ante

1

)
(x)−mante

1 (x) + op(h
−3/4T−1/2).
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A similar asymptotic equality also holds for x ∈ [1 − 2C1h, 1]. This completes the proof788

of (41).789

Verification of (B2) and (B3) in the HAR model790

To start with, consider the autoregressive model791

Yt = m(Yt−1, . . . , Yt−d) + εt, (42)

where E[εt|Yt−1, . . . , Yt−d] = 0 and the errors εt have the form εt = σ(Yt−1, . . . , Yt−d)ξt with792

i.i.d. residuals ξt. Standard results to be found e.g. in Chen and Chen (2000) show that793

the process {Yt} defined in (42) has a stationary solution and is geometrically α-mixing794

under the following conditions:795

(i) The variables ξt are i.i.d. with E[ξt] = 0 and E|ξt| < ∞, they have an everywhere796

positive and continuous density function, and ξt is independent of all Ys with s < t.797

(ii) The function m is bounded on every bounded set, that is, for any constant C ≥ 0,798

sup‖x‖≤C |m(x)| <∞.799

(iii) The function σ is such that 0 < σ ≤ inf‖x‖≤C σ(x) ≤ sup‖x‖≤C σ(x) < ∞ for any800

C ≥ 0 and some constant σ > 0.801

(iv) There exist constants aj, bj ≥ 0 (j = 1, . . . , d), c1, c2 ≥ 0 and C0 > 0 such that

|m(x)| ≤
d∑
j=1

aj|xj|+ c1 for ‖x‖ ≥ C0

|σ(x)| ≤
d∑
j=1

bj|xj|+ c2 for ‖x‖ ≥ C0

and
∑d

j=1(aj + bjE|ξt|) < 1.802

Our nonparametric HAR model (8) is a special case of (42). To see this, consider803

the model with a daily, a weekly and a monthly component function and suppose that804

εt = σ(V
(1)
t−1, V

(5)
t−1, , V

(22)
t−1 )ξt. In this case, the HAR model can be rewritten as805

V
(1)
t = m(V

(1)
t−1, V

(1)
t−2, . . . , V

(1)
t−22) + εt, (43)

where m(x1, . . . , x22) = m0 + m1(x1) + m2(1
5

∑5
j=1 xj) + m3( 1

22

∑22
j=1 xj). Assuming that806

the components of (43) fulfill conditions (i)–(iv), we can infer that the HAR process807

{V (1)
t } (as well as the average processes {V (5)

t } and {V (22)
t }) has a stationary solution808

which is geometrically mixing. By the same token, if the residuals ξt and the functions809

(m`
0,m

`
1,m

`
2,m

`
3, σ

`) satisfy (i)–(iv) for ` ∈ {ante, post}, there exist strictly stationary and810
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strongly mixing HAR processes {V ante,(1)
t : t ∈ Tante} and {V post,(1)

t : t ∈ Tpost}. Since the811

innovations ξt are i.i.d., we can assume w.l.o.g. that these two processes are independent.812

As a result, assumption (B2) is satisfied for Y `
t = V

`,(1)
t and X`

t = (V
`,(1)
t−1 , V

`,(5)
t−1 , V

`,(22)
t−1 )813

with ` = ante, post.814

We finally turn to the discussion of (B3). To keep the exposition as simple as possible,815

we suppose that σante(·) = σpost(·) ≡ σ̄ for some constant σ̄ > 0. Now assume that the816

processes {V ante,(1)
t } and {V post,(1)

t } are stationary and suppose that817 ∣∣∣ ∂
∂x
m`

1(x)
∣∣∣+
∣∣∣ ∂
∂y
m`

2(y)
∣∣∣+
∣∣∣ ∂
∂z
m`

3(z)
∣∣∣ ≤ ρ

for some 0 < ρ < 1. Then (B3) is satisfied for Y `
t = V

`,(1)
t and X`

t = (V
`,(1)
t−1 , V

`,(5)
t−1 , V

`,(22)
t−1 ).

To derive the first two inequalities of (B3), note that

|V post,(1)
t − V (1)

t | ≤
∣∣∣mpost

1 (V
post,(1)
t−1 )−mpost

1 (V
(1)
t−1) +mpost

2 (V
post,(5)
t−1 )−mpost

2 (V
(5)
t−1)

+mpost
3 (V

post,(22)
t−1 )−mpost

3 (V
(22)
t−1 )

