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Abstract

In this paper, we consider a nonparametric model with a time-varying regression
function and locally stationary regressors. We are interested in the question whether
the regression function has the same shape over a given time span. To tackle
this testing problem, we propose a kernel-based L2-test statistic. We derive the
asymptotic distribution of the statistic both under the null and under fixed and local
alternatives. To improve the small sample behaviour of the test, we set up a wild
bootstrap procedure and derive the asymptotic properties thereof. The theoretical
analysis of the paper is complemented by a simulation study and a real data example.
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1 Introduction

In this paper, we are concerned with a testing issue in the nonparametric regression

framework

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T, (1)

where E[εt,T |Xt,T ] = 0 and the covariates Xt,T = (X1
t,T , . . . , X

d
t,T ) have dimension d. The

regression function m in this setting is allowed to vary over time. Moreover, the regressors

Xt,T are not restricted to be stationary but are allowed to be locally stationary. Intuitively

speaking, a process is locally stationary if over short periods of time (i.e. locally in time) it

behaves approximately stationary. Throughout the introduction, we stick to this intuitive

concept of local stationarity. A formal definition is given later on. Note that as usual in

the literature on locally stationary processes, we have rescaled the time argument of the

regression function to the unit interval.
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We are interested in the question whether the function m(u, ·) in model (1) has the same

shape for all time points u within a given time span I ⊂ [0, 1]. Put differently, we want

to test for structural stability of the regression function over the time period I. The main

goal of the paper is to develop a formal procedure to do so. Depending on the application,

the time span I of interest may take different forms. In some applications, it will be an

interval. In others, it will be the union of disjoint intervals. In our data example in Section

6, for instance, we investigate whether the regression function of a volatility model has

the same shape within two different crisis periods, i.e., within two disjoint time intervals.

To accommodate these different situations, we do not restrict the time period I to be an

interval but rather allow it to be a finite union of intervals.

As a special case, we can set I = [0, 1]. This amounts to testing for global stability of

the regression function m. There is a wide range of articles which analyze this testing

issue in a parametric setting where the function m is known up to a finite number of

time-varying coefficients; see e.g. Chen & Hong (2012), Kristensen (2012) or Zhang & Wu

(2012) for some more recent references. If the model at hand is an autoregressive process

with time-varying parameters, then the issue of testing for parameter stability is closely

related to that of testing for stationarity in a locally stationary setup. Procedures to test

for stationarity within a general class of locally stationary processes have been developed

for example by Paparoditis (2009, 2010), Dette et al. (2011) and Preuß et al. (2012).

These articles approach the problem in the frequency domain and construct procedures

to test whether the spectral density of the time series process under investigation is time-

invariant.

Whereas the issue of testing for structural stability has received much attention in the

parametric regression case, there is relatively little work in the nonparametric case. Hi-

dalgo (1995) considers the model Yt,T = g( t
T
, Xt)+εt, where the regressorsXt are restricted

to be strictly stationary. He develops a conditional moment test for the hypothesis that

g(u, ·) = g(·) for a fixed function g(·) and all time points u ∈ [0, 1]. Su & Xiao (2008)

suggest a CUSUM type test in a similar setting. They allow for nonstationarities in the

covariates but analyze the behaviour of their test statistic only on a rather specific type

of (local) alternatives. Finally, Su & White (2010) set up a test for structural change in

partially linear models.

A related strand of the literature deals with estimating the location and size of structural

breaks in nonparametric regression. Müller (1992), for example, considers a nonparamet-

ric regression model with a fixed design and derives both the convergence rates and a

central limit theorem for the estimates of the location and the size of the breaks in the

regression function. Wu & Chu (1993) propose a test for the number of breaks in a similar

setting. Delgado & Hidalgo (2000) consider the model Yt,T = g( t
T
, Xt) + εt and propose

estimates for both the location and the size of the breaks in the function g, which may

occur in time direction or in the direction of the regressor Xt.

In the following sections, we develop a new statistical method to test for time-invariance

of the regression function m in the general framework (1) over a given time span I and
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provide a complete asymptotic theory for the behaviour of our test. A detailed description

of model (1) and of the main assumptions on the model components including a rigorous

definition of local stationarity is given in Section 2. Our test statistic measures an L2-

distance between kernel estimates of the functions m(u, ·) and m(v, ·) at different time

points u, v ∈ I and is introduced in Section 3. Its asymptotic properties are analyzed in

Section 4. The limit behaviour of the test statistic will turn out to be mainly driven by a

quadratic form. Not much is known about the asymptotic behaviour of quadratic forms

in a locally stationary setting. To our knowledge, Lee & Subba Rao (2011) are the only

ones who have analyzed a general class of quadratic forms for locally stationary processes

so far. However, the class they consider does not cover our case. The main theoretical

challenge thus lies in the derivation of a limit theory for the quadratic form which shows

up in our setup.

To improve the finite sample behaviour of our test, we propose a wild bootstrap procedure

in Subsection 4.3 and derive the asymptotic properties thereof. In addition, we carry out

a simulation study in Section 5 which confirms that our bootstrap procedure works well

in small samples. The simulation study is complemented by a financial data example in

Section 6.

2 The Model

In this section, we give a detailed description of the regression framework (1) which

underlies our testing problem. The components of the model, namely the function m, the

regressors Xt,T and the residuals εt,T , are required to have the following main properties:

(a) The function m is assumed to be smooth in time direction. We thus allow for gradual

changes but rule out sudden structural breaks in time direction. The exact smoothness

conditions on m are listed in Subsection 4.1. Some discussion on how our test statistic

behaves in the presence of structural breaks is provided in Subsection 7.2.

(b) As already noted in the introduction, we do not restrict the regressors to be strictly

stationary. Instead, we allow the triangular array {Xt,T : t = 1, . . . , T} to be locally

stationary, which for our purpose is defined as follows:

Definition 2.1. The process {Xt,T} is locally stationary if for each rescaled time point

u ∈ [0, 1] there exists an associated process {Xt(u)} with the following two properties:

(i) {Xt(u)} is strictly stationary with density fXt(u),

(ii) it holds that ∥∥Xt,T −Xt(u)
∥∥ ≤ (∣∣∣ t

T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s.,

where {Ut,T (u)} is a process of positive variables satisfying E[(Ut,T (u))ρ] < C for

some ρ > 0 and C < ∞ independent of u, t and T . ‖ · ‖ denotes an arbitrary

norm on Rd.
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This definition of local stationarity has been introduced in Vogt (2012). Intuitively

speaking, it says that the process {Xt,T} can be approximated locally around each

time point u by a strictly stationary process, namely the process {Xt(u)}. Similar

definitions can be found e.g. in Dahlhaus & Subba Rao (2006) or Koo & Linton (2012).

(c) The error process {εt,T : t = 1, . . . , T} is assumed to have the martingale difference

property that

E
[
εt,T
∣∣{Xs,T : s ≤ t}, {εs,T : s < t}

]
= 0 (2)

for all t. This rules out autocorrelation in the error terms but allows for heteroskedas-

ticity. (2) is for example satisfied by residuals of the form

εt,T = σ
( t
T
,Xt,T

)
εt, (3)

where σ is a time-varying volatility function and {εt} is an i.i.d. process having the

property that εt is independent of Xs,T for s ≤ t. Imposing a martingale difference

structure on the regression errors is technically convenient, as it allows us to apply

a central limit theorem for martingale differences in the proofs. Similar martingale

difference type conditions on the error terms are quite common in the literature on

nonparametric kernel-based tests; see e.g. Fan & Li (1999), Li (1999) or Su & Xiao

(2008). To simplify the calculations in the proofs later on, we will work with the

specific error structure (3) instead of the more general martingale difference structure

(2). The proofs can however be easily adjusted to work under the assumption (2).

An important class of processes that fit into the framework (1) is given by the nonlinear

autoregressive model

Yt,T = m
( t
T
, Y t−d

t−1,T

)
+ σ
( t
T
, Y t−d

t−1,T

)
εt (4)

with Y t−d
t−1,T = (Yt−1,T , . . . , Yt−d,T ) and i.i.d. variables εt. One can show that under suitable

low-level conditions on m, σ and the residuals εt, the components of model (4) have the

properties (a)–(c). In particular, the autoregressive process {Yt,T} can be shown to be

locally stationary and strongly mixing with mixing coefficients that decay exponentially

fast to zero. For a detailed analysis of model (4) and a proof of these results see Vogt

(2012).

The time-varying regression function m of model (1) can be estimated by nonparametric

kernel techniques. In what follows, we work with a Nadaraya-Watson type estimator.

Alternatively, our test statistic could be based on local linear or more generally on lo-

cal polynomial smoothers; see Fan & Gijbels (1996) for a detailed account of the local

polynomial estimation method. The Nadaraya-Watson estimator of m is given by

m̂h(u, x) =

∑T
t=1Kh(u− t

T
)
∏d

j=1Kh(x
j −Xj

t,T )Yt,T∑T
t=1Kh(u− t

T
)
∏d

j=1Kh(xj −Xj
t,T )

. (5)
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In this definition, K denotes a one-dimensional kernel function and we use the notation

Kh(x) = h−1K(x/h). For simplicity, we employ a product kernel and assume that the

bandwidth is the same in each direction. Our results can however be easily modified to

allow for non-product kernels and different bandwidths. The asymptotic properties of the

estimator m̂h are summarized in the first subsection of the Appendix.

3 The Test Statistic

Let I ⊂ [0, 1] be an interval or a finite union of intervals. We want to test whether

the regression function m(u, ·) has the same shape at all time points u ∈ I. The null

hypothesis is thus given by

H0 : m(u, ·) = m(v, ·) π-a.s. for (almost) all u, v ∈ I,

where π is some weight function. The null hypothesis can equivalently be expressed as

H0 :

∫
I×I

(∫ [
m(u, x)−m(v, x)

]2
π(x)dx

)
dudv = 0.

A natural way to come up with a test statistic for this problem is to replace the un-

known regression function m in the above L2-distance by an estimator and to rescale

appropriately. This yields the weighted L2-test statistic

ST = Th
d+1
2

∫
I×I

(∫ [
m̂h(u, x)− m̂h(v, x)

]2
π(x)dx

)
dudv, (6)

where m̂h is the Nadaraya-Watson smoother defined in (5). For simplicity, we assume

that the weight function π has bounded support.1 In the literature, related L2-type test

statistics have been used to test for parametric specification. In contrast to our setting,

these statistics measure an L2-distance between a nonparametric and a (semi)parametric

fit; see e.g. Härdle & Mammen (1993), Sergides & Paparoditis (2009) or Preuß et al.

(2011).

In what follows, we analyze the asymptotic behaviour of ST under the null hypothesis as

well as under fixed and local alternatives. The fixed alternative hypothesis is given by

H1 :

∫
I×I

(∫ [
m(u, x)−m(v, x)

]2
π(x)dx

)
dudv > 0.

To get a rough impression of the power of the test, we additionally examine local alterna-

tives, i.e., alternatives that converge to H0 as the sample size grows. To formulate these

alternatives, we define the sequence of functions

mT (w, z) = m(w, z) + cT∆(w, z),

1The case of unbounded support can be handled as follows: The uniform convergence results on the

Nadaraya-Watson estimator in Lemmas A1–A3 in the Appendix can be extended to hold over diverging

compact sets. We can thus allow for unbounded support of π by letting the limits of the integrals in ST

diverge to infinity at an appropriate rate as the sample size increases.
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where cT → 0, the function ∆ is continuous and m satisfies the null hypothesis (i.e. is

time-invariant within I). The process {Yt,T} is thus given by

Yt,T = mT

( t
T
,Xt,T

)
+ εt,T = m

( t
T
,Xt,T

)
+ cT∆

( t
T
,Xt,T

)
+ εt,T . (7)

If the process {Yt,T} is generated according to (7), we move along the sequence of local

alternatives

H1,T :

∫
I×I

(∫ [
mT (u, x)−mT (v, x)

]2
π(x)dx

)
dudv = c2T∆I (8)

with ∆I :=
∫
I×I(

∫
[∆(u, x) −∆(v, x)]2π(x)dx)dudv. Note that the weighted L2-distance

in (8) gets smaller as the sample size increases, i.e., the hypothesis H1,T comes closer and

closer to H0 as T tends to infinity.

4 Asymptotics

In what follows, we describe the asymptotic properties of the test statistic ST defined in

(6). Subsection 4.1 lists the conditions needed to do so. In Subsection 4.2, we derive the

asymptotic distribution of ST under the null as well as under fixed and local alternatives.

Moreover, we explain how to bootstrap ST in Subsection 4.3 and show that the proposed

bootstrap is consistent.

4.1 Assumptions

We make the following assumptions.

(C1) The process {Xt,T} is locally stationary in the sense of Definition 2.1 with some

ρ ≥ 1. Thus, for each time point u ∈ [0, 1], there exists a strictly stationary process

{Xt(u)} with density f(u, x) := fXt(u)(x) such that ‖Xt,T − Xt(u)‖ ≤ (| t
T
− u| +

1
T

)Ut,T (u) a.s. with E[(Ut,T (u))ρ] ≤ C.

(C2) The array {Xt,T , εt,T} is strongly mixing with mixing coefficients α(k) that converge

exponentially fast to zero, i.e., α(k) ≤ Cak for some a < 1.

(C3) The bandwidth h satisfies Th2d+2 →∞. Moreover, let r be a natural number with

r > d+1
2

such that Th4r → 0 and Th2r+
d+1
2 → 0.

(C4) The kernel K is bounded and has compact support, i.e., K(v) = 0 for all |v| > C1

with some C1 < ∞. Moreover, K is Lipschitz, i.e., |K(v) −K(v′)| ≤ L|v − v′| for

some L <∞ and all v, v′ ∈ R. Finally, K satisfies the conditions∫
K(z)dz = 1,

∫
zjK(z)dz = 0 for j = 1, . . . , r − 1.
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(C5) For each u ∈ [0, 1], let f(u, ·) be the density of Xt(u). The functions f and m are

r-times continuously differentiable. Moreover, infu∈[0,1],x∈S f(u, x) > 0, where S is

the closure of the set {x ∈ Rd | π(x) 6= 0}.

