C Supplementary Material

In order to complete the proof of Theorem 4.3, we still need to show that equations (45) – (47) are fulfilled for the terms (D_c) , $(D_{V,j})$ and $(D_{B,j})$ and that (A) given in (44) is asymptotically negligible. In what follows, we establish these results in a series of lemmas.

Lemma C.1. It holds that

$$
(D_{V,j}) = \frac{1}{\sqrt{T}} \sum_{s=1}^{T} g_{j,D}\left(\frac{s}{T}, X_s\right) u_s + o_p(1)
$$

with

$$
g_{j,D}\Big(\frac{s}{T},X_s\Big)=g_{j,D}^{NW}\big(X_s^j\big)+g_{j,D}^{SBF}\Big(\frac{s}{T},X_s\Big)
$$

for $j = 0, \ldots, d$. The functions $g_{j,D}^{NW}$ and $g_{j,D}^{SBF}$ are absolutely bounded. Their exact form is given in the proof (see (54) and $(57) - (59)$).

Proof. We start by giving a detailed exposition of the proof for $j \neq 0$. By Theorem A.1, the stochastic part \tilde{m}_j^A of the smooth backfitting estimate \tilde{m}_j has the expansion

$$
\tilde{m}_j^A(x_j) = \hat{m}_j^A(x_j) + \frac{1}{T} \sum_{s=1}^T r_{j,s}(x_j) u_s + o_p\left(\frac{1}{\sqrt{T}}\right)
$$

uniformly in x_j , where \hat{m}_j^A is the stochastic part of the Nadaraya-Watson pilot estimate and the function $r_{j,s}(\cdot) = r_j(\frac{s}{T}, X_s, \cdot)$ is Lipschitz continuous and absolutely bounded. With this result, we can decompose $(D_{V,j})$ as follows:

$$
(D_{V,j}) = \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \frac{\partial v_t^2}{\partial \phi_i} \frac{1}{\sigma_t^2 \sigma_t^2} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2 \tilde{m}_j^A(X_{t-k}^j)
$$

\n
$$
= \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2 \frac{\partial v_t^2}{\partial \phi_i} \frac{1}{\sigma_t^2 \sigma_t^2} \tilde{m}_j^A(X_{t-k}^j)
$$

\n
$$
+ \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2 \frac{\partial v_t^2}{\partial \phi_i} \frac{1}{\sigma_t^2 \sigma_t^2} \left[\frac{1}{T} \sum_{s=1}^{T} r_{j,s}(X_{t-k}^j) u_s \right] + o_p(1)
$$

\n
$$
=: (D_{V,j}^{NW}) + (D_{V,j}^{SBF}) + o_p(1).
$$

In the following, we will give the exact arguments needed to treat $(D_{V,j}^{NW})$. The line of argument for $(D_{V,j}^{SBF})$ is essentially identical although some of the steps are easier due to the properties of the $r_{j,s}$ functions.

W.l.o.g. set $\phi_i = a$ and let $m_{i,k} = \max\{k+1, i+1\}$. Using $\partial v_i^2 / \partial a = \sum_{i=1}^{t-1} b^{i-1} \varepsilon_{t-i}^2$ and $\hat{m}_j^A(x_j) = \frac{1}{T} \sum_{s=1}^T K_h(x_j, X_s^j) u_s / \frac{1}{T} \sum_{v=1}^T K_h(x_j, X_v^j)$, we get

$$
(D_{V,j}^{NW}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \frac{K_h(X_{t-k}^j, X_s^j)}{\frac{1}{T} \sum_{v=1}^{T} K_h(X_{t-k}^j, X_v^j)} \frac{\varepsilon_{t-k}^2 \varepsilon_{t-i}^2}{\sigma_t^2 \sigma_t^2} u_s \Big]. \tag{50}
$$

In a first step, we replace the sum $\frac{1}{T} \sum_{v=1}^{T} K_h(X_{t-k}^j, X_v^j)$ in (50) by a term which only depends on X_{t-k}^j and show that the resulting error is asymptotically negligible. Let $q_j(x_j) =$ $\int_0^1 K_h(x_j, w) dw p_j(x_j)$. Furthermore define

$$
B_j(x_j) = \frac{1}{T} \sum_{v=1}^T \mathbb{E}[K_h(x_j, X_v^j)] - q_j(x_j)
$$

$$
V_j(x_j) = \frac{1}{T} \sum_{v=1}^T (K_h(x_j, X_v^j) - \mathbb{E}[K_h(x_j, X_v^j)]).
$$

Notice that $\sup_{x_j \in [0,1]} |B_j(x_j)| = O_p(h)$ and $\sup_{x_j \in [0,1]} |V_j(x_j)| = O_p(\sqrt{\log T/Th}).$ From the identity $\frac{1}{T}\sum_{v=1}^{T}K_h(x_j,X_v^j) = q_j(x_j) + B_j(x_j) + V_j(x_j)$ and a second order Taylor expansion of $(1+x)^{-1}$ we arrive at

$$
\frac{1}{\frac{1}{T}\sum_{v=1}^{T}K_h(x_j, X_v^j)} = \frac{1}{q_j(x_j)} \left(1 + \frac{B_j(x_j) + V_j(x_j)}{q_j(x_j)}\right)^{-1}
$$
\n
$$
= \frac{1}{q_j(x_j)} \left(1 - \frac{B_j(x_j) + V_j(x_j)}{q_j(x_j)} + O_p(h^2)\right)
$$
\n(51)

uniformly in x_j . Plugging this decomposition into (50), we obtain

$$
(D_{V,j}^{NW}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \frac{K_h(X_{t-k}^j, X_s^j)}{q_j(X_{t-k}^j)} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2 u_s \Big] - (D_{V,j}^{NW,B}) - (D_{V,j}^{NW,V}) + o_p(1)
$$

with

$$
(D_{V,j}^{NW,B}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} K_h(X_{t-k}^j, X_s^j) \frac{B_j(X_{t-k}^j)}{q_j^2(X_{t-k}^j)} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2 u_s \Big]
$$

$$
(D_{V,j}^{NW,V}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} K_h(X_{t-k}^j, X_s^j) \frac{V_j(X_{t-k}^j)}{q_j^2(X_{t-k}^j)} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2 u_s \Big].
$$