∣∣∣
≤ ρmax

{∣∣∣V post,(1)
t−1 − V (1)

t−1

∣∣∣ , ∣∣∣V post,(5)
t−1 − V (5)

t−1

∣∣∣ , ∣∣∣V post,(22)
t−1 − V (22)

t−1

∣∣∣}
≤ ρ max

1≤`≤22
|V post,(1)
t−` − V (1)

t−`| (44)

for t∗ + Cγ log T ≤ t ≤ T . Choosing Cγ such that ρCγ log T � hT−γ and making iterative818

use of (44), we immediately obtain the first two inequalities of (B3). The third and fourth819

claim follow similarly. The last claim of (B3) is a simple consequence of standard moment820

conditions.821
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Homosc. errors Heterosc. errors

nominal size nominal size

h 0.01 0.05 0.10 0.01 0.05 0.10

m2,0

0.4 0.010 0.062 0.115 0.014 0.074 0.136

0.5 0.007 0.041 0.095 0.013 0.060 0.118

0.6 0.006 0.026 0.069 0.008 0.048 0.097

0.7 0.004 0.026 0.057 0.008 0.042 0.086

m2,1

0.4 0.065 0.209 0.316 0.079 0.205 0.316

0.5 0.044 0.178 0.275 0.043 0.151 0.261

0.6 0.019 0.107 0.212 0.026 0.111 0.194

0.7 0.006 0.058 0.130 0.016 0.071 0.151

m2,2

0.4 0.304 0.569 0.700 0.193 0.438 0.598

0.5 0.229 0.501 0.646 0.114 0.311 0.489

0.6 0.125 0.396 0.549 0.079 0.218 0.366

0.7 0.053 0.234 0.416 0.045 0.138 0.262

m2,3

0.4 0.687 0.880 0.948 0.325 0.620 0.781

0.5 0.584 0.837 0.909 0.193 0.465 0.658

0.6 0.425 0.749 0.848 0.113 0.307 0.485

0.7 0.227 0.574 0.740 0.071 0.212 0.341

Table 2: Size and power simulations of the specification test under the two error scenarios.

The first block labeled with m2,0 gives the actual size αT (h) of the test. The blocks below

give the power βT (h) for the alternatives m2,i (i = 1, 2, 3). h is the test bandwidth for

m2; the variation corresponds to 0.20-0.37 on the unit interval. For the pilot estimates,

g1 = 0.64 and g3 = 0.28 (about 0.22 and 0.20 on the unit interval) and g2 = h/1.4 are

used.
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Homosc. errors Heterosc. errors

nominal size nominal size

h 0.01 0.05 0.1 0.01 0.05 0.1

m2,0

0.4 0.016 0.077 0.136 0.019 0.072 0.124

0.5 0.016 0.061 0.112 0.015 0.058 0.116

0.6 0.012 0.049 0.096 0.011 0.048 0.104

0.7 0.009 0.044 0.083 0.009 0.040 0.087

m2,1

0.4 0.104 0.242 0.351 0.085 0.215 0.301

0.5 0.073 0.192 0.287 0.057 0.152 0.242

0.6 0.049 0.134 0.227 0.021 0.100 0.173

0.7 0.027 0.090 0.169 0.010 0.058 0.126

m2,2

0.4 0.388 0.621 0.735 0.362 0.581 0.695

0.5 0.286 0.532 0.669 0.268 0.505 0.622

0.6 0.181 0.408 0.555 0.161 0.373 0.514

0.7 0.092 0.290 0.411 0.087 0.248 0.395

m2,3

0.4 0.775 0.912 0.950 0.736 0.892 0.942

0.5 0.697 0.872 0.935 0.665 0.850 0.915

0.6 0.570 0.815 0.891 0.545 0.771 0.864

0.7 0.393 0.698 0.820 0.380 0.677 0.785

Table 3: Size and power simulations of the structural breaks test, setting (a). The first

block labeled m2,0 gives the actual size αT (h) of the test. The blocks below give the

power βT (h) for the alternatives m2,i (i = 1, 2, 3). h is the test bandwidth for m2; the

variation corresponds to 0.20-0.37 on the unit interval. For the pilot estimates, g1 = 0.64

and g3 = 0.28 (about 0.23 and 0.21 on the unit interval) and g2 = h/1.4 are used.
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Homosc. errors Heterosc. errors

nominal size nominal size

h 0.01 0.05 0.1 0.01 0.05 0.1

m2,0

0.4 0.022 0.079 0.145 0.017 0.084 0.138

0.5 0.011 0.061 0.120 0.008 0.054 0.118

0.6 0.010 0.044 0.098 0.008 0.037 0.091

0.7 0.009 0.037 0.073 0.006 0.029 0.073

m2,1

0.4 0.072 0.178 0.275 0.053 0.146 0.226

0.5 0.043 0.136 0.230 0.031 0.116 0.189

0.6 0.023 0.106 0.177 0.019 0.072 0.145

0.7 0.011 0.075 0.131 0.006 0.050 0.109

m2,2

0.4 0.222 0.422 0.540 0.177 0.352 0.474

0.5 0.154 0.356 0.482 0.120 0.303 0.421

0.6 0.100 0.276 0.411 0.067 0.224 0.350

0.7 0.057 0.190 0.321 0.041 0.151 0.261

m2,3

0.4 0.423 0.631 0.746 0.338 0.559 0.664

0.5 0.336 0.577 0.690 0.253 0.489 0.624

0.6 0.237 0.494 0.630 0.164 0.405 0.555

0.7 0.141 0.390 0.538 0.085 0.284 0.440

Table 4: Size and power simulations of the structural breaks test, setting (b). The first