(C6) The residuals are of the form εt,T = σ( t
T
, Xt,T )εt. Here, σ is a Lipschitz continuous

function and {εt} is an i.i.d. process having the property that εt is independent of

Xs,T for s ≤ t. The variables εt satisfy E[|εt|8+δ] <∞ for some small δ > 0 and are

normalized such that E[ε2t ] = 1.

(C7) Let fXt,T be the density of Xt,T and fXt,T ,Xt+l,T the density of (Xt,T , Xt+l,T ). For

any compact set A ⊂ Rd, there exists a constant C = C(A) < ∞ such that

supt,T supx∈A fXt,T (x) ≤ C and

sup
t,T

sup
l>0

sup
x,x′∈A

E
[
|εt|
∣∣Xt,T = x,Xt+l,T = x′

]
fXt,T ,Xt+l,T (x, x′) ≤ C.

We briefly give some remarks on the above assumptions. We start with a reminder of the

definition of an α-mixing array. Let (Ω,A,P) be a probability space and let B and C be

subfields of A. Define

α(B, C) = sup
B∈B,C∈C

|P(B ∩ C)− P(B)P(C)|.

Moreover, for an array {Zt,T : 1 ≤ t ≤ T}, define the coefficients

α(k) = sup
t,T :1≤t≤T−k

α
(
σ(Zs,T , 1 ≤ s ≤ t), σ(Zs,T , t+ k ≤ s ≤ T )

)
,

where σ(Z) is the σ-field generated by Z. The array {Zt,T} is said to be α-mixing

(or strongly mixing) if α(k) → 0 as k → ∞. Note that we do not necessarily require

exponentially decaying mixing rates as assumed in (C2). These could be replaced by

sufficiently large polynomial rates. We nevertheless make the stronger assumption (C2)

to keep the notation in the proofs as simple as possible. Assumptions (C3)–(C5) allow

us to use higher-order kernels (r > 2) in the analysis of the test statistic. Note however,

that we only need them if the dimension of the regressors d is larger than 1. If d = 1, we

can set r = 2 and choose the bandwidth h to satisfy CT−(
1
4
−δ) ≤ h ≤ CT−(

1
5
+δ) for some

small δ > 0 and a positive constant C. Finally, assumption (C7) is required to derive

the uniform convergence rates of the estimator m̂h. It is a modification of the conditions

(5)–(7) used in Hansen (2008).

4.2 The Asymptotic Distribution of ST

We now summarize the results on the asymptotic behaviour of the test statistic ST . To

formulate the theorems, we introduce the following shorthands: Let ω(u) = I(u ∈ I) as

well as λI =
∫
ω(u)du and define

V = 8λ2I
(∫

K2(z)dz
)∫ ( ∫ [σ2(u, x)]2π2(x)

f 2(u, x)
dx
)
ω(u)du
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with K(z) =
∫ ∏d

j=0K(wj)
∏d

j=0K(wj + zj)dw. As we will see later on, V plays the role

of the asymptotic variance of ST . In addition, we define

BT,1 = λIh
− d+1

2

∫ (∫
. . .

∫
K2(w)

d∏
j=1

K2(zj)σ2(u− hw, x− hz)

× f(u− hw, x− hz)
π(x)

f 2(u, x)
dwdzdx

)
ω(u)du

BT,2 = h−
d−1
2

∫∫ (∫
. . .

∫
K(w)K(δ + w)

d∏
j=1

K2(zj)σ2(u− hw, x− hz)

× f(u− hw, x− hz)
π(x)

f(u, x)f(u+ δh, x)
dwdzdx

)
ω(u)ω(u+ δh)dδdu

together with

BT,3 = λIh
− d+1

2

∫ (∫
. . .

∫
K2(w)

d∏
j=1

K2(zj)
[
m(x− hz)−m(x)

]2
× f(u− hw, x− hz)

π(x)

f 2(u, x)
dwdzdx

)
ω(u)du

BT,4 = h−
d−1
2

∫∫ (∫
. . .

∫
K(w)K(δ + w)

d∏
j=1

K2(zj)
[
m(x− hz)−m(x)

]2
× f(u− hw, x− hz)

π(x)

f(u, x)f(u+ δh, x)
dwdzdx

)
ω(u)ω(u+ δh)dδdu,

where m(x) = λ−1I
∫
m(u, x)ω(u)du. Using these definitions, we can introduce the term

BT = 2
[
BT,1 −BT,2 +BT,3 −BT,4

]
,

which turns out to be the bias by which ST has to be corrected later on. The two

bias components BT,3 and BT,4 are due to the smoothing bias of the Nadaraya-Watson

estimator m̂h. Importantly, they converge to zero as long as d ≤ 2 and thus only contribute

to the bias of the test statistic in higher dimensions. As can be seen, both the variance V

and the bias BT depend on the volatility function σ. This dependence captures how the

test statistic is affected by the presence of heteroskedasticity in the model.

With the above definitions at hand, we can now formulate the main results. The first theo-

rem states that under the null hypothesis, ST weakly converges to a Gaussian distribution

if we subtract the bias term BT that diverges to infinity.

Theorem 4.1. Assume that (C1)–(C7) are fulfilled and let I be a closed subset of (0, 1).

Then under H0,

ST −BT
d−→ N

(
0, V

)
.

Going back to the formula for V , the asymptotic variance of the test statistic is seen to

depend on the length of the time span I, i.e. on λI =
∫
ω(u)du. This intuitively makes

sense as the test statistic measures an L2-distance between estimates of the regression
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function at different time points u, v ∈ I. The larger the time span I, the larger this L2-

distance gets, which becomes reflected in the asymptotic variance V via its dependence

on λI .

We now turn to the behaviour of ST under fixed alternatives. The next theorem shows

that ST (corrected by the bias term BT ) diverges in probability to infinity under H1. The

test based on the statistic ST −BT is thus consistent against fixed alternatives.

Theorem 4.2. Assume that (C1)–(C7) are fulfilled and let I be a closed subset of (0, 1).

Then under H1,

(Th
d+1
2 )−1

(
ST −BT

) P−→
∫
I×I

(∫ [
m(u, x)−m(v, x)

]2
π(x)dx

)
dudv > 0.

We finally examine the behaviour of ST under local alternatives to get an idea of the

quality of the test. According to the next theorem, the asymptotic power of the test

against alternatives of the form m + cT∆ with cT = (Th(d+1)/2)−1/2 and m satisfying

the null hypothesis is constant for all functions ∆ with the same value ∆I , where ∆I

is specified in Theorem 4.3. A similar behaviour is well-known from other kernel-based

L2-test statistics (see e.g. Härdle & Mammen (1993)).

Theorem 4.3. Assume that (C1)–(C7) are fulfilled, let I be a closed subset of (0, 1) and

let cT = (Th(d+1)/2)−1/2. Then under H1,T ,

ST −BT
d−→ N

(
∆I , V

)
with ∆I =

∫
I×I(

∫
[∆(u, x)−∆(v, x)]2π(x)dx)dudv.

To prove Theorem 4.3, we require the process {Xt,T} to be locally stationary and strongly

mixing under local alternatives. This is guaranteed by the conditions (C1) and (C2).

Note however that it is not clear at all whether the autoregressive process {Yt,T} defined

in (4) fulfills (C1) and (C2) under local alternatives. In this paper, we do not explore this

issue any further. Instead, we simply exclude the autoregressive case when examining

local alternatives.

4.3 Bootstrapping ST

Theorem 4.1 allows us to approximate the distribution of the test statistic ST by a Gaus-

sian distribution. It is however well-known that in nonparametric hypothesis testing, the

test statistic converges rather slowly to the asymptotic distribution (see e.g. Li & Wang

(1998) or Härdle & Mammen (1993)). The approximation in finite samples is thus rather

poor in many cases. Moreover, the bias and variance expressions BT and V contain un-

known functions. Replacing them by consistent estimates results in further approximation

errors.

A common way to improve the finite sample behaviour of a test is to use bootstrap

methods. In what follows, we set up a wild bootstrap procedure. This type of bootstrap
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has been applied in a nonparametric time series context before; see e.g. Franke et al. (2002)

or Kreiss et al. (2008). An alternative procedure that is often used for dependent data is

the block bootstrap by Künsch (1989). This bootstrap technique is however problematic

to apply in our setting as it does not appropriately mimic the regression structure of

the model. This issue has been pointed out by Härdle & Mammen (1993) in an i.i.d.

setting for a standard empirical bootstrap (i.e. for a block bootstrap with a block length

of one). If we are working with the autoregressive model (4), another possibility is to use

the autoregression bootstrap examined in Franke et al. (2002). This procedure has the

advantage that it captures the dependence of the data by mimicking its autoregressive

structure. However, its asymptotic properties are much harder to analyze than those of

the wild bootstrap.

The wild bootstrap sample in our framework is given by {Y ∗t,T , Xt,T}Tt=1, where we define

Y ∗t,T = m̃g(Xt,T ) + ε∗t,T .

The bootstrap residuals are constructed as

ε∗t,T = ε̂t,T · ηt,

where ε̂t,T = Yt,T − m̂h(
t
T
, Xt,T ) are the estimated residuals and {ηt} is some sequence of

i.i.d. variables with zero mean and unit variance that is independent of {Yt,T , Xt,T}Tt=1.

Moreover, the estimate m̃g is defined as

m̃g(x) =

∫
m̂g(u, x)ω(u)du∫

ω(u)du

with ω(u) = I(u ∈ I) and a bandwidth g. It approximates the average regression func-

tion m(x) =
∫
m(u, x)ω(u)du/

∫
ω(u)du, which under the null is equal to the true time-

invariant regression function on the time span I. The bandwidth g is required to satisfy

g � h. The exact conditions on the oversmoothed bandwidth g are summarized in

condition (C8) below.

Given the bootstrap sample {Y ∗t,T , Xt,T}Tt=1, we can define the Nadaraya-Watson estimator

m̂∗h(u, x) =

∑T
t=1Kh(u− t

T
)
∏d

j=1Kh(x
j −Xj

t,T )Y ∗t,T∑T
t=1Kh(u− t

T
)
∏d

j=1Kh(xj −Xj
t,T )

.

Replacing the estimate m̂h by m̂∗h in the statistic ST , we obtain the bootstrap test statistic

S∗T = Th
d+1
2

∫
I×I

(∫ [
m̂∗h(u, x)− m̂∗h(v, x)

]2
π(x)dx

)
dudv.

In Theorem 4.4, we will show that the statistic S∗T approximates the distribution of ST

under the null hypothesis no matter whether the null is true or not. This intuitively

makes sense: Both under the null and under alternatives, the smoother m̃g estimates a

function that is time-invariant over the time span I. The bootstrap sample {Y ∗t,T , Xt,T}Tt=1

10



thus imitates the model under the null even if the alternative is true. For this reason, S∗T
should mimic the distribution of ST under the null hypothesis no matter whether the null

holds or not.

To formulate the asymptotic properties of the bootstrap statistic S∗T , we let P∗( · ) :=

P( · |{Yt,T , Xt,T}Tt=1) and introduce the assumption

(C8) The bandwidth g is such that h(d+1)/2g−d → 0 and hg−d/2 → 0. Moreover, Tg2rh2 →
0, Tg2rh(d+1)/2 → 0 and Thd+1g2r−d → 0.

The first two conditions on g specify how strongly we have to oversmooth the estimate

m̃g. Note that the latter three conditions can always be fulfilled if r is large enough,

i.e., if we work with higher-order kernels and the functions f and m are assumed to be

sufficiently smooth. In the case with d = 1 and r = 2, the above conditions simplify to

h/g → 0 and Tg4h → 0. These are fulfilled for example by setting g = (log T )h and

choosing h to satisfy h ≤ CT−(
1
5
+δ) for some small δ > 0 and a constant C.

The next theorem shows that the above defined wild bootstrap is consistent.

Theorem 4.4. Let (C1)–(C8) be fulfilled and let I be a closed subset of (0, 1). Then

S∗T −BT
d−→ N

(
0, V

)
conditional on the sample {Yt,T , Xt,T}Tt=1 with probability tending to one. Put differently,

P ∗
(
S∗T −BT ≤ x

) P−→ Φ(x), where Φ is a Gaussian distribution function with mean zero

and variance V .

5 Simulations

In this section, we examine the small sample behaviour of the proposed wild bootstrap

procedure in a Monte Carlo experiment. To do so, we simulate the autoregressive model

Yt,T = m
( t
T
, Yt−1,T

)
+ εt (9)

with i.i.d. errors εt that follow a standard normal distribution. We consider a linear and

a nonlinear specification of the regression function m:

(a) The linear specification is given by mL
i (u, y) = ai(u)y with different coefficient func-

tions ai. In particular, for i = 0, 1, 2, we let

ai(u) = −0.5 + ci(u− 0.5)I(u > 0.5)

with c0 = 0, c1 = 1 and c2 = 2. Whereas the function mL
0 is time-invariant, mL

1 and

mL
2 smoothly vary over time. In addition, we consider the parameter function

a3(u) = −0.5I(u ≤ 0.5) + 0.5I(u > 0.5)

to examine how our method performs in the presence of sudden structural breaks.

11



(b) The nonlinear specification of m is

mNL
i (u, y) =


−bi(u) for y < −(4k + 1)

bi(u) sin(0.5πy) for |y| ≤ (4k + 1)

bi(u) for y > (4k + 1),

where k is an extremely large natural number, e.g. k = 1012. The parameter functions

bi determine the time-varying amplitude of the sine curve bi(u) sin(0.5πy) and are

defined by

bi(u) = 2 + ci arctan(75(u− 0.5))

for i = 0, 1, 2, where c0 = 0, c1 = 0.1 and c2 = 0.2. As before, we additionally consider

a parameter function with a structural break. In particular, since b2(0) ≈ 1.7 and

b2(1) ≈ 2.3, we work with the jump function

b3(u) = 1.7I(u ≤ 0.5) + 2.3I(u > 0.5).