As $\sup_{x_j \in I_h} |B_j(x_j)| = O_p(h^2)$ and $\sup_{x_j \in I_h^c} |B_j(x_j)| = O_p(h)$, we can proceed similarly to the proof of Lemma C.3 later on to show that $(D_{V,j}^{NW,B}) = o_p(1)$. Next we will show that $(D_{V,j}^{NW,V}) = o_p(1)$. Let $\mathbb{E}_v[\cdot]$ denote the expectation with respect to the variables indexed by v , then

$$
\left| (D_{V,j}^{NW,V}) \right| = \Big| \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \frac{K_h(X_{t-k}^j, X_s^j)}{q_j^2(X_{t-k}^j)} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2 \Big|
$$

\n
$$
\times \Big(\frac{1}{T} \sum_{v=1}^{T} (K_h(X_{t-k}^j, X_v^j) - \mathbb{E}_v[K_h(X_{t-k}^j, X_v^j)] \Big) u_s \Big] \Big|
$$

\n
$$
\leq \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big(\frac{1}{\sqrt{T}} \sum_{t=m_{i,k}}^{T} \Big| \frac{1}{q_j^2(X_{t-k}^j)} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2 \Big|
$$

\n
$$
\times \sup_{x_j \in [0,1]} \Big| \frac{1}{T} \sum_{v=1}^{T} (K_h(x_j, X_v^j) - \mathbb{E}_v[K_h(x_j, X_v^j)] \Big) \Big|
$$

\n
$$
\times \sup_{x_j \in [0,1]} \Big| \frac{1}{T} \sum_{s=1}^{T} K_h(x_j, X_s^j) u_s \Big|
$$

\n
$$
= O_p \Big(\frac{\log T}{Th} \Big) \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big(\frac{1}{\sqrt{T}} \sum_{t=m_{i,k}}^{T} \Big| \frac{1}{q_j^2(X_{t-k}^j)} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2 \Big|
$$

\n
$$
= O_p \Big(\frac{\log T}{Th} \Big) \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big(\frac{1}{\sqrt{T}} \sum_{t=m_{i,k}}^{T}
$$

Together with the fact that $(D_{V,j}^{NW,B}) = o_p(1)$, this yields

$$
(D_{V,j}^{NW}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} K_h(X_{t-k}^j, X_s^j) \mu_t^{i,k} u_s \right] + o_p(1),\tag{52}
$$

where we use the shorthand $\mu_t^{i,k} = (q_j(X_{t-k}^j)\sigma_t^2\sigma_t^2)^{-1}\varepsilon_{t-k}^2\varepsilon_{t-i}^2$. In the next step, we replace the inner sum over t in (52) by a term that only depends on X_s^j and show that the resulting error can be asymptotically neglected. Define

$$
\xi(X_{t-k}^j, X_s^j) := \xi_t^{i,k}(X_{t-k}^j, X_s^j) := K_h(X_{t-k}^j, X_s^j)\mu_t^{i,k} - \mathbb{E}_{-s}[K_h(X_{t-k}^j, X_s^j)\mu_t^{i,k}],
$$

where $\mathbb{E}_{-s}[\cdot]$ is the expectation with respect to all variables except for those depending on the index s. With the above notation at hand, we can write

$$
(D_{V,j}^{NW}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \mathbb{E}_{-s}[K_h(X_{t-k}^j, X_s^j) \mu_t^{i,k}] u_s \Big] + (R_{V,j}^{NW}) + o_p(1),
$$

where

$$
(R_{V,j}^{NW}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \xi(X_{t-k}^j, X_s^j) u_s \Big]
$$

=
$$
\sum_{k=1}^{C_2 \log T} ab^{k-1} \sum_{i=1}^{C_2 \log T} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \xi(X_{t-k}^j, X_s^j) u_s \Big] + o_p(1)
$$

$$
(53)
$$

for some sufficiently large constant $C_2 > 0$. Once we show that $(R_{V,j}^{NW}) = o_p(1)$, we are left with

$$
(D_{V,j}^{NW}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \mathbb{E}_{-s} [K_h(X_{t-k}^j, X_s^j) \mu_t^{i,k}] u_s \Big] + o_p(1)
$$

=
$$
\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \Big(\sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \frac{T-m_{i,k}}{T} \mathbb{E}_{-s} [K_h(X_{-k}^j, X_s^j) \mu_0^{i,k}] \Big) u_s + o_p(1).
$$

As the terms with $i, k \geq C_2 \log T$ are asymptotically negligible, we can expand the i and k sums to infinity, which yields

$$
(D_{V,j}^{NW}) = \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \left(\sum_{k=1}^{\infty} ab^{k-1} \sum_{i=1}^{\infty} b^{i-1} \mathbb{E}_{-s} [K_h(X_{-k}^j, X_s^j) \mu_0^{i,k}] \right) u_s + o_p(1)
$$
\n
$$
=: \frac{1}{\sqrt{T}} \sum_{s=1}^{T} g_{j,D}^{NW}(X_s^j) u_s + o_p(1)
$$
\n(54)

with

$$
\mu_0^{i,k} = \frac{1}{q_j(X_{-k}^j)} \frac{1}{\sigma_0^2 \sigma_0^2} \varepsilon_{-k}^2 \varepsilon_{-i}^2
$$

$$
q_j(X_{-k}^j) = \int_0^1 K_h(X_{-k}^j, w) dw \ p_j(X_{-k}^j).
$$

Thus it remains to show that $(R_{V,j}^{NW}) = o_p(1)$, which requires a lot of care. We will prove that the term in square brackets in (53) is $o_p(1)$ uniformly over $i, k \leq C_2 \log T$, which yields the desired result. It is easily seen that

$$
P := \mathbb{P}\Big(\max_{i,k \le C_2 \log T} \Big| \frac{1}{\sqrt{T}} \sum_{s=1}^T \frac{1}{T} \sum_{t=m_{i,k}}^T \xi(X_{t-k}^j, X_s^j) u_s \Big| > \delta\Big)
$$

$$
\le \sum_{k=1}^{C_2 \log T} \sum_{i=1}^{C_2 \log T} \mathbb{P}\Big(\Big| \frac{1}{\sqrt{T}} \sum_{s=1}^T \frac{1}{T} \sum_{t=m_{i,k}}^T \xi(X_{t-k}^j, X_s^j) u_s \Big| > \delta\Big)
$$

$$
=:P_{i,k}
$$

for a fixed $\delta > 0$. Then by Chebychev's inequality

$$
P_{i,k} \leq \frac{1}{T^3 \delta^2} \sum_{s,s'=1}^T \sum_{t,t'=m_{i,k}}^T \mathbb{E} \Big[\xi(X_{t-k}^j, X_s^j) u_s \xi(X_{t'-k}^j, X_{s'}^j) u_{s'} \Big] = \frac{1}{T^3 \delta^2} \sum_{(s,s',t,t') \notin \Gamma_{i,k}} \mathbb{E} \Big[\xi(X_{t-k}^j, X_s^j) u_s \xi(X_{t'-k}^j, X_{s'}^j) u_{s'} \Big] + \frac{1}{T^3 \delta^2} \sum_{(s,s',t,t') \in \Gamma_{i,k}} \mathbb{E} \Big[\xi(X_{t-k}^j, X_s^j) u_s \xi(X_{t'-k}^j, X_{s'}^j) u_{s'} \Big] =: P_{i,k}^1 + P_{i,k}^2,
$$