block labeled with m2,0 gives the actual size αT (h) of the test. The blocks below give the

power βT (h) for the alternatives m2,i (i = 1, 2, 3). h is the test bandwidth for m2; the

variation corresponds to 0.23-0.40 on the unit interval. For the pilot estimates, g1 = 0.61

and g3 = 0.26 (both about 0.23 on the unit interval) and g2 = h/1.4 are used.
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Bandwidths

Symbol Daily Weekly Monthly

CF 0.233 0.189 0.231

FT 0.212 0.201 0.216

KM 0.222 0.233 0.270

NE 0.282 0.268 0.273

SP 0.202 0.190 0.190

XX 0.236 0.206 0.219

BN 0.252 0.191 0.192

TY 0.292 0.254 0.224

US 0.387 0.240 0.229

CL 0.327 0.216 0.217

NG 0.269 0.203 0.255

GC 0.322 0.307 0.255

HG 0.255 0.287 0.211

EC 0.325 0.231 0.229

JY 0.295 0.233 0.287

CN 0.253 0.217 0.282

SY 0.269 0.251 0.234

Table 5: Bandwidths obtained by means of the plug-in rule of Mammen and Park (2005)

as described in Section 4.3. The bandwidths are reported relative to the unit interval; see

Table 1 for the list of acronyms.

45



Test for structural breaks

Symbol Daily Weekly Monthly

CF 0.097 0.025 0.483

FT 0.102 0.182 0.929

KM 0.453 0.032 0.108

NE 0.367 0.247 0.378

SP 0.385 0.362 0.825

XX 0.360 0.018 0.037

BN 0.211 0.450 0.287

TY 0.000 0.075 0.000

US 0.000 0.690 0.000

CL 0.597 0.529 0.432

NG 0.577 0.000 0.006

GC 0.157 0.788 0.331

HG 0.206 0.308 0.504

EC 0.115 0.363 0.465

JY 0.158 0.322 0.988

CN 0.244 0.224 0.206

SY 0.671 0.114 0.001

Table 6: Structural break tests based on Nadaraya-Watson smooth backfitting as sug-

gested in Section 3. Null hypothesis is equality of the functions on the ante and the post

sample. The p-values are obtained from 1000 bootstrap replications. p-values are in bold

when below 10%. Weighting function in the test statistic is a uniform density; see Table 1

for the list of acronyms.
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Test for linear specification

Symbol Daily Weekly Monthly

Ante Post Ante Post Ante Post

CF 0.087 0.111 0.212 0.019 0.476 0.179

FT 0.701 0.942 0.781

KM 0.677 0.221 0.984 0.124 0.144 0.011

NE 0.020 0.575 0.244

SP 0.041 0.043 0.217

XX 0.090 0.058 0.514 0.015 0.809 0.164

BN 0.013 0.122 0.337

TY 0.004 0.149 0.497 0.149 0.471 0.302

US 0.001 0.637 0.929 0.175 0.385 0.730

CL 0.238 0.289 0.724

NG 0.097 0.888 0.002 0.785 0.279 0.076

GC 0.589 0.940 0.594

HG 0.326 0.303 0.016

EC 0.284 0.007 0.014

JY 0.120 0.143 0.448

CN 0.033 0.002 0.076

SY 0.498 0.021 0.800 0.978 0.390 0.395

Table 7: Specification tests (Nadaraya-Watson smooth backfitting) on the full sample or

on the subsamples in presence of a structural break according to Table 6. Null hypothesis

is the linear specification in the respective component function. p-values are obtained from

1000 bootstrap replications. p-values are in bold when below 10%. Weighting function is

the uniform density; see Table 1 for the list of acronyms.
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RMSE