By Theorem 3.2 in Vogt (2012), the autoregressive process (9) with the regression

function mNL
i is locally stationary for i = 0, 1, 2. Note that the function mNL

i (u, y)

only differs from the sine curve bi(u) sin(0.5πy) in the tail region where |y| > (4k+1).

Clearly, if k is sufficiently large, then the autoregressive process {Yt,T} will basically

never wander into this region (at least not for any practically relevant sample size).

We can thus regard the function mNL
i (u, y) in the simulated model as being equal to

the sine curve bi(u) sin(0.5πy).

In what follows, we denote the model with the regression function mL
i by (ML

i ) and anal-

ogously use the label (MNL
i ) for the model with the function mNL

i . In (ML
0 ) and (MNL

0 ),

the regression function is time-invariant over the whole sample, whereas in the other

models it varies over time, the time-variation in (ML
2 ) and (MNL

2 ) being stronger than

in (ML
1 ) and (MNL

1 ), respectively. The models (ML
0 ) and (MNL

0 ) allow us to investigate

the behaviour of the bootstrap test under the null hypothesis, whereas the other models

show how the bootstrap works on different alternatives.

For each model, we draw N = 1000 samples of length T = 1000 and produce B =

1000 bootstrap replications for each sample. The time span I of interest is chosen as

[0.2, 0.3]∪[0.7, 0.8]. To produce the simulation results, we use Nadaraya-Watson smoothers

with an Epanechnikov kernel. Both in the linear and nonlinear settings, we choose the

bandwidth in time direction to equal 0.15 and the bandwidth in the direction of the

regressor Yt−1,T to equal 0.75. To check the robustness of our results, we have varied the

bandwidth in time direction between 0.1 and 0.2 and the bandwidth in the direction of

Yt−1,T between 0.5 and 1.0. As this yields very similar results, we do not report them

here. The bandwidth g must converge to zero more slowly than h from a theoretical

perspective. However, as long as the order of h is between O(T−(1/4−δ)) and O(T−(1/5+δ)),

we may pick any bandwidth g with h/g → 0. Hence, g may differ from h only slightly

12



and converge to zero almost as quickly. In the simulations, we ignore this technicality and

simply set g = h. Finally, let q and q be the 5% and 95% quantiles of the process {Yt,T}
in model (ML

0 ) or in model (MNL
0 ), depending on whether we consider the linear or the

nonlinear simulation setup. The weight function π is chosen as π(x) = I(x ∈ [q, q]). We

thus ignore the extreme tails of the process {Yt,T} to avoid boundary effects.

nominal size actual size

0.05 0.06

0.10 0.12

0.15 0.17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal size

ac
tu

al
 s

iz
e

Figure 1: Comparison of nominal and actual size in model (ML
0 ). The dashed line in the right-

hand figure gives the actual size of the bootstrap test in (ML
0 ) for each nominal level with target

indicated as a solid line.

We now turn to the simulation results. To start with, we report the results for the linear

model setup. The left-hand table of Figure 1 gives the actual size of the bootstrap test

in model (ML
0 ) for the most common nominal levels 0.05, 0.10 and 0.15. The plot on the

right-hand side is a graphical presentation of the relationship between nominal and actual

levels. It shows that the actual levels are very stable around the nominal ones.

nominal power power power

size in (ML
1 ) in (ML

2 ) in (ML
3 )

0.05 0.69 0.94 1.0

0.10 0.78 0.99 1.0

0.15 0.83 0.99 1.0
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Figure 2: Estimated power in the models (ML
1 ), (ML

2 ) and (ML
3 ). The dashed line in the right-

hand plot is the size-power curve for (ML
1 ), the long-dashed line is the one for (ML

2 ), and the

dotted line corresponds to (ML
3 ).
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The power results in (ML
1 ), (ML

2 ) and (ML
3 ) are summarized in Figure 2. The table on

the left-hand side reports the estimated power of the bootstrap test for different nominal

levels. A graphical illustration of the power is given by the size-power curves in the right-

hand plot. Overall, the test appears to have good power against the chosen alternatives.

One can nicely see that the power increases as we move from model (ML
1 ) to (ML

2 ), i.e.,

as we move further away from the null hypothesis of time-invariance on the time span

I. Moreover, the results for (ML
3 ) suggest that the test does not only have good power

against smooth alternatives but also against sudden structural breaks.

The results in Figures 1 and 2 were generated as follows: Let ST,n be the value of the

test statistic ST in the n-th simulated sample. Moreover, let S∗T,n,b be the value of the

bootstrap statistic S∗T in the b-th bootstrap sample generated from the n-th simulation.

Finally, denote by F ∗n the empirical distribution function calculated from the sample of

bootstrap values {S∗T,n,b}Bb=1. With these definitions at hand, we proceed as follows: (1)

Fix a nominal level α. (2) For each simulated sample n, calculate the (1 − α)-quantile

q∗α,n of F ∗n . (3) Compute the actual level and power corresponding to the nominal level α

as 1
N

∑N
n=1 I(ST,n > q∗α,n).

nominal size actual size

0.05 0.07

0.10 0.13

0.15 0.18

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal size

ac
tu

al
 s

iz
e

Figure 3: Comparison of nominal and actual size in model (MNL
0 ). The dashed line in the

right-hand figure gives the actual size of the bootstrap test in (MNL
0 ) for each nominal level

with target indicated as a solid line.

We now turn to the simulation results for the nonlinear model specifications. Figure 3

summarizes the behaviour of the bootstrap test in the setting (MNL
0 ). As can be seen, the

actual levels approximate the nominal ones fairly accurately. The power properties in the

settings (MNL
1 ), (MNL

2 ) and (MNL
3 ) are presented in Figure 4. As in the linear setup, our

method appears to have good power both against smooth and non-smooth alternatives.

Even in model (MNL
1 ) where the parameter function b1 varies over time only slightly, it

detects the time-variation in the regression function reasonably well.

Overall, the simulation results suggest that the proposed bootstrap procedure has good

size and power properties. The bootstrap thus provides an accurate way to calculate

critical values of the test in practice.
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nominal power power power

size in (MNL
1 ) in (MNL

2 ) in (MNL
3 )
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0.10 0.47 0.95 0.94

0.15 0.56 0.97 0.96
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Figure 4: Estimated power in the models (MNL
1 ), (MNL

2 ) and (MNL
3 ). The dashed line in the

right-hand plot is the size-power curve for (MNL
1 ), the long-dashed line is the one for (MNL

2 ),

and the dotted line corresponds to (MNL
3 ).

6 Application

We now apply our bootstrap procedure to a sample of financial volatility data. In partic-

ular, we consider the daily volatilities of the S&P 500 index. As a daily volatility measure,

we use the so-called high-low range which is defined as the difference between the highest

and lowest logarithmic price of a day. Alternatively, we could base our analysis on other

volatility measures such as realized volatility. The high-low range has a long history in

finance and has been employed in a variety of studies such as Schwert (1990), Alizadeh

et al. (2002) and Martens & van Dijk (2007). As in many other papers, we work with the

logarithmic transform of the high-low range. Our sample of logarithmic range data spans

the period from 01/2000 to 12/2010 and is depicted in the left-hand panel of Figure 5.

The right-hand panel provides some descriptive statistics. As can be seen, the data are

slightly skewed and exhibit a moderate amount of kurtosis.

2000 2002 2004 2006 2008 2010

−
6

−
5

−
4

−
3

Mean: -4.36

Median: -4.38

Variance: 0.36

Skewness: 0.24

Kurtosis: 3.15

Figure 5: The left-hand panel shows the logarithmic daily high-low range of the S&P 500 index;

the right-hand panel summarizes some descriptive statistics.

In recent years, a wide range of AR-type models have been proposed to model the daily

time series dynamics of volatility measures such as realized volatility or the high-low range.
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As most volatility measures are characterized by slowly decaying sample autocorrelations,

long-memory models like ARFIMA have been employed quite frequently; see Andersen et

al. (2003) and Pong et al. (2004) among others. However, as pointed out for example in

Mikosch & Stărică (2004), the long-memory behaviour may be spuriously generated by

structural change in the volatility process. This has led several authors to use AR-type

models with time-varying parameters for modelling volatility; see e.g. Chen et al. (2010).

Related time-varying volatility models have been proposed in Spokoiny (2009), Mercurio

& Spokoiny (2004), Č́ıžek et al. (2009) and Härdle et al. (2012) among others.

Following the above considerations, we set up an autoregressive model with a time-varying

regression function to capture the dynamics of daily volatility. Letting rt,T denote the

logarithm of the daily range, we consider the model

rt,T = m0

( t
T

)
+m1

( t
T
, rt−1,T

)
+ εt,T , (10)

where E[εt,T |rt−1,T ] = 0 and m0(
t
T

) = E[rt,T ] is the unconditional mean. The function m1

in model (10) describes the volatility dynamics apart from level shifts, which are captured

by the mean function m0. We are interested in the question whether m0 and m1 vary over

time. To test for time-invariance of m0, a standard test for parameter stability may be

used. For this reason, we restrict attention to the function m1. To test for time-invariance

of m1, we modify our procedure as follows: Rewrite (10) as

rct,T = m1

( t
T
, rt−1,T

)
+ εt,T , (11)

where rct,T = rt,T −m0(
t
T

) is the demeaned version of rt,T . If the demeaned variables rct,T
were known, we could simply apply our procedure to the sample {rct,T , rt−1,T}. However,

as the variables rct,T are in fact unknown, we replace them by estimates r̂ct,T and then apply

our approach to the sample {r̂ct,T , rt−1,T}. Here, we let r̂ct,T = rt,T − m̂0,h(
t
T

) and use the

kernel average m̂0,h(u) = 1
T

∑T
t=1Kh(u− t

T
)rt,T to estimate the mean function m0 at the

time point u. Moreover, the function m1 is estimated by a Nadaraya-Watson smoother

m̂1,h calculated from the sample {r̂ct,T , rt−1,T}. This slightly modified approach has very

similar asymptotic properties as those discussed in the previous sections. In particular,

the wild bootstrap is still consistent. The details are given in Subsection 7.1.

We now apply model (11) to the sample of daily range data from Figure 5 and use our

bootstrap procedure to test for time-invariance of the function m1. As a first example,

we check whether the function has the same shape within two different time periods in

our sample, a period shortly after the technology bubble burst (08/2000 – 01/2001) and

a period at the beginning of the recent financial crisis (08/2007 – 01/2008). Figure 6

shows the estimates of m1 within these two periods. As can be seen, the fits are fairly

stable within each of the two time intervals. Our bootstrap test confirms this impression.

Applying it to each of the two intervals separately, we find a p-value roughly between 0.2

and 0.7 for a wide range of different bandwidths. This is strong evidence that the function

m1 is time-invariant within each of the two periods.
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Figure 6: Estimates of the time-varying function m1. The left panel shows the estimates for

the time span 08/2000 – 01/2001, the right one gives the estimates for the period 08/2007 –

01/2008.

We now tackle the question whether the function m1 has the same shape within both

time periods. Let IA, IB ⊂ [0, 1] be the two rescaled time intervals that correspond to

the periods 08/2000 – 01/2001 and 08/2007 – 01/2008, respectively. Given that m1 is

time-invariant within each of the intervals IA and IB, we can estimate it on Ik (k = A,B)

by the averaged smoother m̃
(k)
1,h(x) :=

∫
Ik
m̂1,h(u, x)du/

∫
Ik
du. To get a first impression of

how different the function m1 is on the two intervals IA and IB, we plot m̃
(A)
1,h and m̃

(B)
1,h

in Figure 7.
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Figure 7: Averaged estimates m̃
(A)
1,h (dashed line) and m̃

(B)
1,h (solid line) for the two time periods

08/2000 – 01/2001 and 08/2007 – 01/2008. The grey shaded areas are the corresponding 95%

pointwise confidence intervals.

The two fits in Figure 7 have a similar shape and pointwise confidence bands which

strongly overlap. However, there are also clear differences between them and regions
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where the confidence intervals are separated. To clarify whether the differences between

the two fits are due to estimation error or to a structural change in the function m1, we

apply our bootstrap procedure to the union of the two intervals IA and IB. The estimated

p-values for a variety of different bandwidths are summarized in Table 1.

hu
hx 0.25 0.3 0.35 0.4 0.45 0.5

60 days 0.42 0.41 0.38 0.35 0.35 0.29

80 days 0.53 0.51 0.47 0.43 0.42 0.37

100 days 0.59 0.47 0.47 0.43 0.40 0.34

120 days 0.50 0.46 0.37 0.36 0.34 0.29

Table 1: Estimated p-values for testing the hypothesis that the function m1 is time-invariant

on IA ∪ IB. hu is the bandwidth in time direction, hx the bandwidth in the direction of the

covariate.

The p-values in Table 1 lie in the region between 0.29 and 0.59. Thus, the bootstrap

test does not reject the null hypothesis of stability at the usual significance levels. This is

evidence that the function m1 in our volatility model has the same shape on both intervals

IA and IB, i.e., both when the technology bubble burst and when the recent financial crisis

broke out.

As a second example, we test whether the function m1 in model (11) is time-invariant over

the last six months of 2008. This is a fairly turbulent time period, which in particular

includes the bankruptcy of Lehman Brothers. Table 2 presents the estimated p-values of

our procedure for a number of different bandwidths.

hu
hx 0.25 0.3 0.35 0.4 0.45 0.5

60 days 0.000 0.000 0.006 0.026 0.067 0.160

80 days 0.000 0.000 0.005 0.006 0.009 0.038

100 days 0.002 0.005 0.009 0.007 0.013 0.022

120 days 0.004 0.010 0.016 0.016 0.015 0.008

Table 2: Estimated p-values for testing the hypothesis that the function m1 is time-invariant

over the last six months of 2008. hu is the bandwidth in time direction, hx the bandwidth in

the direction of the covariate.

As can be seen, the p-values all lie below 0.16, most of them taking values smaller than

0.05. Hence, our bootstrap test provides strong evidence against the null hypothesis,

suggesting that the function m1 is time-varying in the period around the bankruptcy of

Lehman Brothers.
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7 Concluding Remarks

In this paper, we have developed a nonparametric procedure to test whether the time-

varying regression function in model (1) has the same shape over a time period I ⊂ [0, 1].