where $\Gamma_{i,k}$ is the set of tuples (s, s', t, t') with $1 \leq s, s' \leq T$ and $m_{i,k} \leq t, t' \leq T$ such that one index is separated from the others. We say that an index, for instance t , is separated from the others if $\min\{|t - t'|, |t - s|, |t - s'|\} > C_3 \log T$, i.e. if it is further away from the other indices than $C_3 \log T$ for a constant C_3 to be chosen later on. We now analyse $P_{i,k}^1$ and $P_{i,k}^2$ separately.

(a) First consider $P_{i,k}^1$. If a tuple (s, s', t, t') is not an element of $\Gamma_{i,k}$, then no index can be separated from the others. Since the index t cannot be separated, there exists an index, say t', such that $|t - t'| \leq C_3 \log T$. Now take an index different from t and t', for instance s. Then by the same argument, there exists an index, say s' , such that $|s - s'| \leq C_3 \log T$. As a consequence, the number of tuples $(s, s', t, t') \notin \Gamma_{i,k}$ is smaller than $CT^2(\log T)^2$ for some constant C. Using (A11), this suffices to infer that

$$
|P_{i,k}^1| \le \frac{1}{T^3 \delta^2} \sum_{(s,s',t,t') \notin \Gamma_{i,k}} \frac{C}{h^2} \le \frac{C}{\delta^2} \frac{(\log T)^2}{Th^2}.
$$

Hence, $|P_{i,k}^1| \leq C\delta^{-2}(\log T)^{-3}$ uniformly in i and k.

(b) The term $P_{i,k}^2$ is more difficult to handle. We start by taking a cover $\{I_m\}_{m=1}^{M_T}$ of the compact support [0, 1] of X_{t-k}^j . The elements I_m are intervals of length $1/M_T$ given by $I_m = \left[\frac{m-1}{M_T}, \frac{m}{M_T}\right)$ for $m = 1, ..., M_T - 1$ and $I_{M_T} = \left[1 - \frac{1}{M_T}, 1\right]$. The midpoint of the interval I_m is denoted by x_m . With this, we can write

$$
K_h(X_{t-k}^j, X_s^j) = \sum_{m=1}^{M_T} I(X_{t-k}^j \in I_m)
$$

$$
\times \left[K_h(x_m, X_s^j) + (K_h(X_{t-k}^j, X_s^j) - K_h(x_m, X_s^j)) \right].
$$
 (55)

Using (55), we can further write

$$
\xi(X_{t-k}^{j}, X_{s}^{j}) = \sum_{m=1}^{M_{T}} \left\{ I(X_{t-k}^{j} \in I_{m}) K_{h}(x_{m}, X_{s}^{j}) \mu_{t}^{i,k} - \mathbb{E}_{-s} [I(X_{t-k}^{j} \in I_{m}) K_{h}(x_{m}, X_{s}^{j}) \mu_{t}^{i,k}] \right\}
$$

+
$$
\sum_{m=1}^{M_{T}} \left\{ I(X_{t-k}^{j} \in I_{m}) (K_{h}(X_{t-k}^{j}, X_{s}^{j}) - K_{h}(x_{m}, X_{s}^{j})) \mu_{t}^{i,k} - \mathbb{E}_{-s} [I(X_{t-k}^{j} \in I_{m}) (K_{h}(X_{t-k}^{j}, X_{s}^{j}) - K_{h}(x_{m}, X_{s}^{j})) \mu_{t}^{i,k}] \right\}
$$

=:
$$
\xi_{1}(X_{t-k}^{j}, X_{s}^{j}) + \xi_{2}(X_{t-k}^{j}, X_{s}^{j})
$$

and

$$
P_{i,k}^{2} = \frac{1}{T^{3}\delta^{2}} \sum_{(s,s',t,t') \in \Gamma_{i,k}} \mathbb{E}\left[\xi_{1}(X_{t-k}^{j}, X_{s}^{j})u_{s}\xi(X_{t'-k}^{j}, X_{s'}^{j})u_{s'}\right] + \frac{1}{T^{3}\delta^{2}} \sum_{(s,s',t,t') \in \Gamma_{i,k}} \mathbb{E}\left[\xi_{2}(X_{t-k}^{j}, X_{s}^{j})u_{s}\xi(X_{t'-k}^{j}, X_{s'}^{j})u_{s'}\right] =: P_{i,k}^{2,1} + P_{i,k}^{2,2}.
$$

We first consider $P_{i,k}^{2,2}$. Set $M_T = CT(\log T)^3 h^{-3}$ and exploit the Lipschitz continuity of the kernel K to get that $|K_h(X_{t-k}^j, X_s^j) - K_h(x_m, X_s^j)| \leq \frac{C}{h^2}|X_{t-k}^j - x_m|$. This gives us

$$
\left|\xi_{2}(X_{t-k}^{j}, X_{s}^{j})\right| \leq \frac{C}{h^{2}} \sum_{m=1}^{M_{T}} \left(\underbrace{I(X_{t-k}^{j} \in I_{m}) | X_{t-k}^{j} - x_{m} |}_{\leq I(X_{t-k}^{j} \in I_{m}) M_{T}^{-1}} \mu_{t}^{i,k} + \mathbb{E} \left[\underbrace{I(X_{t-k}^{j} \in I_{m}) | X_{t-k}^{j} - x_{m} |}_{\leq I(X_{t-k}^{j} \in I_{m}) M_{T}^{-1}} \mu_{t}^{i,k} \right] \right) \leq \frac{C}{M_{T}h^{2}} \left(\mu_{t}^{i,k} + \mathbb{E} \left[\mu_{t}^{i,k} \right] \right).
$$
\n(56)