1 day 1 week 1 month

Symbol HAR npHAR HAR npHAR HAR npHAR

FT 0.4244 0.4220 0.3739 0.3711 0.4094 0.4060

NE 0.5262 0.5229 0.4121 0.4101 0.4316 0.4283

SP 0.5269 0.5230 0.4185 0.4118 0.4708 0.4591

BN 0.3635 0.3624 0.2664 0.2645 0.2618 0.2594

CL 0.4335 0.4521 0.2906 0.3222 0.2988 0.4307

GC 0.6157 0.6147 0.3572 0.3559 0.3175 0.3142

HG 0.5090 0.5454 0.3471 0.4300 0.3661 0.3613

EC 0.5031 0.5014 0.3049 0.3007 0.2759 0.2715

JY 0.5846 0.5848 0.3561 0.3532 0.3282 0.3347

CN 0.5021 0.5077 0.3289 0.3291 0.2901 0.2985

MAE

1 day 1 week 1 month

Symbol HAR npHAR HAR npHAR HAR npHAR

FT 0.3319 0.3298 0.2811 0.2800 0.3069 0.3061

NE 0.3821 0.3798 0.3086 0.3077 0.3265 0.3227

SP 0.4193 0.4181 0.3157 0.3118 0.3478 0.3434

BN 0.2777 0.2772 0.2053 0.2043 0.2025 0.2011

CL 0.3365 0.3559 0.2237 0.2480 0.2389 0.3196

GC 0.4846 0.4846 0.2747 0.2740 0.2482 0.2478

HG 0.3811 0.4124 0.2664 0.3216 0.2827 0.2831

EC 0.3891 0.3873 0.2410 0.2380 0.2151 0.2138

JY 0.4607 0.4616 0.2738 0.2721 0.2508 0.2563

CN 0.3831 0.3858 0.2620 0.2631 0.2410 0.2468

p-values of Hansen’s SPA test

1 day 1 week 1 month

Symbol RMSE MAE RMSE MAE RMSE MAE

FT 0.081 0.035 0.012 0.116 0.101 0.344

NE 0.033 0.023 0.086 0.106 0.112 0.043

SP 0.032 0.282 0.019 0.039 0.020 0.202

BN 0.252 0.342 0.169 0.334 0.244 0.328

CL 1.000 1.000 1.000 1.000 1.000 1.000

GC 0.064 1.000 0.170 0.261 0.115 0.385

HG 1.000 1.000 1.000 1.000 0.208 1.000

EC 0.039 0.082 0.022 0.033 0.058 0.306

JY 1.000 1.000 0.057 0.115 1.000 1.000

CN 1.000 1.000 1.000 1.000 1.000 1.000

Table 8: Forecast evaluations of the linear and the nonlinear HAR model. Top panel: root

mean squared error (RMSE). Middle panel: mean absolute error (MAE). Lower panel:

p-values of Hansen’s test of superior predictive ability (SPA). Null hypothesis: the linear

HAR model is not inferior to the nonlinear model.

48



Homosc. errors Heterosc. errors
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Figure 1: Size discrepancy and power curves for the specification test. Top row shows the size discrep-

ancy curves for the four bandwidths h = 0.4, 0.5, 0.6, 0.7 (0.20-0.37 on the unit interval). The second,

third and fourth row, from top to bottom, provide the power curves for m2,i (i = 1, 2, 3), see Section 4.3.1.

The left column features the homoscedastic error case, the right column the heteroscedastic error case.

49



Homosc. errors Heterosc. errors
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Figure 2: Size discrepancy and power curves for the structural break test, setting (a). Top row shows

the size discrepancy curves for the four bandwidths h = 0.4, 0.5, 0.6, 0.7 (0.20-0.37 on the unit interval).

The second, third and fourth row, from top to bottom, provide the power curves for m2,i (i = 1, 2, 3), see

Section 4.3.2. The left column features the homoscedastic error case, the right column the heteroscedastic

error case.
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Figure 3: Size discrepancy and power curves for the structural break test, setting (b). Top row shows

the size discrepancy curves for the four bandwidths h = 0.4, 0.5, 0.6, 0.7 (0.23-0.40 on the unit interval).

The second, third and fourth row, from top to bottom, provide the power curves for m2,i (i = 1, 2, 3), see

Section 4.3.2. The left column features the homoscedastic error case, the right column the heteroscedastic

error case.
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Figure 4: Difference of the 3-months USD Libor over the 3-months overnight indexed

swap (left ordinate axis), S&P 500 index closing prices (right ordinate axis) from July 1,

2003 to Dec. 31, 2010. Source: Bloomberg.
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Figure 5: Nadaraya-Watson smooth backfitting estimates of the variance component func-

tions, for which the linearity test rejects. All estimates are normalized to the unit interval

and computed on the full, the ante or the post sample depending on the outcome of the

structural break test given in Table 6. The top panel shows the estimates m̂1 of CF

(ante), NE (full), SP (full), XX (ante), BN (full), TY (ante), US (ante), NG (ante). The

lower panel left shows m̂2 of CF (post), SP (full), XX (post), NG (ante). The lower panel

right shows m̂3 of KM (post), HG (full), EC (full), CN (full); see Table 1 for the list of

acronyms.
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