In our theoretical analysis, we have examined the asymptotic behaviour of the proposed

approach. In particular, we have shown that after subtracting a bias term that diverges

to infinity, the test statistic weakly converges to a normal distribution (both under the

null and under local alternatives). To improve the small sample behaviour of the test,

we have set up a wild bootstrap procedure and have shown that it is consistent. Our

procedure may be extended in various directions. We close the paper by outlining some

of them.

7.1 A Modified Version of the Test

When our test rejects the null, this is evidence for time-variation in the function m. The

test being very general, it however remains silent about which features of the function are

time-varying. In particular, the variation may stem from a simple unconditional mean

shift, or it may be due to changes in more subtle features of the function. In what follows,

we explain how to modify our approach to make it a bit more informative about which

aspects of the function are changing over time.

In a first step, we reformulate model (1). Letting m0(
t
T

) := E[Yt,T ] = E[m( t
T
, Xt,T )] be

the unconditional mean function, we can rewrite (1) as

Yt,T = m0

( t
T

)
+m1

( t
T
,Xt,T

)
+ εt,T , (12)

where m1(u, x) := m(u, x) −m0(u) and by construction E[m1(
t
T
, Xt,T )] = 0 for all time

points t. We thus split up the regression function m into two components: the uncon-

ditional mean m0 and its “demeaned” version m1. Given the formulation (12) of our

model, we may now test separately whether the functions m0 and m1 are changing over

time. This allows us to distinguish simple mean shifts from time-variations in more subtle

aspects of the regression function.

To test whether m0 is changing over time, a simplified version of our test statistic may be

employed which measures an L2-distance between kernel estimators of m0. Alternatively,

one of the many tests for parameter stability may be used. To test whether m1 is time-

varying, we adapt our test statistic to the situation at hand: Let the mean function m0

be estimated by the kernel average

m̂0,h(u) =
1

T

T∑
t=1

Kh

(
u− t

T

)
Yt,T

and let Ŷ c
t,T = Yt,T − m̂0,h(

t
T

) be the approximately demeaned version of Yt,T . Based on

the sample {Ŷ c
t,T , Xt,T}, we then construct the Nadaraya-Watson smoother

m̂1,h(u, x) =

∑T
t=1Kh(u− t

T
)
∏d

j=1Kh(x
j −Xj

t,T )Ŷ c
t,T∑T

t=1Kh(u− t
T

)
∏d

j=1Kh(xj −Xj
t,T )
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to estimate the function m1. Replacing the estimator m̂h in the test statistic ST by m̂1,h,

we obtain the modified statistic

ScT = Th
d+1
2

∫
I×I

(∫ [
m̂1,h(u, x)− m̂1,h(v, x)

]2
π(x)dx

)
dudv.

Analogously as in Section 4.3, we can set up a wild bootstrap version of ScT . Slightly

abusing notation, we let the bootstrap sample be given by {Y ∗t,T , Xt,T}Tt=1 with

Y ∗t,T = m̂0,g

( t
T

)
+ m̃1,g(Xt,T ) + ε∗t,T ,

where the bootstrap residuals are the same as in Section 4.3 and we define m̃1,g(x) =∫
m̂1,g(u, x)ω(u)du/

∫
ω(u)du. The bootstrap statistic Sc,∗T is now constructed from the

sample {Y ∗t,T , Xt,T}Tt=1 in the same way as ScT from the original data.

The statistic ScT and its bootstrap counterpart Sc,∗T have very similar asymptotic properties

as the statistics ST and S∗T . In particular, under the null that m1 is time-invariant over

the time span I, it holds that

ScT −Bc
T

d−→ N(0, V ), (13)

where V is the variance expression defined in Section 4.2 and Bc
T is a slightly modified

version of the bias term BT . In particular, Bc
T = Bc

T,1 + Bc
T,2 + Bc

T,3, where Bc
T,1 has

exactly the same form as BT with m being replaced by m1. Moreover,

Bc
T,2 = Th

d+1
2

∫ ∫
1

T 2

T∑
s,t=1

wu,s,Twu,t,TE
[(
εs,T +m1

( s
T
,Xs,T

))
×
(
εt,T +m1

( t
T
,Xt,T

))]π(x)ω(u)

f 2(u, x)
dxdu

Bc
T,3 = Th

d+1
2

∫ ∫
1

T 2

T∑
s,t=1

Ku,s,Twu,t,TE
[
Kx,s,T εs,T

(
εt,T +m1

( t
T
,Xt,T

))]π(x)ω(u)

f 2(u, x)
dxdu,

where wu,t,T = 1
T

∑T
s=1Ku,s,TK s

T
,t,T and we use the shorthands Ku,t,T = Kh(u− t

T
) as well

as Kx,t,T =
∏d

j=1Kh(x
j − Xj

t,T ). The additional bias components Bc
T,2 and Bc

T,3 result

from the fact that we approximate the trend function m0 by the smoother m̂0,h in the

test statistic. Importantly, they are at most of the order O(h
d−1
2 log T ) and thus of much

smaller order than the leading bias ScT,1. In addition to the distribution result (13), the

wild bootstrap can again be shown to be consistent,

Sc,∗T −B
c
T

d−→ N(0, V ) (14)

conditional on the sample {Yt,T , Xt,T}Tt=1 with probability tending to one both under the

null and under alternatives. The results (13) and (14) essentially follow from the proofs

of Theorems 4.1 and 4.4. Specifically, ScT and Sc,∗T can be seen to consist of the same

components as ST and S∗T together with some additional terms, which can be analyzed

by slightly modifying the arguments from the proofs.
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7.2 Structural Breaks

The theoretical results of the paper have been derived under the assumption that the

function m varies smoothly over time. An interesting issue is whether our procedure is

not only able to detect smooth changes but also sudden breaks in m. To clarify this

issue, let m have a break at the time point u0 ∈ (0, 1) and assume for simplicity that

it is time-invariant otherwise. Moreover, let I ⊂ (0, 1) be a time period whose interior

contains the time point u0. We now use our procedure to test whether m is time-invariant

within the period I. To do so, let I1 = I \ [u0 − C1h, u0 + C1h] and write

ST (J) = Th
d+1
2

∫
J×J

(∫ [
m̂h(u, x)− m̂h(v, x)

]2
π(x)dx

)
dudv

for any time period J ⊂ [0, 1]. Noting that ST (I) ≥ ST (I1), we get

(Th
d+1
2 )−1

(
ST (I)−BT (I)

)
= (Th

d+1
2 )−1ST (I) + op(1)

≥ (Th
d+1
2 )−1ST (I1) + op(1), (15)

where BT (I) is the bias term that corresponds to the statistic ST (I). Furthermore, using

the arguments from the proof of Theorems 4.1–4.3, it is easy to see that

(Th
d+1
2 )−1ST (I1)

P−→
∫
I×I

(∫ [
m(u, x)−m(v, x)

]2
π(x)dx

)
dudv > 0. (16)

Combining (15) and (16) immediately yields that our test is consistent against breaks

of fixed size. To get a better idea of the power of the test in the presence of breaks,

one should also analyze its behaviour in situations where the function m has a break of

shrinking size. As far as we can see, this can however not be done by a straightforward

modification of our proofs but requires substantially new and different arguments.

7.3 Additive Models

Our procedure being fully nonparametric, it suffers from the curse of dimensionality:

When the dimension d of the covariates is large, the convergence rates of the Nadaraya-

Watson smoothers are rather slow resulting in a poor behaviour of the test statistics.

One way to circumvent the curse of dimensionality is to put a bit of structure on the

regression function m. In particular, one may assume that it splits up into time-varying

additive components, thus yielding the model

Yt,T = m0

( t
T

)
+

d∑
j=1

mj

( t
T
,Xj

t,T

)
+ εt,T . (17)

The component functions mj in (17) can be estimated by smooth backfitting methods as

introduced in Mammen et al. (1999). As shown in Vogt (2012), the resulting estimators

uniformly converge to the true component functions at the usual two-dimensional non-

parametric rate, no matter how large the full dimension d. Thus, the convergence rate

does not deteriorate as the dimension grows.
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To cope with the case of high dimensions d, it would be useful to extend our testing theory

to the additive setting (17). In particular, we would like to test (i) whether the additive

regression function m(u, x) = m0(u) +
∑d

j=1mj(u, x
j) as a whole varies over time and (ii)

whether a specific component function mj(u, x
j) is time-varying. Even though it is by

no means trivial to extend our theory to tackle these issues, it may be possible to do so

along the following lines: Mammen & Park (2005) have derived stochastic higher-order

expansions for smooth backfitting estimators in an i.i.d. setting. These expansions link

the backfitting estimators to the underlying Nadaraya-Watson smoothers which are used

as pilot estimates in the algorithm. We conjecture that similar higher-order expansions

may be derived in the setup (17) and that it is possible to extend our proofs with the

help of these expansions.

A Appendix

In what follows, we prove Theorems 4.1–4.3 and 4.4. Throughout the appendix, we use

the symbol C to denote a universal real constant which may take a different value on each

occurrence.

Auxiliary Results

To analyze the asymptotic behaviour of the test statistic ST , we need some results on

uniform convergence of the Nadaraya-Watson estimator m̂h. To formulate these results,

we split up the expression m̂h(u, x)−m(u, x) into different components according to

m̂h(u, x)−m(u, x) =
1

f̂h(u, x)

(
ĝVh (u, x) + ĝBh (u, x)

)
with

f̂h(u, x) =
1

T

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )

ĝVh (u, x) =
1

T

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )εt,T

ĝBh (u, x) =
1

T

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )
[
m
( t
T
,Xt,T

)
−m(u, x)

]
.

The following two lemmas summarize the convergence behaviour of these three compo-

nents.

Lemma A1. Let (C1)–(C7) be fulfilled. Then

sup
u∈[0,1],x∈S

∣∣f̂h(u, x)− E[f̂h(u, x)]
∣∣ = Op

(√ log T

Thd+1

)
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sup
u∈[0,1],x∈S

∣∣ĝBh (u, x)− E
[
ĝBh (u, x)

]∣∣ = Op

(√ log T

Thd−1

)
sup

u∈[0,1],x∈S

∣∣ĝVh (u, x)
∣∣ = Op

(√ log T

Thd+1

)
,

where the compact set S ⊂ Rd has been defined in (C5).

Lemma A2. Let (C1)–(C7) be fulfilled and let Ih = [C1h, 1− C1h]. Then

sup
u∈Ih,x∈S

∣∣E[f̂h(u, x)]− f(u, x)
∣∣ = O

(
hr +

1

Thd+1

)
sup

u∈Ih,x∈S

∣∣E[ĝBh (u, x)]
∣∣ = O

(
hr +

1

Thd

)
.

Combining these two lemmas immediately yields the following result.

Lemma A3. Let (C1)–(C7) be fulfilled and let Ih = [C1h, 1− C1h]. Then

sup
u∈Ih,x∈S

∣∣f̂h(u, x)− f(u, x)
∣∣ = Op

(√ log T

Thd+1
+ hr

)
sup

u∈Ih,x∈S

∣∣m̂h(u, x)−m(u, x)
∣∣ = Op

(√ log T

Thd+1
+ hr

)
.

Lemmas A1–A3 directly follow from the results in Vogt (2012).

Proof of Theorems 4.1–4.3

In what follows, we give the proof of Theorem 4.3. Theorem 4.1 is obtained by setting

the function ∆ equal to zero in the proof. Some straightforward additional considerations

yield Theorem 4.2.

Using the shorthands Ku,t,T = Kh(u− t
T

) and Kx,t,T =
∏d

j=1Kh(x
j−Xj

t,T ), we can rewrite

the statistic ST as

ST = Th
d+1
2

∫
I×I

(∫ [
VT (u, v, x) +BT (u, v, x)

]2
π(x)dx

)
dudv

with

VT (u, v, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T εt,T

/
f̂h(u, x)

− 1

T

T∑
t=1

Kv,t,TKx,t,T εt,T

/
f̂h(v, x)

BT (u, v, x) =
1

T

T∑
t=1

Ku,t,TKx,t,TmT

( t
T
,Xt,T

)/
f̂h(u, x)

− 1

T

T∑
t=1

Kv,t,TKx,t,TmT

( t
T
,Xt,T

)/
f̂h(v, x).

Theorem 4.3 immediately follows from the following three lemmas.
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Lemma A4. Under (C1)–(C7), it holds that

Th
d+1
2

∫
I×I

(∫
V 2
T (u, v, x)π(x)dx

)
dudv − 2(BT,1 −BT,2)

d−→ N
(
0, V

)
.

Lemma A5. Under (C1)–(C7), it holds that

Th
d+1
2

∫
I×I

(∫
BT (u, v, x)VT (u, v, x)π(x)dx

)
dudv = op(1).

Lemma A6. Under (C1)–(C7), it holds that

Th
d+1
2

∫
I×I

(∫
B2
T (u, v, x)π(x)dx

)
dudv = ∆I + 2(BT,3 −BT,4) + op(1)

with ∆I =
∫
I×I(

∫
[∆(u, x)−∆(v, x)]2π(x)dx)dudv.

We now give the proofs of the above lemmas. Throughout, we use the notation

ΛT,1(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T εt,T

ΛT,2(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T∆t,T (u, x)

ΛT,3(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T∆
( t
T
,Xt,T

)
with ∆t,T (u, x) = m( t

T
, Xt,T )−m(u, x).

Proof of Lemma A4. Let

UT = Th
d+1
2

∫
I×I

(∫
V 2
T (u, v, x)π(x)dx

)
dudv.

Using the shorthand λI =
∫
ω(ϕ)dϕ, we obtain that UT = 2(UT,1 − UT,2) with

UT,1 = λITh
d+1
2

∫
I

(∫
Λ2
T,1(u, x)

π(x)

f̂ 2
h(u, x)

dx
)
du

UT,2 = Th
d+1
2

∫
I×I

(∫
ΛT,1(u, x)ΛT,1(v, x)

π(x)

f̂h(u, x)f̂h(v, x)
dx
)
dudv.