Plugging (56) into the expression for $P_{i,k}^{2,2}$, we arrive at

$$
\begin{split} \left|P_{i,k}^{2,2}\right| &\leq \frac{1}{T^3\delta^2}\sum_{(s,s',t,t')\in\Gamma_{i,k}}\mathbb{E}\Big[\big|\xi_2(X_{t-k}^j,X_s^j)\big|\big|u_s\xi(X_{t'-k}^j,X_{s'}^j)u_{s'}\big|\Big] \\ &\leq \frac{1}{T^3\delta^2}\frac{C}{M_Th^2}\sum_{(s,s',t,t')\in\Gamma_{i,k}}\underbrace{\mathbb{E}\big[(\mu_t^{i,k}+\mathbb{E}[\mu_t^{i,k}])|u_s\xi(X_{t'-k}^j,X_{s'}^j)u_{s'}\big|\big]}_{\leq Ch^{-1}}\leq \frac{C}{\delta^2}\frac{1}{(\log T)^3}. \end{split}
$$

We next turn to $P_{i,k}^{2,1}$. Write

$$
P_{i,k}^{2,1} = \frac{1}{T^3 \delta^2} \sum_{(s,s',t,t') \in \Gamma_{i,k}} \left(\sum_{m=1}^{M_T} S_m \right)
$$

with

$$
S_m = \mathbb{E}\Big[\big\{I(X_{t-k}^j \in I_m)K_h(x_m, X_s^j)\mu_t^{i,k} - \mathbb{E}_{-s}[I(X_{t-k}^j \in I_m)K_h(x_m, X_s^j)\mu_t^{i,k}]\big\} \\ \times u_s \xi(X_{t'-k}^j, X_{s'}^j)u_{s'}\Big]
$$

and assume that an index, w.l.o.g. t, can be separated from the others. Choosing $C_3 \gg$ C_2 , we get

$$
S_m = \text{Cov}\Big(I(X_{t-k}^j \in I_m)\mu_t^{i,k} - \mathbb{E}[I(X_{t-k}^j \in I_m)\mu_t^{i,k}], K_h(x_m, X_s^j)u_s\xi(X_{t'-k}^j, X_{s'}^j)u_{s'}\Big)
$$

$$
\leq \frac{C}{h^2}(\alpha([C_3 - C_2] \log T))^{1-\frac{2}{p}} \leq \frac{C}{h^2}(\alpha^{(C_3 - C_2) \log T})^{1-\frac{2}{p}} \leq \frac{C}{h^2}T^{-C_4}
$$

with some $C_4 > 0$ by Davydov's inequality, where p is chosen slightly larger than 2. Note that the above bound is independent of i and k and that we can make C_4 arbitrarily large by choosing C_3 large enough. This shows that $|P_{i,k}^{2,1}| \leq C\delta^{-2}(\log T)^{-3}$ uniformly in i and k with some constant C .

Combining (a) and (b) yields that $P \to 0$ for each fixed $\delta > 0$. This implies that

$$
(R_{V,j}^{NW,V}) = o_p(1),
$$

which completes the proof for the term $(D_{V,j}^{NW})$.

As stated at the beginning of the proof, the term $(D_{V,j}^{SBF})$ can be treated in exactly the same way. Following analogous arguments as above and writing $\zeta_t^{i,k} = (\sigma_t^2 \sigma_t^2)^{-1} \varepsilon_{t-k}^2 \varepsilon_{t-i}^2$, one obtains

$$
(D_{V,j}^{SBF}) = \sum_{k=1}^{T-1} ab^{k-1} \sum_{i=1}^{T-1} b^{i-1} \Big[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \mathbb{E}_{-s} [r_{j,s}(X_{t-k}^{j})\zeta_{t}^{i,k}] u_s \Big] + o_p(1)
$$
\n
$$
= \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \Big(\sum_{k=1}^{\infty} ab^{k-1} \sum_{i=1}^{\infty} b^{i-1} \mathbb{E}_{-s} [r_{j,s}(X_{-k}^{j})\zeta_{0}^{i,k}] \Big) u_s + o_p(1)
$$
\n
$$
=: \frac{1}{\sqrt{T}} \sum_{s=1}^{T} g_{j,D}^{SBF} \Big(\frac{s}{T}, X_s \Big) u_s + o_p(1).
$$
\n(57)

Finally, the proofs for $j = 0$ are very similar but somewhat simpler and are thus omitted here. For completeness we provide the functions $g_{0,D}^{NW}$ and $g_{0,D}^{SBF}$:

$$
g_{0,D}^{NW}\left(\frac{s}{T}\right) = \left(\sum_{k=1}^{\infty} ab^{k-1} \sum_{i=1}^{\infty} b^{i-1} \mathbb{E}\left[\frac{1}{\sigma_0^2 \sigma_0^2} \varepsilon_{-k}^2 \varepsilon_{-i}^2\right]\right) \int_0^1 \frac{K_h(\frac{s}{T}, v)}{\int_0^1 K_h(v, w) dw} dv \tag{58}
$$

$$
g_{0,D}^{SBF}\left(\frac{s}{T}, X_s\right) = \left(\sum_{k=1}^{\infty} ab^{k-1} \sum_{i=1}^{\infty} b^{i-1} \mathbb{E}\left[\frac{1}{\sigma_0^2 \sigma_0^2} \varepsilon_{-k}^2 \varepsilon_{-i}^2\right]\right) \int_0^1 r_{0,s}(w) dw.
$$
\n
$$
\Box
$$

Lemma C.2. It holds that

$$
(D_c) = \frac{1}{\sqrt{T}} \sum_{s=1}^{T} g_{c,D} u_s
$$

with

$$
g_{c,D} = \sum_{k=1}^{\infty} ab^{k-1} \sum_{i=1}^{\infty} b^{i-1} \mathbb{E} \Big[\frac{1}{\sigma_0^2 \sigma_0^2} \varepsilon_{-i}^2 \varepsilon_{-k}^2 \Big].
$$

Proof. Using the fact that

$$
\tilde{m}_c = \frac{1}{T} \sum_{s=1}^T Z_{s,T} = m_c + \frac{1}{T} \sum_{s=1}^T m_0 \left(\frac{s}{T}\right) + \sum_{j=1}^d \frac{1}{T} \sum_{s=1}^T m_j (X_s^j) + \frac{1}{T} \sum_{s=1}^T u_s,
$$

we arrive at

$$
(D_c) = -\left(\frac{1}{T}\sum_{t=1}^T G_t \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2\right) \left(\frac{1}{\sqrt{T}} \sum_{s=1}^T u_s\right)
$$

with $G_t = \frac{\partial v_t^2}{\partial \phi_i} (\sigma_t^2 \sigma_t^2)^{-1}$. Now let $m_{i,k} = \max\{k+1, i+1\}$ and assume w.l.o.g. that $\phi_i = a$. Then

$$
\frac{1}{T} \sum_{t=1}^{T} G_t \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2 = \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{t-1} b^{i-1} \varepsilon_{t-i}^2 \right) \frac{1}{\sigma_t^2 \sigma_t^2} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2
$$
\n
$$
= \sum_{k=1}^{C_2 \log T} ab^{k-1} \sum_{i=1}^{C_2 \log T} b^{i-1} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 + o_p(1)
$$

with some sufficiently large constant C_2 . Using Chebychev's inequality and exploiting the mixing properties of the variables involved, one can show that

$$
\max_{i,k \le C_2 \log T} \frac{1}{T} \sum_{t=m_{i,k}} \left(\frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 - \mathbb{E} \Big[\frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 \Big] \right) = o_p(1).
$$