In what follows, we show that

UT,1 −BT,1
d−→ N(0, V1) (18)

UT,2 −BT,2 = op(1) (19)

with V1 = V/4. Combining (18) and (19) completes the proof. To show (18), we split up

UT,1 into two parts according to

UT,1 = UB
T,1 + UV

T,1 + op(1)
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with

UB
T,1 =

λIh
d+1
2

T

∫
I

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε2t,Tdu

UV
T,1 =

λIh
d+1
2

T

∫
I

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,T

(∫
Kx,t,TKx,s,T

π(x)

f 2(u, x)
dx
)
εt,T εs,Tdu,

where we have used the uniform convergence results of Lemmas A1–A3 to replace the

kernel density f̂h(u, x) by the true density f(u, x). In the sequel, we show that

UB
T,1 = BT,1 + op(1) (20)

(V1)
−1/2UV

T,1
d−→ N(0, 1). (21)

This immediately yields (18). To prove (19), we analogously decompose UT,2 into two

parts, UT,2 = UB
T,2+UV

T,2+op(1), and show that UB
T,2 = BT,2+op(1) as well as UV

T,2 = op(1).

This can be done by repeating part of the arguments used to show (20) and (21).

Proof of (20). It suffices to show that Var(UB
T,1) = o(1) and E[UB

T,1] = BT,1 + o(1). The

first claim easily follows by exploiting the mixing conditions on the model variables. To

prove the second claim, we proceed as follows: To start with, we successively replace Xt,T

with the approximating variables Xt(
t
T

), using the fact that ‖Xt,T −Xt(u)‖ ≤ (| t
T
− u|+

1
T

)Ut,T (u). This can be achieved by the same techniques as in the proof of Theorem 4.2

in Vogt (2012), which yield that

E[UB
T,1] =

λIh
d+1
2

T

∫
I

T∑
t=1

K2
u,t,TE

[( ∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
σ2
( t
T
,Xt,T

)]
du

=
λIh

d+1
2

T

∫
I

T∑
t=1

K2
u,t,TE

[( ∫ d∏
j=1

K2
h

(
xj −Xj

t

( t
T

))
× π(x)

f 2(u, x)
dx
)
σ2
( t
T
,Xt

( t
T

))]
du+ o(1)

=
λIh

d+1
2

T

∫
I

T∑
t=1

K2
u,t,T

∫ (∫ d∏
j=1

K2
h(xj − zj)

× σ2
( t
T
, z
)
f
( t
T
, z
)
dz
) π(x)

f 2(u, x)
dxdu+ o(1).

Next note that

1

T

T∑
t=1

K2
u,t,Tσ

2
( t
T
, z
)
f
( t
T
, z
)

=

∫
K2
h(u− w)σ2(w, z)f(w, z)dw +O

( 1

Th3

)
(22)

uniformly in u and z. This follows from the fact that the sum on the left-hand side can

be regarded as a Riemann approximation of the integral on the right. Exploiting the
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smoothness conditions on K, σ and f , the approximation error can be calculated to be

of the order (Th3)−1. With the help of (22), we finally arrive at

E[UB
T,1] = λIh

d+1
2

∫
I

∫ (∫∫
K2
h(u− w)

d∏
j=1

K2
h(xj − zj)

× σ2(w, z)f(w, z)dwdz
) π(x)

f 2(u, x)
dxdu+ o(1)

= BT,1 + o(1). �

Proof of (21). We rewrite UV
T,1 as

UV
T,1 =

T∑
t=1

Zt,T

with

Zt,T =
2λIh

d+1
2

T

∫
I

∑
s<t

Ku,t,TKu,s,T

(∫
Kx,t,TKx,s,T

π(x)

f 2(u, x)
dx
)
εt,T εs,Tdu.

Note that under (C6), {Zt,T ,Ft,T} with Ft,T = σ(Xt+1,T , Xt,T , εt,T , . . . , X1,T , ε1,T ) is a

martingale difference array. We can thus use a central limit theorem for martingale

difference arrays (in particular Theorem 1 in Chapter 8 of Pollard (1984)) to show that∑T
t=1 Zt,T is asymptotically normal. According to the theorem in Pollard (1984), it suffices

to verify the following conditions:

(CLT1)
∑T

t=1 E[Z4
t,T ]→ 0.

(CLT2)
∑T

t=1 E[Z2
t,T |Ft−1,T ]

P−→ V1.

This yields (21).

Proof of (CLT1). We can write

T∑
t=1

E[Z4
t,T ] =

16λ4IE[ε4t ]h
2d+2

T 4

∫∫ T∑
t=1

∑
(s,s′,s′′,s′′′)∈St

E
[
Wt,T (u, x)Ws,T (u, x)Ws′,T (u′, x′)

×Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′)
]π(x) . . . π(x′′′)ω(u) . . . ω(u′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxdu,

where St denotes the set of index tuples (s, s′, s′′, s′′′) with s, s′, s′′, s′′′ < t, ω(u) = I(u ∈ I),

u = (u, u′, u′′, u′′′) and x = (x, x′, x′′, x′′′). Moreover,

Wt,T (u, x) = Ku,t,TKu′,t,TKu′′,t,TKu′′′,t,TKx,t,TKx′,t,TKx′′,t,TKx′′′,t,T

(
σ2
( t
T
,Xt,T

))2
,

Ws,T (u, x) = Ku,s,TKx,s,T εs,T ,

and Ws′,T (u′, x′), Ws′′,T (u′′, x′′), Ws′′′,T (u′′′, x′′′) denote analogous expressions. We now

partition St into the subsets

S
(1)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices s, s′, s′′, s′′′ are all different}
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S
(2)
t =

{
(s, s′, s′′, s′′′) ∈ St | exactly two of the indices s, s′, s′′, s′′′ are the same}

S
(3)
t =

{
(s, s′, s′′, s′′′) ∈ St | exactly three of the indices s, s′, s′′, s′′′ are the same}

S
(4)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices s, s′, s′′, s′′′ are all the same}

S
(5)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices s, s′, s′′, s′′′ form two different pairs}

and write
T∑
t=1

E[Z4
t,T ] = Q

(1)
T + . . .+Q

(5)
T

with

Q
(i)
T =

16λ4IE[ε4t ]h
2d+2

T 4

∫∫ T∑
t=1

∑
(s,s′,s′′,s′′′)∈S(i)t

E
[
Wt,T (u, x)Ws,T (u, x)Ws′,T (u′, x′)

×Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′)
]π(x) . . . π(x′′′)ω(u) . . . ω(u′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxdu

for i = 1, . . . , 5. In what follows, we show that Q
(i)
T → 0 for i = 1, . . . , 5. To lay out

the proving strategy, we give a detailed account of the arguments for the term Q
(3)
T . The

other terms can be handled in an analogous way.

To analyze the term Q
(3)
T , we first have a closer look at the index set S

(3)
t . Because of

symmetry considerations, we can assume w.l.o.g. that s ≥ s′ ≥ s′′ ≥ s′′′. Given this, the

following two cases are possible:

(A) s = s′ = s′′ > s′′′ (B) s > s′ = s′′ = s′′′.

An index k is said to be separated from another index k′, if the two indices are further

away from each other than C2 log T for some large constant C2 <∞ to be specified later

on, i.e. |k− k′| > C2 log T . Using this definition, we can further split up case (A) into the

two subcases

(A1) s = s′ = s′′ > s′′′ and s′′′ is separated from s = s′ = s′

(A2) s = s′ = s′′ > s′′′ and s′′′ is not separated from s = s′ = s′.

Analogously, we can distinguish between the two subcases

(B1) s > s′ = s′′ = s′′′ and s is separated from t

(B2) s > s′ = s′′ = s′′′ and s is not separated from t.

Introducing the index sets

S
(3,A1)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices satisfy (A1)}

S
(3,A2)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices satisfy (A2)}

S
(3,B1)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices satisfy (B1)}

S
(3,B2)
t =

{
(s, s′, s′′, s′′′) ∈ St | the indices satisfy (B2)},
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we obtain that

Q
(3)
T = 4

(
Q

(3,A1)
T +Q

(3,A2)
T +Q

(3,B1)
T +Q

(3,B2)
T

)
,

where the terms Q
(3,k)
T are defined analogously as Q

(3)
T for k = A1, A2, B1, B2. We now

consider the terms Q
(3,k)
T one after the other.

(A1) As the model variables are mixing (with exponential decay) and s′′′ is separated

from s = s′ = s′′, we can use Davydov’s inequality (see e.g. Bosq (1998), Corollary

1.1) to get∣∣∣E[Wt,T (u, x)Ws,T (u, x)Ws′,T (u′, x′)Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′)
]∣∣∣

=
∣∣∣Cov

(
Wt,T (u, x)Ws,T (u, x)Ws′,T (u′, x′)Ws′′,T (u′′, x′′),Ws′′′,T (u′′′, x′′′)

)∣∣∣
≤ Cα(C2 log T )1−

1
4/3+δ

− 1
4+δ

(
E
∣∣Ws′′′,T (u′′′, x′′′)

∣∣4+δ) 1
4+δ

×
(
E
∣∣Wt,T (u, x)Ws,T (u, x)Ws′,T (u′, x′)Ws′′,T (u′′, x′′)

∣∣4/3+δ) 1
4/3+δ

≤ CT−C3 ,

where C3 is a large positive constant (which can be chosen as large as desired by

picking C2 large enough). This immediately yields that Q
(3,A1)
T ≤ CT−C4 with some

arbitrarily large constant C4. As a result, Q
(3,A1)
T → 0.

(A2) As s′′′ is not separated from s = s′ = s′′, the number of elements contained in the

index set S
(3,A2)
t is smaller than C log T for each given t, where C is a large positive

constant independent of t. From this, it is easy to infer that Q
(3,A2)
T ≤ C log T

T 2h2d+1 → 0.

Using analogous arguments as for (A1) and (A2), we further obtain that Q
(3,B1)
T → 0 and

Q
(3,B2)
T → 0. As a result, Q

(3)
T → 0.

Proof of (CLT2). To show (CLT2), it suffices to verify that∑T

t=1

(
E[Z2

t,T |Ft−1,T ]− E[Z2
t,T ]
) P−→ 0 (23)∑T

t=1
E[Z2

t,T ]→ V1. (24)

We first prove (23). Letting S be the set of index tuples

S =
{

(t, t′, s, s′, s′′, s′′′)
∣∣ 1 ≤ t, t′, s, s′, s′′, s′′′ ≤ T with s, s′ < t and s′′, s′′′ < t′

}
,

we can write

E
( T∑
t=1

(
E[Z2

t,T |Ft−1,T ]− E[Z2
t,T ]
))2

=
16λ4Ih

2d+2

T 4

∑
(t,t′,s,s′,s′′,s′′′)∈S

∫∫
Γt,t′,s,s′,s′′,s′′′(u, x)q(u, x)dudx,
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where we use the shorthands

q(u, x) =
π(x) . . . π(x′′′)ω(u) . . . ω(u′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)

and

Γt,t′,s,s′,s′′,s′′′(u, x) = E
[
Wt,T (u, u′, x, x′)Ws,T (u, x)Ws′,T (u′, x′)

×Wt′,T (u′′, u′′′, x′′, x′′′)Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′)
]

− E
[
Wt,T (u, u′, x, x′)Ws,T (u, x)Ws′,T (u′, x′)

]
× E

[
Wt′,T (u′′, u′′′, x′′, x′′′)Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′)

]
with

Wt,T (u, u′, x, x′) = Ku,t,TKu′,t,TKx,t,TKx′,t,Tσ
2
( t
T
,Xt,T

)
Ws,T (u, x) = Ku,s,TKx,s,T εs,T .

Similarly to the proof of (CLT1), we partition the index set S into different subsets. By

symmetry considerations, we can restrict attention to subsets with t ≥ t′, s ≥ s′, and

s′′ ≥ s′′′. Thus, the following cases are possible:

(A) t ≥ t′ ≥ s, s′, s′′, s′′′ (B) t > s > t′ ≥ s′, s′′, s′′′ (C) t > s, s′ ≥ t′ > s′′, s′′′.

Let S(i) ⊆ S be the subset of index combinations which fulfill the requirements of case

i ∈ {A,B,C} and write

Q
(i)
T =

16λ4Ih
2d+2

T 4

∑
(t,t′,s,s′,s′′,s′′′)∈S(i)

∫∫
Γt,t′,s,s′,s′′,s′′′(u, x)q(u, x)dudx.

To complete the proof of (23), we establish that Q
(i)
T → 0 for i = A,B,C. In what follows,

we give the details of the proof for case (A). The other cases can be handled by analogous

arguments.

To show that Q
(A)
T → 0, we first split up the case (A) into the following subcases:

(A1) t ≥ t′ ≥ s, s′, s′′, s′′′ and the indices s, s′, s′′, s′′′ are all different

(A2) t ≥ t′ ≥ s, s′, s′′, s′′′ and exactly two of the indices s, s′, s′′, s′′′ are the same

(A3) t ≥ t′ ≥ s, s′, s′′, s′′′ and exactly three of the indices s, s′, s′′, s′′′ are the same

(A4) t ≥ t′ ≥ s, s′, s′′, s′′′ the indices s, s′, s′′, s′′′ are all the same

(A5) t ≥ t′ ≥ s, s′, s′′, s′′′ the indices s, s′, s′′, s′′′ form two different pairs.

Letting S(Ak) and Q
(Ak)
T for k = 1, . . . , 5 be defined analogously as the expressions S(A)

and Q
(A)
T , it suffices to show that Q

(Ak)
T → 0 for k = 1, . . . , 5. We start with (A1):

(A1) By definition of case (A1), the term Q
(A1)
T only contains elements whose indices s,

s′, s′′, s′′′ are all different. Without loss of generality, we can assume that t ≥ t′ ≥
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s > s′ > s′′ > s′′′. As in the proof of (CLT1), we say that an index k is separated

from another index k′ if |k − k′| > C2 log T for some sufficiently large constant C2.