This allows us to infer that

$$
\frac{1}{T} \sum_{t=1}^{T} G_t \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2 = \sum_{k=1}^{C_2 \log T} ab^{k-1} \sum_{i=1}^{C_2 \log T} b^{i-1} \frac{1}{T} \sum_{t=m_{i,k}}^{T} \mathbb{E} \Big[\frac{1}{\sigma_t^2 \sigma_t^2} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 \Big] + o_p(1)
$$
\n
$$
= \sum_{k=1}^{\infty} ab^{k-1} \sum_{i=1}^{\infty} b^{i-1} \mathbb{E} \Big[\frac{1}{\sigma_0^2 \sigma_0^2} \varepsilon_{-i}^2 \varepsilon_{-k}^2 \Big] + o_p(1),
$$

 \Box

which completes the proof.

Lemma C.3. It holds that

$$
(D_{B,j}) = o_p(1)
$$

for $j = 0, \ldots, d$.

Proof. We start by considering the case $j = 0$: Define

 $\sqrt{ }$

$$
J_h = \{t \in \{1, ..., T\} : C_1 h \le \frac{t}{T} \le 1 - C_1 h\}
$$

$$
J_{h,c}^u = \{t \in \{1, ..., T\} : 1 - C_1 h < \frac{t}{T}\}
$$

$$
J_{h,c}^l = \{t \in \{1, ..., T\} : \frac{t}{T} < C_1 h\},
$$

where $[-C_1, C_1]$ is the support of K. Using the uniform convergence rates from Theorem A.2 and assuming w.l.o.g. that $\phi_i = a$, we get

$$
\begin{split}\n|(D_{B,0})| &= \Big|\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \frac{\partial v_t^2}{\partial a} \frac{1}{\sigma_t^2 \sigma_t^2} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-k}^2 \Big[m_0\Big(\frac{t-k}{T}\Big) - \tilde{m}_0^B\Big(\frac{t-k}{T}\Big) - \frac{1}{T} \sum_{s=1}^{T} m_0\Big(\frac{s}{T}\Big)\Big]\Big| \\
&\leq O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \sum_{i=1}^{t-1} b^{i-1} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 I(t-k \in J_{h,c}^l) \\
&\quad + O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \sum_{i=1}^{t-1} b^{i-1} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 I(t-k \in J_{h,c}^u) \\
&\quad + O_p(h^2) \frac{C}{\sqrt{T}} \sum_{t=1}^{T} \sum_{i=1}^{t-1} b^{i-1} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 I(t-k \in J_h) \\
&=: (D_{B,0}^{J_{h,c}^l}) + (D_{B,0}^{J_{h,c}^l}) + (D_{B,0}^{J_h}).\n\end{split}
$$

By Markov's inequality, $(D_{B,0}^{J_h}) = O_p(h^2\sqrt{T}) = o_p(1)$. Recognizing that

(i) $I(t - k \in J_{h,c}^u) \le I(t \in J_{h,c}^u)$ for all $k \in \{0, ..., t-1\}$

(ii) $\sum_{t=1}^{T} I(t \in J_{h,c}^u) \leq C_1 Th$,

we get $(D_{B,0}^{J_{h,c}^u}) = O_p(h^2\sqrt{T}) = o_p(1)$ by another appeal to Markov's inequality. This just leaves $(D_{B,0}^{J_{h,c}^t})$, which is a bit more tedious. By a change of variable $j = t - k$,

$$
(D_{B,0}^{J_{h,c}^l}) \leq O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \varepsilon_{t-i}^2 \sum_{j=1}^{t-1} ab^{t-j-1} \varepsilon_j^2 I(j \in J_{h,c}^l)
$$

\n
$$
= O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \varepsilon_{t-i}^2 I\left(\left[\frac{t}{2}\right] \in J_{h,c}^l\right) \sum_{j=1}^{t-1} ab^{t-j-1} \varepsilon_j^2 I(j \in J_{h,c}^l)
$$

\n
$$
+ O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \varepsilon_{t-i}^2 I\left(\left[\frac{t}{2}\right] \notin J_{h,c}^l\right) \sum_{j=1}^{t-1} ab^{t-j-1} \varepsilon_j^2 I(j \in J_{h,c}^l)
$$

\n
$$
=: (A) + (B),
$$

where [x] denotes the smallest integer larger than x. Realizing that $[t/2] \in J_{h,c}^l$ only if $t < 2C_1 hT$, we get $(A) = O_p(h^2\sqrt{T}) = o_p(1)$ once again by Markov's inequality. In (B) we can truncate the summation over j at $[t/2]-1$, as $I(j \in J_{h,c}^l) = 0$ for $j \geq [t/2]$ if $[t/2] \notin J_{h,c}^l$. We thus obtain

$$
(B) \le O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \varepsilon_{t-i}^2 \sum_{j=1}^{[t/2]-1} ab^{t-j-1} \varepsilon_j^2
$$

= $O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^T b^{[t/2]} \sum_{i=1}^{t-1} b^{i-1} \sum_{j=1}^{[t/2]-1} ab^{t-j-1-[t/2]} \varepsilon_{t-i}^2 \varepsilon_j^2$

.

By a final appeal to Markov's inequality we arrive at

$$
(B) = O_p(h)O_p\left(\frac{1}{\sqrt{T}}\right) = o_p(1),
$$

thus completing the proof for $j = 0$.

Next consider the case $j \neq 0$. Similarly to before, we have

$$
|(D_{B,j})| \leq O_p(h^2) \frac{1}{\sqrt{T}} \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 I(X_{t-k}^j \in I_h)
$$

+ $O_p(h) \frac{1}{\sqrt{T}} \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 I(X_{t-k}^j \notin I_h)$
= $O_p(h^2 \sqrt{T}) + O_p\left(\frac{h}{\sqrt{T}}\right) \sum_{t=1}^T \sum_{i=1}^{t-1} b^{i-1} \sum_{k=1}^{t-1} ab^{k-1} \varepsilon_{t-i}^2 \varepsilon_{t-k}^2 I(X_{t-k}^j \notin I_h)$
=: R_T

with $I_h = [2C_1h, 1 - 2C_1h]$ as defined in Theorem 4.1. Using (A11), it is easy to see that $R_T = O_n(h)$, which yields the result for $i \neq 0$. $R_T = O_p(h)$, which yields the result for $j \neq 0$.