With this notation at hand, we can distinguish between the following situations:

(A1-1) the indices fulfill (A1) and s, s′, s′′, s′′′ are all separated from t′

(A1-2) the indices fulfill (A1) and only s′, s′′, s′′′ are separated from t′

(A1-3) the indices fulfill (A1) and only s′′, s′′′ are separated from t′

(A1-4) the indices fulfill (A1) and only s′′′ is separated from t′

(A1-5) the indices fulfill (A1) and none of s, s′, s′′, s′′′ is separated from t′

In the case (A1-1), we can apply Davydov’s inequality to get∣∣Γt,t′,s,s′,s′′,s′′′(u, x)
∣∣ =

∣∣Cov
(
Wt,T (u, u′, x, x′)Wt′,T (u′′, u′′′, x′′, x′′′),

Ws,T (u, x)Ws′,T (u′, x′)Ws′′,T (u′′, x′′),Ws′′′,T (u′′′, x′′′)
)

− Cov
(
Wt,T (u, u′, x, x′),Ws,T (u, x)Ws′,T (u′, x′)

)
× E

[
Wt′,T (u′′, u′′′, x′′, x′′′)Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′)

]∣∣
≤ CT−C3 ,

where C3 is a large positive constant (which can be chosen as large as desired

by picking C2 large enough). This immediately shows that the sum of terms

Γt,t′,s,s′,s′′,s′′′(u, x) whose indices s, s′, s′′, s′′′ are separated from t′ can be asymptot-

ically ignored, or put differently, Q
(A1-1)
T → 0. By the same token, we obtain that

Q
(A1-k)
T → 0 for k = 2, 3, 4. It thus remains to show that Q

(A1-5)
T → 0. As none of

the indices s, s′, s′′, s′′′ is separated from t′ in the case (A1-5), the index set S(A1-5)

contains at most CT 2(log T )4 terms. Using this fact and bounding the elements of

Q
(A1-5)
T in an obvious way gives that Q

(A1-5)
T → 0. As a result, we arrive at Q

(A1)
T → 0.

Making use of the same techniques as above, we further obtain that Q
(Ak)
T → 0 for

k = 2, 3, 4. To cope with the term Q
(A5)
T , some additional arguments are needed:

(A5) By definition of (A5), the indices s, s′, s′′, s′′′ form two pairs. More precisely, two

different situations are possible: (i) s = s′ and s′′ = s′′′ or (ii) s = s′′ and s′ = s′′′.

We partition (A5) into these two subcases which are denoted by (A5-1) and (A5-2),

respectively. First consider the subcase (A5-1). To keep the notation tractable, we

introduce the shorthands

ψt = Wt,T (u, u′, x, x′)

ψt′ = Wt′,T (u′′, u′′′, x′′, x′′′)

ψs,s′ = Ws,T (u, x)Ws′,T (u′, x′)

ψs′′,s′′′ = Ws′′,T (u′′, x′′)Ws′′′,T (u′′′, x′′′).
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With this, we can write

Γt,t′,s,s′,s′′,s′′′(u, x) = E[ψtψt′ψs,s′ψs′′,s′′′ ]− E[ψtψs,s′ ]E[ψt′ψs′′,s′′′ ]

= Cov(ψt, ψt′ψs,s′ψs′′,s′′′)− Cov(ψt, ψs,s′)E[ψt′ψs′′,s′′′ ]

+ E[ψt]Cov(ψt′ , ψs,s′ψs′′,s′′′)− E[ψt]E[ψs,s′ ]Cov(ψt′ , ψs′′,s′′′)

+ E[ψt]E[ψt′ ]Cov(ψs,s′ , ψs′′,s′′′),

i.e. we can reformulate Γt,t′,s,s′,s′′,s′′′(u, x) in terms of covariance expressions. This

allows us to employ the techniques from (A1) again. Specifically, we first consider the

case in which some of the indices are separated from each other and apply Davydov’s

inequality to show that this case is asymptotically negligible. In a second step, we

can then take for granted that these indices are not separated, which enables us to

bound the number of elements in the index set. Setting up the proof along these

lines, we arrive at Q
(A5-1)
T → 0.

We next turn to (A5-2). Similarly as above, we can write

Γt,t′,s,s′,s′′,s′′′(u, x)− E[ψt]E[ψt′ ]E[ψs,s′ψs′′,s′′′ ]

= Cov(ψt, ψt′ψs,s′ψs′′,s′′′)− Cov(ψt, ψs,s′)E[ψt′ψs′′,s′′′ ]

+ E[ψt]Cov(ψt′ , ψs,s′ψs′′,s′′′)

as well as

E[ψt]E[ψt′ ]E[ψs,s′ψs′′,s′′′ ]

= E
[
Wt,T (u, u′, x, x′)

]
E
[
Wt′,T (u′′, u′′′, x′′, x′′′)

]
× E

[
Ws,T (u, x)Ws′′,T (u′′, x′′)

]
E
[
Ws′,T (u′, x′)Ws′′′,T (u′′′, x′′′)

]
=: Γ∗t,t′,s,s′,s′′,s′′′(u, x).

The same reasoning as for (A5-1) yields that

Q
(A5-2)
T =

16λ4Ih
2d+2

T 4

∑
(t,t′,s,s′,s′′,s′′′)∈S(A5-2)

∫∫
Γ∗t,t′,s,s′,s′′,s′′′(u, x)q(u, x)dudx+ o(1).

Recalling that s = s′′ and s′ = s′′′ in case (A5-2), introducing the shorthand

κt,t′,s,s′ =

∫
. . .

∫ ∣∣Ku,t,TKu′,t,TKu′′,t′,TKu′′′,t′,T

×Ku,s,TKu′′,s,TKu′,s′,TKu′′′,s′,T

∣∣ω(u) . . . ω(u′′′)du,
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and without loss of generality assuming d = 1, we further obtain that∣∣∣ ∫∫ Γ∗t,t′,s,s′(u, x)q(u, x)dudx
∣∣∣

≤ Cκt,t′,s,s′

∫
. . .

∫ (∫
h−2
∣∣∣K(x− xt

h

)
K
(x′ − xt

h

)∣∣∣fXt,T (xt)dxt

)
×
(∫

h−2
∣∣∣K(x− xs

h

)
K
(x′′ − xs

h

)∣∣∣fXs,T (xs)dxs

)
×
(∫

h−2
∣∣∣K(x′′ − xt′

h

)
K
(x′′′ − xt′

h

)∣∣∣fXt′,T (xt)dxt′
)

×
(∫

h−2
∣∣∣K(x′ − xs′

h

)
K
(x′′′ − xs′

h

)∣∣∣fXs′,T (xt)dxs′
)

× π(x) . . . π(x′′′)dx . . . dx′′′

≤ Cκt,t′,s,s′

∫
. . .

∫ (∫
h−1
∣∣∣K(x− x′

h
+ ϕ

)
K(ϕ)

∣∣∣dϕ)
×
(∫

h−1
∣∣∣K(x− x′′

h
+ ϕ′

)
K(ϕ′)

∣∣∣dϕ′)
×
(∫

h−1
∣∣∣K(x′′ − x′′′

h
+ ϕ′′

)
K(ϕ′′)

∣∣∣dϕ′′)
×
(∫

h−1
∣∣∣K(x′ − x′′′

h
+ ϕ′′′

)
K(ϕ′′′)

∣∣∣dϕ′′′)
× π(x) . . . π(x′′′)dx . . . dx′′′

≤ Cκt,t′,s,s′

∫
. . .

∫ (∫ ∣∣K(ψ + ϕ)K(ϕ)
∣∣dϕ)

×
(∫

h−1
∣∣∣K(x′ − x′′

h
+ ψ + ϕ′

)
K(ϕ′)

∣∣∣dϕ′)
×
(∫ ∣∣K(ψ′ + ϕ′′)K(ϕ′′)

∣∣dϕ′′)
×
(∫

h−1
∣∣∣K(x′ − x′′

h
+ ψ′ + ϕ′′′

)
K(ϕ′′′)

∣∣∣dϕ′′′)
× dψdψ′π(x′)π(x′′)dx′dx′′

≤ Cκt,t′,s,s′h
−1.

In the general d-dimensional case, analogous calculations lead to the bound

Cκt,t′,s,s′h
−d. With the help of this bound, it is straightforward to show that

16λ4Ih
2d+2

T 4

∑
(t,t′,s,s′,s′′,s′′′)∈S(A5-2)

∫∫
Γ∗t,t′,s,s′,s′′,s′′′(u, x)q(u, x)dudx = o(1).

As a result, Q
(A5)
T → 0.

Putting everything together, we finally arrive at

E
( T∑
t=1

(
E[Z2

t,T |Ft−1,T ]− E[Z2
t,T ]
))2
→ 0,
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which implies (23).

Turning to the proof of (24), it holds that

T∑
t=1

E[Z2
t,T ] =

4λ2Ih
d+1

T 2

∫∫ T∑
t=1

∑
s,s′<t

Ku,t,TKu′,t,TKu,s,TKu′,s′,T

×
(∫∫

E
[
Kx,t,TKx′,t,T ε

2
t,TKx,s,TKx′,s′,T εs,T εs′,T

]
× π(x)π(x′)

f 2(u, x)f 2(u′, x′)
dxdx′

)
ω(u)ω(u′)dudu′.

Once more taking advantage of the mixing conditions and applying Davydov’s inequality,

it is seen that

T∑
t=1

E[Z2
t,T ] =

4λ2Ih
d+1

T 2

∫∫ T∑
t=1

∑
s<t

Ku,t,TKu′,t,TKu,s,TKu′,s,T

×
(∫∫

E
[
Kx,t,TKx′,t,T ε

2
t,T

]
E
[
Kx,s,TKx′,s,T ε

2
s,T

]
× π(x)π(x′)

f 2(u, x)f 2(u′, x′)
dxdx′

)
ω(u)ω(u′)dudu′ + o(1).

In a next step, we successively replace the nonstationary variables Xt,T by the approxi-

mations Xt(
t
T

). To do so, we apply the techniques from the proof of Theorem 4.2 in Vogt

(2012), which yield

T∑
t=1

E[Z2
t,T ]

=
4λ2Ih

d+1

T 2

∫∫ T∑
t=1

∑
s<t

Ku,t,TKu′,t,TKu,s,TKu′,s,T

×
(∫∫

E
[ d∏
j=1

Kh

(
xj −Xj

t

( t
T

)) d∏
j=1

Kh

(
(x′)j −Xj

t

( t
T

))
σ2
( t
T
,Xt

( t
T

))]
× E

[ d∏
j=1

Kh

(
xj −Xj

s

( s
T

)) d∏
j=1

Kh

(
(x′)j −Xj

s

( s
T

))
σ2
( s
T
,Xs

( s
T

))]
× π(x)π(x′)

f 2(u, x)f 2(u′, x′)
dxdx′

)
ω(u)ω(u′)dudu′ + o(1).

Exploiting the smoothness conditions on m, σ and the densities f in a standard way, we

can now infer that
∑T

t=1 E[Z2
t,T ] = V1 + o(1), thus completing the proof.

Proof of Lemma A5. First note that

1

T

T∑
t=1

Ku,t,TKx,t,TmT

( t
T
,Xt,T

)
= m(u, x)f̂h(u, x) + ΛT,2(u, x) + ΛT,3(u, x), (25)

since mT (w, z) = m(w, z) + cT∆(w, z) with m satisfying the null hypothesis. This allows
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us to write

Th
d+1
2

∫
I×I

(∫
BT (u, v, x)VT (u, v, x)π(x)dx

)
dudv

= 2
(
λIWT,1 −WT,2 + λIWT,3 −WT,4

)
+ op(1)

with

WT,1 = Th
d+1
2

∫
I

(∫
ΛT,1(u, x)ΛT,2(u, x)

π(x)

f 2(u, x)
dx
)
du

WT,2 = Th
d+1
2

∫
I×I

(∫
ΛT,1(u, x)ΛT,2(v, x)

π(x)

f(u, x)f(v, x)
dx
)
dudv

WT,3 = cTTh
d+1
2

∫
I

(∫
ΛT,1(u, x)ΛT,3(u, x)

π(x)

f 2(u, x)
dx
)
du

WT,4 = cTTh
d+1
2

∫
I×I

(∫
ΛT,1(u, x)ΛT,3(v, x)

π(x)

f(u, x)f(v, x)
dx
)
dudv,

where we have used the uniform convergence results from Lemmas A1–A3 to replace the

kernel density estimates f̂h(u, x) and f̂h(v, x) by the true densities f(u, x) and f(v, x).

We start by analyzing WT,1. As a first step, the term is split up into two components:

WT,1 = WB
T,1 +W V

T,1

with

WB
T,1 = Th

d+1
2

∫
I

∫
1

T 2

T∑
t=1

K2
u,t,TK

2
x,t,T εt,T∆t,T (u, x)

π(x)

f 2(u, x)
dxdu

W V
T,1 = Th

d+1
2

∫
I

∫
1

T 2

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,TKx,t,T εt,TKx,s,T∆s,T (u, x)
π(x)

f 2(u, x)
dxdu.

It is easy to see that E(WB
T,1)

2 ≤ C h2

Thd+1 → 0, which immediately implies that WB
T,1 =

op(1). To cope with the term W V
T,1, we further decompose it into two parts:

W V
T,1 = W V

T,1,a +W V
T,1,b

with

W V
T,1,a = Th

d+1
2

∫
I

∫
1

T 2

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,TKx,t,T εt,T

×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dxdu

W V
T,1,b = Th

d+1
2

∫
I

∫
1

T 2

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,TKx,t,T εt,T

× E[Kx,s,T∆s,T (u, x)]
π(x)

f 2(u, x)
dxdu.
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The second moment of W V
T,1,a is given by the expression

E(W V
T,1,a)

2 = T 2hd+1

∫
I×I

∫∫
1

T 4

T∑
t,t′=1

∑
s 6=t,s′ 6=t′

Ku,t,TKu,s,TKu′,t′,TKu′,s′,T

× E
[
Kx,t,T εt,T

(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

)
Kx′,t′,T εt′,T

(
Kx′,s′,T∆s′,T (u′, x′)− E[Kx′,s′,T∆s′,T (u′, x′)]

)]
× π(x)π(x′)ω(u)ω(u′)

f 2(u, x)f 2(u′, x′)
dxdx′dudu′.