Lemma C.4. It holds that

$$
(A) = -\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \left(1 - \frac{\varepsilon_t^2}{\sigma_t^2} \right) \frac{1}{\sigma_t^2} \left(\frac{\partial \tilde{v}_t^2}{\partial \phi_i} - \frac{\partial v_t^2}{\partial \phi_i} \right) + o_p(1) = o_p(1).
$$

Proof. W.l.o.g. let $\phi_i = a$. With the help of (G1) and a simple Taylor expansion, we get that

$$
\frac{\partial \tilde{v}_{t}^{2}}{\partial \phi_{i}} - \frac{\partial v_{t}^{2}}{\partial \phi_{i}} = \sum_{k=1}^{t-1} b^{k-1} \left(\tilde{\varepsilon}_{t-k}^{2} - \varepsilon_{t-k}^{2} \right)
$$
\n
$$
= \sum_{k=1}^{t-1} b^{k-1} \varepsilon_{t-k}^{2} \left[\frac{\tau^{2} \left(\frac{t-k}{T}, X_{t-k} \right) - \tilde{\tau}^{2} \left(\frac{t-k}{T}, X_{t-k} \right)}{\tau^{2} \left(\frac{t-k}{T}, X_{t-k} \right)} + R_{\varepsilon} \left(\frac{t-k}{T}, X_{t-k} \right) \right]
$$
\n
$$
= \sum_{k=1}^{t-1} b^{k-1} \varepsilon_{t-k}^{2} \left[\frac{\exp(\xi_{t-k}) \left(m \left(\frac{t-k}{T}, X_{t-k} \right) - \tilde{m} \left(\frac{t-k}{T}, X_{t-k} \right) \right)}{\exp \left(m \left(\frac{t-k}{T}, X_{t-k} \right) \right)} \right] + O_{p}(h^{2})
$$
\n
$$
= \sum_{k=1}^{t-1} b^{k-1} \varepsilon_{t-k}^{2} \left[m \left(\frac{t-k}{T}, X_{t-k} \right) - \tilde{m} \left(\frac{t-k}{T}, X_{t-k} \right) \right] + O_{p}(h^{2})
$$
\n
$$
= \sum_{k=1}^{t-1} b^{k-1} \varepsilon_{t-k}^{2} \left((m_{c} - \tilde{m}_{c}) - \tilde{m}_{0}^{A} \left(\frac{t-k}{T} \right) - \dots - \tilde{m}_{d}^{A} \left(X_{t-k}^{d} \right) \right)
$$
\n
$$
+ \left(m_{0} \left(\frac{t-k}{T} \right) - \tilde{m}_{0}^{B} \left(\frac{t-k}{T} \right) \right) + \dots + \left(m_{d} \left(X_{t-k}^{d} \right) - \tilde{m}_{d}^{B} \left(X_{t-k}^{d} \right) \right)
$$
\n
$$
+ O_{p}(h^{2}),
$$

where ξ_{t-k} is an intermediate point between $m(\frac{t-k}{T}, X_{t-k})$ and $\tilde{m}(\frac{t-k}{T}, X_{t-k})$. Using this together with arguments similar to those for Lemma C.3 yields that

$$
(A) = -\sum_{k=1}^{T-1} b^{k-1} \left(\frac{1}{\sqrt{T}} \sum_{t=k+1}^{T} (1 - \eta_t^2) \frac{\varepsilon_{t-k}^2}{\sigma_t^2} \times \left\{ (m_c - \tilde{m}_c) - \tilde{m}_0^A \left(\frac{t-k}{T} \right) - \dots - \tilde{m}_d^A \left(X_{t-k}^d \right) \right\} \right) + o_p(1)
$$

=: $(A_c) - (A_0) - (A_1) - \dots - (A_d) + o_p(1).$

It is straightforward to see that $(A_c) = o_p(1)$. In what follows, we further prove that $(A_j) = o_p(1)$ for $j = 0, ..., d$ as well, which completes the proof.

Consider a fixed $j \in \{0, \ldots, d\}$ and let $\delta > 0$ be an arbitrarily small but fixed constant. Write

$$
(A_j) = \sum_{k=1}^{T-1} b^{k-1} \left(\frac{1}{\sqrt{T}} \sum_{t=k+1}^{T} \left(1 - \eta_t^2 \right) \frac{\varepsilon_{t-k}^2}{\sigma_t^2} \tilde{m}_j^A(X_{t-k}^j) \right) =: (A_j^{\leq}) + (A_j^>),
$$

where

$$
(A_j^{\le}) = \sum_{k=1}^{T-1} b^{k-1} \left(\frac{1}{\sqrt{T}} \sum_{t=k+1}^T W_t^{\le} \frac{\varepsilon_{t-k}^2}{\sigma_t^2} \tilde{m}_j^A(X_{t-k}^j) \right)
$$

$$
(A_j^> = \sum_{k=1}^{T-1} b^{k-1} \left(\frac{1}{\sqrt{T}} \sum_{t=k+1}^T W_t^> \frac{\varepsilon_{t-k}^2}{\sigma_t^2} \tilde{m}_j^A(X_{t-k}^j) \right)
$$

with

$$
W_t^{\leq} = \left(1 - \eta_t^2\right) I(|\eta_t| \leq T^{1/48 + \delta}) - \mathbb{E}[(1 - \eta_t^2)I(|\eta_t| \leq T^{1/48 + \delta})]
$$

$$
W_t^{\geq} = \left(1 - \eta_t^2\right) I(|\eta_t| > T^{1/48 + \delta}) - \mathbb{E}[(1 - \eta_t^2)I(|\eta_t| > T^{1/48 + \delta})].
$$

We now consider the two terms (A_j^{\le}) and (A_j^{\ge}) separately. We start with (A_j^{\ge}) . Standard arguments for kernel estimators show that $\sup_{x_j \in [0,1]} |\hat{m}_j^A(x_j)| = O_p(\sqrt{\log T/Th}).$ This together with Theorem A.1 implies that $\sup_{x_j \in [0,1]} |\tilde{m}_j^A(x_j)| = O_p(\sqrt{\log T/Th})$ as well. As $\sqrt{\log T / Th} \leq T^{-3/8+\delta}$, we can infer that

$$
\left| \left(A_j^> \right) \right| \le O_p \left(\sqrt{\frac{\log T}{Th}} \right) \cdot \sum_{k=1}^{T-1} b^{k-1} \frac{1}{\sqrt{T}} \sum_{t=k+1}^T |W_t^>| \frac{\varepsilon_{t-k}^2}{\sigma_t^2} \le O_p(1) \underbrace{\sum_{k=1}^{T-1} b^{k-1} \frac{1}{T^{7/8-\delta}} \sum_{t=k+1}^T |W_t^>| \frac{\varepsilon_{t-k}^2}{\sigma_t^2}}_{:=(*)}.
$$

Moreover, since

$$
\mathbb{E}\left[\left|1-\eta_t^2\right|I(|\eta_t|>T^{1/48+\delta})\right]\leq \mathbb{E}\left[\left|1-\eta_t^2\right|\frac{\eta_t^6}{T^{6(1/48+\delta)}}I(|\eta_t|>T^{1/48+\delta})\right]\leq \frac{C}{T^{1/8+6\delta}},
$$

we get that $\mathbb{E}|W_t^{\geq}|\leq C/T_1^{1/8+6\delta}$. From this and Markov's inequality, it follows that $(*)=$ $o_p(1)$ and thus $(A_j^{\geq}) = o_p(1)$.

We next turn to the term (A_j^{\leq}) . Splitting (A_j^{\leq}) into two parts with the help of the indicators $I(\varepsilon_{t-k}^2 \leq T^{1/48+\delta})$ and $I(\varepsilon_{t-k}^2 > T^{1/48+\delta})$ and applying a similar truncation argument as above, we can show that

$$
(A_j^{\leq}) = \sum_{k=1}^{T-1} b^{k-1} \left(\frac{1}{\sqrt{T}} \sum_{t=k+1}^T W_t^{\leq} \frac{\varepsilon_{t-k}^2}{\sigma_t^2} I(|\varepsilon_{t-k}| \leq T^{1/48+\delta}) \tilde{m}_j^A(X_{t-k}^j) \right) + o_p(1).
$$

Since the weights b^{k-1} decay exponentially fast to zero, we further obtain that

$$
(A_j^{\leq}) = \sum_{k=1}^{C_2 \log T} b^{k-1} \Big(\frac{1}{\sqrt{T}} \sum_{t=k+1}^T W_t^{\leq} \frac{\varepsilon_{t-k}^2}{\sigma_t^2} I(|\varepsilon_{t-k}| \leq T^{1/48+\delta}) \tilde{m}_j^A(X_{t-k}^j) \Big) + o_p(1)
$$

with some sufficiently large constant C_2 . By Theorem A.1, it holds that uniformly in x_j ,

$$
\tilde{m}_j^A(x_j) = \frac{1}{T} \sum_{s=1}^T \left(\frac{K_h(x_j, X_s^j)}{\frac{1}{T} \sum_{v=1}^T K_h(x_j, X_v^j)} + r_{j,s}(x_j) \right) u_s + o_p\left(\frac{1}{\sqrt{T}}\right)
$$

.

By the same arguments as used in the proof of Lemma C.1, we can replace the term $\frac{1}{T}\sum_{v=1}^T K_h(x_j, X_v^j)$ by $q_j(x_j) = \int_0^1 K_h(x_j, w) dw p_j(x_j)$, which yields that

$$
(A_j^{\leq}) = \sum_{k=1}^{C_2 \log T} b^{k-1} \left(\frac{1}{\sqrt{T}} \sum_{t=k+1}^T W_t^{\leq} \frac{\varepsilon_{t-k}^2}{\sigma_t^2} I(|\varepsilon_{t-k}| \leq T^{1/48+\delta}) \tilde{m}_j^A (X_{t-k}^j) \right) + o_p(1)
$$

with

$$
\tilde{m}_j^A(x_j) = \frac{1}{T} \sum_{s=1}^T \left(\frac{K_h(x_j, X_s^j)}{q_j(x_j)} + r_{j,s}(x_j) \right) u_s.
$$

We can thus write $(A_j^{\leq}) = \sum_{k=1}^{C_2 \log T} b^{k-1} \cdot (A_{j,k}^{\leq}) + o_p(1)$ with

$$
(A_{j,k}^{\leq}) = \frac{1}{\sqrt{T}} \sum_{t=k+1}^{T} W_t^{\leq} \frac{\varepsilon_{t-k}^2}{\sigma_t^2} I(|\varepsilon_{t-k}| \leq T^{1/48+\delta}) \check{m}_j^A(X_{t-k}^j).
$$

In what follows, we prove that for any fixed $\varepsilon > 0$,

$$
\max_{1 \le k \le C_2 \log T} \mathbb{P}\left(\left| (A_{j,k}^{\le}) \right| > \varepsilon \right) \le T^{-\kappa} \tag{60}
$$

with some $\kappa > 0$. This implies that $\mathbb{P}(\max_{1 \leq k \leq C_2 \log T} |(A_{j,k}^{\leq})| > \varepsilon) \leq \sum_{k=1}^{C_2 \log T} \mathbb{P}(|(A_{j,k}^{\leq})| >$ ε) = $o(1)$, that is, $\max_{1 \leq k \leq C_2 \log T} |(A_{j,k}^{\leq})| = o_p(1)$. Since $(A_j^{\leq}) = \sum_{k=1}^{C_2 \log T} b^{k-1} \cdot (A_{j,k}^{\leq}) +$ $o_p(1) \le C \max_{1 \le k \le C_2 \log T} |(A_{j,k}^{\le k})| + o_p(1)$, we can conclude that $(A_j^{\le k}) = o_p(1)$.