Using similar techniques as in the proofs of (CLT1) and (CLT2), this expression can be

shown to converge to zero, which yields that W V
T,1,a = op(1). We next turn to the term

W V
T,1,b. It holds that

W V
T,1,b = Th

d+1
2

∫
I

(∫
ΛT,1(u, x)E

[
ΛT,2(u, x)

] π(x)

f 2(u, x)
dx
)
du+ op(1). (26)

Replacing the occurrences of Xt,T in E
[
ΛT,2(u, x)

]
by the approximating variables Xt(

t
T

)

analogously as in the proof of (20) yields that

E
[
ΛT,2(u, x)

]
=

1

T

T∑
t=1

Ku,t,T

∫ d∏
j=1

Kh(x
j − zj)

×
(
m
( t
T
, z
)
−m(u, x)

)
f
( t
T
, z
)
dz +O

( 1

Thd

)
uniformly in u and x. Next note that

1

T

T∑
t=1

Ku,t,T

(
m
( t
T
, z
)
−m(u, x)

)
f
( t
T
, z
)

=

∫
Kh(u− w)

(
m(w, z)−m(u, x)

)
f(w, z)dw +O

( 1

Th2

)
(27)

uniformly in u, x and z, which follows upon regarding the term on the left-hand side as

a Riemann sum. Using (27), we get

E
[
ΛT,2(u, x)

]
=

∫∫
Kh(u− w)

d∏
j=1

Kh(x
j − zj)

×
(
m(w, z)−m(u, x)

)
f(w, z)dwdz +O

( 1

Thd
+

1

Th2

)
.

Finally, exploiting the smoothness conditions on m and f together with the properties of

the higher-order kernels, standard arguments yield that

E
[
ΛT,2(u, x)

]
= O

(
hr +

1

Thd
+

1

Th2

)
(28)
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uniformly in u and x. We thus arrive at

E
(
Th

d+1
2

∫
I

∫
ΛT,1(u, x)E

[
ΛT,2(u, x)

] π(x)

f 2(u, x)
dxdu

)2
= T 2hd+1

∫
I×I

∫∫ ( 1

T 2

T∑
t=1

Ku,t,TKu′,t,TE
[
Kx,t,TKx′,t,T ε

2
t,T

])
× E

[
ΛT,2(u, x)

]
E
[
ΛT,2(u

′, x′)
] π(x)π(x′)

f 2(u, x)f 2(u′, x′)
dxdx′dudu′

= O
(
Thd+1

(
hr +

1

Thd
+

1

Th2

)2)
= o(1).

Recalling (26), this implies that W V
T,1,b = op(1). As a result,

WT,1 = op(1)

and analogously WT,2 = op(1). Similar arguments can be used to show that WT,3 = op(1)

as well as WT,4 = op(1). This completes the proof.

Proof of Lemma A6. Using (25), recalling that cT = (Th(d+1)/2)−1/2 and applying the

uniform convergence results of Lemmas A1–A3 to replace the kernel densities f̂h(u, x) and

f̂h(v, x) by the true densities f(u, x) and f(v, x), we obtain

Th
d+1
2

∫
I

(∫
B2
T (u, v, x)π(x)dx

)
du

= 2
(
λIPT,1 − PT,2

)
+ 4
(
λIQT,1 −QT,2

)
+ 2
(
λIRT,1 −RT,2

)
+ op(1)

with

PT,1 = Th
d+1
2

∫
I

(∫
Λ2
T,2(u, x)

π(x)

f 2(u, x)
dx
)
du

PT,2 = Th
d+1
2

∫
I×I

(∫
ΛT,2(u, x)ΛT,2(v, x)

π(x)

f(u, x)f(v, x)
dx
)
dudv

QT,1 = cTTh
d+1
2

∫
I

(∫
ΛT,2(u, x)ΛT,3(u, x)

π(x)

f 2(u, x)
dx
)
du

QT,2 = cTTh
d+1
2

∫
I×I

(∫
ΛT,2(u, x)ΛT,3(v, x)

π(x)

f(u, x)f(v, x)
dx
)
dudv

RT,1 =

∫
I

(∫
Λ2
T,3(u, x)

π(x)

f 2(u, x)
dx
)
du

RT,2 =

∫
I×I

(∫
ΛT,3(u, x)ΛT,3(v, x)

π(x)

f(u, x)f(v, x)
dx
)
dudv.

Straightforward calculations yield that

2
(
λIRT,1 −RT,2

)
=

∫
I×I

(∫
[∆(u, x)−∆(v, x)]2π(x)dx

)
dudv + op(1).

To analyze the term PT,1, we decompose it according to

PT,1 = PT,1,a + 2PT,1,b + PT,1,c
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with

PT,1,a = Th
d+1
2

∫
I

∫
1

T 2

T∑
t,s=1

Ku,t,TKu,s,t

(
Kx,t,T∆t,T (u, x)− E[Kx,t,T∆t,T (u, x)]

)
×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dxdu

PT,1,b = Th
d+1
2

∫
I

∫
1

T 2

T∑
t,s=1

Ku,t,TKu,s,tE[Kx,t,T∆t,T (u, x)]

×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dxdu

PT,1,c = Th
d+1
2

∫
I

∫
1

T 2

T∑
t,s=1

Ku,t,TKu,s,tE[Kx,t,T∆t,T (u, x)]

× E[Kx,s,T∆s,T (u, x)]
π(x)

f 2(u, x)
dxdu.

In what follows, these three terms are considered separately. To start with, the same

arguments as used to analyze the term W V
T,1,b in Lemma A5 yield that PT,1,b = op(1).

Moreover, it holds that

PT,1,c = Th
d+1
2

∫
I

∫ (
E
[
ΛT,2(u, x)

])2 π(x)

f 2(u, x)
dxdu.

Together with (28), this immediately implies that PT,1,c = op(1) as well. To handle the

term PT,1,a, we split it up into two parts,

PT,1,a = PB
T,1,a + P V

T,1,a,

where

PB
T,1,a = Th

d+1
2

∫
I

∫
1

T 2

T∑
t=1

K2
u,t,T

(
Kx,t,T∆t,T (u, x)− E[Kx,t,T∆t,T (u, x)]

)2 π(x)

f 2(u, x)
dxdu

P V
T,1,a = Th

d+1
2

∫
I

∫
1

T 2

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,t

(
Kx,t,T∆t,T (u, x)− E[Kx,t,T∆t,T (u, x)]

)
×
(
Kx,s,T∆s,T (u, x)− E[Kx,s,T∆s,T (u, x)]

) π(x)

f 2(u, x)
dxdu.

Applying the techniques from the proofs of (CLT1) and (CLT2), we can show that

E(PB
T,1,a − E[PB

T,1,a])
2 → 0 and thus

PB
T,1,a − E[PB

T,1,a] = op(1).

Slightly varying the arguments for the proof of (28), we can further establish that

E[PB
T,1,a] = λ−1I BT,3,
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which in turn yields that PB
T,1,a = λ−1I BT,3 + op(1). Finally, once more applying the

techniques used to derive (CLT1) and (CLT2), we obtain that P V
T,1,a = op(1). As a result,

PT,1,a = λ−1I BT,3 + op(1).

Putting everything together, we arrive at

PT,1 = λ−1I BT,3 + op(1).

Slightly modifying the above arguments, we further get that PT,2 = BT,4 + op(1) as well

as QT,1 = op(1) and QT,2 = op(1).

Proof of Theorem 4.4

The proof mimics the arguments for Theorems 4.1–4.3 in the bootstrap world. We write

S∗T = Th
d+1
2

∫
I×I

(∫ [
V ∗T (u, v, x) +B∗T (u, v, x)

]2
π(x)dx

)
dudv

with

V ∗T (u, v, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T ε
∗
t,T

/
f̂h(u, x)

− 1

T

T∑
t=1

Kv,t,TKx,t,T ε
∗
t,T

/
f̂h(v, x)

B∗T (u, v, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T m̃g(Xt,T )
/
f̂h(u, x)

− 1

T

T∑
t=1

Kv,t,TKx,t,T m̃g(Xt,T )
/
f̂h(v, x)

and show that under the conditions of Theorem 4.4,

Th
d+1
2

∫
I×I

(∫
(V ∗T (u, v, x))2π(x)dx

)
dudv − 2(BT,1 −BT,2)

d−→ N
(
0, V

)
(B1)

conditional on the sample {Yt,T , Xt,T}Tt=1 with probability tending to one as well as

Th
d+1
2

∫
I×I

(∫
B∗T (u, v, x)V ∗T (u, v, x)π(x)dx

)
dudv = op(1) (B2)

Th
d+1
2

∫
I×I

(∫
(B∗T (u, v, x))2π(x)dx

)
dudv = 2(BT,3 −BT,4) + op(1). (B3)

Combining these three statements completes the proof.

For the proof of (B1)–(B3), we use the notation

Λ∗T,1(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T ε
∗
t,T

Λ∗T,2(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T∆∗t,T (u, x),
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where ∆∗t,T (u, x) = m̃g(Xt,T )−m(x) and m(x) =
∫
I
m(u, x)du/

∫
I
du as defined in Section

4.3. Moreover, we let P∗( · ) := P( · |{Yt,T , Xt,T}Tt=1). Analogously, E∗[ · ] and Var∗( · ) are

used to denote the expectation and variance conditional on the sample {Yt,T , Xt,T}Tt=1.

Proof of (B1). Letting

U∗T = Th
d+1
2

∫
I×I

(∫
(V ∗T (u, v, x))2π(x)dx

)
dudv,

we can write U∗T = 2(U∗T,1 − U∗T,2) with

U∗T,1 = λITh
d+1
2

∫
I

(∫
(Λ∗T,1(u, x))2

π(x)

f̂ 2
h(u, x)

dx
)
du

U∗T,2 = Th
d+1
2

∫
I×I

(∫
Λ∗T,1(u, x)Λ∗T,1(v, x)

π(x)

f̂h(u, x)f̂h(v, x)
dx
)
dudv.

Similarly as in Lemma A4, it suffices to show that

U∗T,1 −BT,1
d−→ N(0, V1) cond. on the data with prob. tending to one (29)

U∗T,2 −BT,2 = op(1). (30)

Note that (29) is equivalent to P∗(U∗T,1 − BT,1 ≤ x)
P−→ Φ(x) pointwise for each x ∈ R,

where Φ is a Gaussian distribution function with mean zero and variance V1. In what

follows, we restrict attention to the proof of (29). (30) follows by simpler but similar

arguments. To prove (29), we decompose U∗T,1 according to

U∗T,1 = UB,∗
T,1 + UV,∗

T,1 + op(1)

with

UB,∗
T,1 =

λIh
d+1
2

T

∫
I

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)

(ε∗t,T )2du

UV,∗
T,1 =

λIh
d+1
2

T

∫
I

T∑
t=1

∑
s 6=t

Ku,t,TKu,s,T

(∫
Kx,t,TKx,s,T

π(x)

f 2(u, x)
dx
)
ε∗t,T ε

∗
s,Tdu,

where we have replaced the kernel density f̂h(u, x) by the true density f(u, x). To do

so, we have exploited the fact that 1
T

∑T
t=1Ku,t,TKx,t,T ε

∗
t,T = Op(

√
log T/Thd+1 + hr)

uniformly in u and x. This can be shown by using the uniform convergence results from

Lemmas A1–A3 and noting that the array {εt,T · ηt} has the same mixing properties as

{εt,T} (cp. Theorem 5.2 in Bradley (2005)). In the sequel, we prove that

UB,∗
T,1 = BT,1 + op(1) (31)

P∗(UV,∗
T,1 ≤ x)

P−→ Φ(x). (32)

Combining (31) and (32) immediately yields that P∗(U∗T,1 − BT,1 ≤ x)
P−→ Φ(x), thus

completing the proof of (29).
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Proof of (31). Noting that

ε̂2t,T = ε2t,T + 2εt,T

[
m
( t
T
,Xt,T

)
− m̂h

( t
T
,Xt,T

)]
+
[
m
( t
T
,Xt,T

)
− m̂h

( t
T
,Xt,T

)]2
, (33)

we have

E∗[UB,∗
T,1 ] =

λIh
d+1
2

T

∫
I

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε̂2t,Tdu

=
λIh

d+1
2

T

∫
I

T∑
t=1

K2
u,t,T

(∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε2t,Tdu+ op(1)

=
λIh

d+1
2

T

∫
I

T∑
t=1

K2
u,t,TE

[( ∫
K2
x,t,T

π(x)

f 2(u, x)
dx
)
ε2t,T

]
du+ op(1)

= E[UB
T,1] + op(1),

where the second equality uses the fact that m(u, x)−m̂h(u, x) = Op(
√

log T/Thd+1 +hr)

uniformly in u and x and the third one follows by an application of Davydov’s inequality.

From Lemma A4 we already know that E[UB
T,1] = BT,1 + o(1), leaving us with

E∗[UB,∗
T,1 ] = BT,1 + op(1).

Moreover, it is not difficult to see that UB,∗
T,1 − E∗[UB,∗

T,1 ] = op(1).

Proof of (32). We rewrite UV,∗
T,1 as

UV,∗
T,1 =

T∑
t,s=1

w∗s,t,T

with

w∗s,t,T =

λIh
d+1
2

T

∫
I
Ku,t,TKu,s,T

( ∫
Kx,t,TKx,s,T

π(x)
f2(u,x)

dx
)
ε∗t,T ε

∗
s,Tdu for t 6= s

0 otherwise.

As the bootstrap residuals are independent conditional on the sample {Yt,T , Xt,T}, we can

directly use the results of de Jong (1987) on quadratic forms to show (32). In particular,

it suffices to show that the following three conditions are satisfied (see Theorem 2.1 in de

Jong (1987)):

(CLT1*) Var∗(UV,∗
T,1 )

P−→ V1.

(CLT2*) Var∗(UV,∗
T,1 )−1 max1≤s≤T

∑T
t=1 Var∗(w∗s,t,T )

P−→ 0.

(CLT3*) Var∗(UV,∗
T,1 )−2 E∗(UV,∗

T,1 )4
P−→ 3.
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To show (CLT1*), we proceed similarly to the proof of (31). The details are omitted. For

the proof of (CLT2*), note that

max
1≤s≤T

T∑
t=1

Var∗(w∗s,t,T ) ≤ C

∫
I

∫∫
max
1≤s≤T

(
hd|Ku,s,T |

(∫
I
|Ku′,s,T |du′

)
|Kx,s,tKx′,s,T |ε̂2s,T

)
×
( 1

T 2

T∑
t=1

|Ku,t,TKx,t,TKx′,t,T |ε̂2t,T
)
π(x)π(x′)dxdx′du

with a sufficient large positive constant C. Using (33) together with the fact that

max1≤s≤T ε
2
s,T = Op(T

2/ν) for ν = 8 + δ, we obtain that

max
1≤s≤T

(
hd|Ku,s,T |

(∫
I
|Ku′,s,T |du′

)
|Kx,s,tKx′,s,T |ε̂2s,T

)
= Op

(T 2/ν

hd+1

)
. (34)

Moreover, it is easily seen that

1

T 2

∫
I

T∑
t=1

|Ku,t,T |
(∫∫

|Kx,t,TKx′,t,T |π(x)π(x′)dxdx′
)
ε̂2t,Tdu = Op

( 1

T

)
. (35)

Combining (34) and (35), we arrive at

max
1≤s≤T

T∑
t=1

Var∗(w∗s,t,T ) = Op

( 1

T 1−2/νhd+1

)
= op(1),

the last equality following from the conditions on the bandwidth h listed in (C3). This

shows (CLT2*). For the proof of (CLT3*), we use that

E∗(UV,∗
T,1 )4 =

∑
t6=s,t′ 6=s′,t′′ 6=s′′,t′′′ 6=s′′′

E∗
[
w∗s,t,Tw

∗
s′,t′,Tw

∗
s′′,t′′,Tw

∗
s′′′,t′′′,T

]
= 12

∑
t1 6=t2 6=t3 6=t4

E∗
[
(w∗t1,t2,T )2(w∗t3,t4,T )2

]
+ 8

∑
t1 6=t2

E∗
[
(w∗t1,t2,T )4

]
+ 48

∑
t1 6=t2 6=t3 6=t4

E∗
[
w∗t1,t2,Tw

∗
t2,t3,T

w∗t3,t4,Tw
∗
t4,t1,T

]
+ 192

∑
t1 6=t2 6=t3

E∗
[
w∗t1,t2,T (w∗t1,t3,T )2w∗t2,t3,T

]
+ 48

∑
t1 6=t2 6=t3

E∗
[
(w∗t1,t2,T )2(w∗t2,t3,T )2

]
=: Q∗T,1 +Q∗T,2 +Q∗T,3 +Q∗T,4 +Q∗T,5.

Exploiting the mixing conditions on the model variables yields that Q∗T,i = op(1) for

i = 2, . . . , 5. Below, we give the proof for Q∗T,3 which is the most difficult term to handle.

As a result, we obtain that

E∗(UV,∗
T,1 )4 = 12

∑
t1 6=t2 6=t3 6=t4

E∗
[
(w∗t1,t2,T )2(w∗t3,t4,T )2

]
+ op(1).
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Noting that Var∗(UV,∗
T,1 ) = 2

∑
t1 6=t2 E

∗(w∗t1,t2,T )2, it is now easy to see that E∗(UV,∗
T,1 )4 =

3Var∗(UV,∗
T,1 )2 + op(1). This completes the proof of (CLT3*).

We now provide the details of the proof that Q∗T,3 = op(1). Using the shorthands

φ̂t1 = |Kx,t1,TKx′′′,t1,T |ε̂2t1,T
φ̂t2 = |Kx,t2,TKx′,t2,T |ε̂2t2,T
φ̂t3 = |Kx′,t3,TKx′′,t3,T |ε̂2t3,T
φ̂t4 = |Kx′′,t4,TKx′′′,t4,T |ε̂2t4,T

as well as

κt1,t2,t3,t4 = |Ku,t1,TKu,t2,TKu′,t2,TKu′,t3,T

×Ku′′,t3,TKu′′,t4,TKu′′′,t4,TKu′′′,t1,T |,

it holds that

|Q∗T,3| ≤
Cλ4Ih

2d+2

T 4

∑
t1 6=t2 6=t3 6=t4

∫
. . .

∫
κt1,t2,t3,t4φ̂t1φ̂t2φ̂t3φ̂t4

× π(x) . . . π(x′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxω(u) . . . ω(u′′′)du

with u = (u, u′, u′′, u′′′) and x = (x, x′, x′′, x′′′). Next, by (33), we have

φ̂t1 = |Kx,t1,TKx′′′,t1,T |ε2t1,T + 2|Kx,t1,TKx′′′,t1,T |
[
m
(t1
T
,Xt1,T

)
− m̂h

(t1
T
,Xt1,T

)]
εt1,T

+ |Kx,t1,TKx′′′,t1,T |
[
m
(t1
T
,Xt1,T

)
− m̂h

(t1
T
,Xt1,T

)]2
=: φt1 + φt1 + φt1 .

We thus obtain

|Q∗T,3| ≤
Cλ4Ih

2d+2

T 4

∑
t1 6=t2 6=t3 6=t4

∫
. . .

∫
κt1,t2,t3,t4φt1φt2φt3φt4

× π(x) . . . π(x′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxω(u) . . . ω(u′′′)du

+
Cλ4Ih

2d+2

T 4

∑
t1 6=t2 6=t3 6=t4

∫
. . .

∫
κt1,t2,t3,t4φt1φt2φt3φt4

× π(x) . . . π(x′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxω(u) . . . ω(u′′′)du

+ . . .

=: Q∗T,3,a +Q∗T,3,b + . . .
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In what follows, we show that Q∗T,3,a = op(1), the other terms being op(1) by similar

arguments. It holds that

Q∗T,3,a =
Cλ4Ih

2d+2

T 4

∑
t1 6=t2 6=t3 6=t4

∫
. . .

∫
κt1,t2,t3,t4

×
(
φt1 − E[φt1 ] + E[φt1 ]

)(
φt2 − E[φt2 ] + E[φt2 ]

)
×
(
φt3 − E[φt3 ] + E[φt3 ]

)(
φt4 − E[φt4 ] + E[φt4 ]

)
× π(x) . . . π(x′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxω(u) . . . ω(u′′′)du

=
Cλ4Ih

2d+2

T 4

∑
t1 6=t2 6=t3 6=t4

∫
. . .

∫
κt1,t2,t3,t4

×
{
E[φt1 ]E[φt2 ]E[φt3 ]E[φt4 ]

+ (φt1 − E[φt1 ])E[φt2 ]E[φt3 ]E[φt4 ]

+ (φt1 − E[φt1 ])(φt2 − E[φt2 ])E[φt3 ]E[φt4 ]

+ (φt1 − E[φt1 ])(φt2 − E[φt2 ])(φt3 − E[φt3 ])E[φt4 ]

+ (φt1 − E[φt1 ])(φt2 − E[φt2 ])(φt3 − E[φt3 ])(φt4 − E[φt4 ]) + . . .
}

× π(x) . . . π(x′′′)

f 2(u, x) . . . f 2(u′′′, x′′′)
dxω(u) . . . ω(u′′′)du

=: Q1 + . . .+Q5 + . . .

We have that Q1 ≤ Chd. Moreover, exploiting the mixing conditions by means of Davy-

dov’s inequality similarly as in the proofs of (CLT1) and (CLT2), we can show that

E[Q2
i ] = o(1) for i = 2, . . . , 5. The other terms contained in Q∗T,3,a can be handled in

the same way. Note that to apply Davydov’s inequality in this context, we require the

moment condition E[ε8+δt ] < ∞ to hold for some small δ > 0. Proceeding along these

lines, we finally arrive at Q∗T,3,a = op(1).

Proof of (B2). It holds that

Th
d+1
2

∫
I×I

(∫
B∗T (u, v, x)V ∗T (u, v, x)π(x)dx

)
dudv = 2

(
λIW

∗
T,1 −W ∗

T,2

)
with

W ∗
T,1 = Th

d+1
2

∫
I

(∫
Λ∗T,1(u, x)Λ∗T,2(u, x)

π(x)

f̂ 2
h(u, x)

dx
)
du

W ∗
T,2 = Th

d+1
2

∫
I×I

(∫
Λ∗T,1(u, x)Λ∗T,2(v, x)

π(x)

f̂h(u, x)f̂h(v, x)
dx
)
dudv.
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We first consider the term W ∗
T,1 in more detail. Writing

Λ∗T,1(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T

(
m
( t
T
,Xt,T

)
− m̂h

( t
T
,Xt,T

))
ηt

+
1

T

T∑
t=1

Ku,t,TKx,t,T εt,Tηt

=: Λ∗T,1,a(u, x) + Λ∗T,1,b(u, x)

and

Λ∗T,2(u, x) =
1

T

T∑
t=1

Ku,t,TKx,t,T

[
m̃g(Xt,T )−m(Xt,T )

]
+

1

T

T∑
t=1

Ku,t,TKx,t,T

[
m(Xt,T )−m(x)

]
=: Λ∗T,2,a(u, x) + Λ∗T,2,b(u, x),

we can split up W ∗
T,1 into additive components according to

W ∗
T,1 = Th

d+1
2

∫
I

(∫
Λ∗T,1,a(u, x)Λ∗T,2,a(u, x)

π(x)

f̂ 2
h(u, x)

dx
)
du

+ Th
d+1
2

∫
I

(∫
Λ∗T,1,a(u, x)Λ∗T,2,b(u, x)

π(x)

f̂ 2
h(u, x)

dx
)
du

+ Th
d+1
2

∫
I

(∫
Λ∗T,1,b(u, x)Λ∗T,2,a(u, x)

π(x)

f̂ 2
h(u, x)

dx
)
du

+ Th
d+1
2

∫
I

(∫
Λ∗T,1,b(u, x)Λ∗T,2,b(u, x)

π(x)

f̂ 2
h(u, x)

dx
)
du

=: W ∗
T,1,aa +W ∗

T,1,ab +W ∗
T,1,ba +W ∗

T,1,bb.

Using the uniform convergence results from Lemmas A1–A3 together with some straight-

forward additional arguments, it is not difficult to verify that

Λ∗T,1,a(u, x) = Op

(√ log T

Thd+1
+ hr

)
(36)

Λ∗T,1,b(u, x) = Op

(√ log T

Thd+1

)
(37)

Λ∗T,2,a(u, x) = Op

(√ log T

Tgd
+ gr

)
(38)

Λ∗T,2,b(u, x) = Op

(√ log T

Thd−1
+ hr

)
(39)
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uniformly in u and x. Now define CT to be the event that

inf
u,x

∣∣f̂(u, x)| ≥ c > 0,

sup
u,x

∣∣m̂h(u, x)−m(u, x)
∣∣ ≤ C

(√ log T

Thd+1
+ hr

)
,

sup
u,x

∣∣Λ∗T,2,a(u, x)
∣∣ ≤ C

(√ log T

Tgd
+ gr

)
, and

sup
u,x

∣∣Λ∗T,2,b(u, x)
∣∣ ≤ C

(√ log T

Thd−1
+ hr

)
for some fixed constants 0 < c < C < ∞. If the constant c is chosen sufficiently small

and C is large enough, then the probability of CT not occurring converges to zero. Put

differently, P(CcT ) = o(1), where CcT denotes the complement of the event CT . This follows

upon inspecting the proofs of the uniform convergence results A1–A3.

Keeping in mind the above remarks, we obtain that

P
(
|W ∗

T,1,aa| > δ
)
≤ P

(
|W ∗

T,1,aa| > δ,CT
)

+ P(CcT )

= P
(
I(CT )|W ∗

T,1,aa| > δ
)

+ o(1)

for each fixed δ > 0. Moreover,

P
(
I(CT )|W ∗

T,1,aa| > δ
)
≤ E

[
I(CT )|W ∗

T,1,aa|2
]/
δ2

= E
[
E∗[I(CT )|W ∗

T,1,aa|2]
]/
δ2.

Exploiting the independence of the bootstrap residuals ηt, we obtain

E∗[I(CT )|W ∗
T,1,aa|2]

= I(CT )T 2hd+1

∫
I×I

∫∫
Λ∗T,2,a(u, x)Λ∗T,2,a(u

′, x′)

×
{ 1

T 2

T∑
t=1

Ku,t,TKu′,t,TKx,t,TKx′,t,T

(
m
( t
T
,Xt,T

)
− m̂h

( t
T
,Xt,T

))2}
× π(x)π(x′)

f̂ 2
h(u, x)f̂ 2

h(u′, x′)
dxdx′

)
dudu′

and thus

E[I(CT )|W ∗
T,1,aa|2]

≤ CT 2hd+1
(√ log T

Thd+1
+ hr

)2(√ log T

Tgd
+ gr

)2
× E

[ ∫
I×I

∫∫
1

T 2

T∑
t=1

∣∣Ku,t,TKu′,t,TKx,t,TKx′,t,T

∣∣π(x)π(x′)dxdx′dudu′
]

= o(1),
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where the inequality is by the definition of the event CT . As a result, P
(
I(CT )|W ∗

T,1,aa| >
δ
)

= o(1), which immediately yields that W ∗
T,1,aa = op(1). Repeating the above arguments,

the terms W ∗
T,1,ab, W

∗
T,1,ba and W ∗

T,1,bb can be shown to be op(1) as well. We thus arrive at

W ∗
T,1 = op(1).

Analogously, we obtain that W ∗
T,2 = op(1). This completes the proof.

Proof of (B3). The result easily follows by using the uniform convergence rates (38)

and (39).
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