It remains to prove (60). To do so, we embed the stochastic function \tilde{m}_j^A into a class of Hölder functions: For any $\eta > 0$ and $x_j \neq x'_j$,

$$
\begin{split}\n\left| \tilde{m}_{j}^{A}(x_{j}) - \tilde{m}_{j}^{A}(x_{j}') \right| \Big/ \left| x_{j} - x_{j}' \right|^{1/2 + \eta} \\
&\leq \left| \frac{1}{T} \sum_{s=1}^{T} \frac{1}{q_{j}(x_{j})} \left(K_{h} \left(x_{j}, X_{s}^{j} \right) - K_{h} \left(x_{j}', X_{s}^{j} \right) \right) u_{s} \right| \Big/ \left| x_{j} - x_{j}' \right|^{1/2 + \eta} \\
&+ \left| \frac{1}{T} \sum_{s=1}^{T} K_{h} \left(x_{j}', X_{s}^{j} \right) \frac{q_{j}(x_{j}') - q_{j}(x_{j})}{q_{j}(x_{j}')q_{j}(x_{j})} u_{s} \right| \Big/ \left| x_{j} - x_{j}' \right|^{1/2 + \eta} \\
&+ \left| \frac{1}{T} \sum_{s=1}^{T} \left(r_{j,s}(x_{j}) - r_{j,s}(x_{j}') \right) u_{s} \right| \Big/ \left| x_{j} - x_{j}' \right|^{1/2 + \eta} \\
&=: \beta_{1}(x_{j}, x_{j}') + \beta_{2}(x_{j}, x_{j}') + \beta_{3}(x_{j}, x_{j}').\n\end{split}
$$

By standard arguments to derive uniform convergence rates for kernel estimators which can be found for example in Bosq (1998), Masry (1996) or Hansen (2008), we can show that

$$
\mathbb{P}\left(\sup_{x_j, x'_j \in [0,1], x_j \neq x'_j} \left|\beta_k(x_j, x'_j)\right| > \frac{Ma_T}{6}\right) = O(T^{-\kappa})
$$

for all $k = 1, 2, 3$ and some $\kappa > 0$, where $a_T = \sqrt{\log T / Th^{2+\varsigma}}$ for some small $\varsigma > 0$ and M is a sufficiently large constant. From this, it immediately follows that

$$
\mathbb{P}\left(\sup_{x_j, x'_j \in [0,1], x_j \neq x'_j} \frac{\left|\check{m}_j^A(x_j) - \check{m}_j^A(x'_j)\right|}{\left|x_j - x'_j\right|^{1/2 + \eta}} > \frac{Ma_T}{2}\right) = O(T^{-\kappa}).\tag{61}
$$

Similarly, it can be verified that

$$
\mathbb{P}\left(\sup_{x_j\in[0,1]}|\check{m}_j^A(x_j)|>\frac{Ma_T}{2}\right)=O(T^{-\kappa}).\tag{62}
$$

From (61) and (62), we can conclude that with probability $1 - O(T^{-\kappa})$, the random function $\frac{1}{M a_T} \tilde{m}_j^A$ is contained in the Hölder space $\mathcal{F} := C_1^{1/2+\eta}([0,1])$ which is defined as follows: For any $\alpha \in (0,1],$

$$
C_1^\alpha([0,1])=\{f:[0,1]\to\mathbb{R}: f\text{ is continuous with }||f||_\alpha\leq 1\}
$$

with

$$
||f||_{\alpha} = \sup_{x \in (0,1)} |f(x)| + \sup_{x,y \in (0,1), x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}
$$

Let $\mathcal{N}(\delta, C_1^{\alpha}([0,1]), \|\cdot\|_{\infty})$ be the δ -covering number of $C_1^{\alpha}([0,1])$ endowed with the supremum norm $\|\cdot\|_{\infty}$. By Theorem 2.7.1 in van der Vaart and Wellner (1996), we have the bound

$$
\log \mathcal{N}\left(\delta, C_1^{\alpha}([0,1]), \|\cdot\|_{\infty}\right) \leq K\delta^{-1/\alpha} \tag{63}
$$

.

for any $\delta > 0$ with some fixed constant $K > 0$. We next define

$$
Z_{T,k}(f) := \frac{M a_T}{\sqrt{T}} \sum_{t=k+1}^T W_t^{\leq} \frac{\varepsilon_{t-k}^2}{\sigma_t^2} I(|\varepsilon_{t-k}| \leq T^{1/48+\delta}) f(X_{t-k}^j)
$$

and note that $(A_{j,k}^{\leq}) = Z_{T,k}(\frac{1}{M a_T} \check{m}_j^A)$. Since $\frac{1}{M a_T} \check{m}_j^A$ is contained in the Hölder space $\mathcal{F} = C_1^{1/2+\eta}([0,1])$ with probability $1 - O(T^{-\kappa})$, it follows that

$$
\mathbb{P}\left(\left| (A_{j,k}^{\leq}) \right| > \varepsilon\right) \leq P\left(\sup_{f \in \mathcal{F}} |Z_{T,k}(f)| > \varepsilon\right) + O(T^{-\kappa})
$$

and it remains to show that

$$
\mathbb{P}\left(\sup_{f\in\mathcal{F}}|Z_{T,k}(f)|>\varepsilon\right)\leq CT^{-\kappa}.\tag{64}
$$

To do so, define $Z_{T,k}^{\gamma} := T^{\gamma} Z_{T,k}$ with $\gamma > 0$ small and write

$$
\begin{split} &\mathbb{P}\Big(\left|Z_{T,k}^{\gamma}(f)-Z_{T,k}^{\gamma}(g)\right|>\varepsilon~||f-g||_{\infty}\Big)\\ &=\mathbb{P}\bigg(T^{\gamma}\bigg|\frac{Ma_{T}}{\sqrt{T}}\sum_{t=k+1}^{T}\underbrace{W_{t}^{\leq}\frac{\varepsilon_{t-k}^{2}}{\sigma_{t}^{2}}I(|\varepsilon_{t-k}|\leq T^{1/48+\delta})\left(f\big(X_{t-k}^{j}\big)-g\big(X_{t-k}^{j}\big)\right)}_{=: \psi_{t,j,k}}\bigg|>\varepsilon~||f-g||_{\infty}\bigg). \end{split}
$$

Using the trivial bound $|\psi_{t,j,k}| \leq C T^{1/12+4\delta} ||f-g||_{\infty}$ and noting that $\{\psi_{t,j,k}: t \in \mathbb{Z}\}\$ is a martingale difference sequence for any $k \geq 1$, we can show that the process $Z_{T,k}^{\gamma} =$

 $(Z_{T,k}^{\gamma}(f))_{f\in\mathcal{F}}$ has subgaussian increments. More specifically, we can apply an exponential inequality for martingale differences such as theorem 15.20 in Davidson (1994) to obtain that

$$
\mathbb{P}\left(\left|Z_{T,k}^{\gamma}(f) - Z_{T,k}^{\gamma}(g)\right| > \varepsilon \,||f - g||_{\infty}\right)
$$
\n
$$
\leq 2\exp\left(-\frac{\varepsilon^2}{2\sum_{t=k+1}^{T} \left(\frac{T^{\gamma}Ma_T}{\sqrt{T}}CT^{1/12+4\delta}\right)^2}\right)
$$
\n
$$
\leq 2\exp\left(-\frac{\varepsilon^2}{2(CM)^2\left(T^{\gamma}a_T\right)^2T^{1/6+8\delta}}\right) \leq 2\exp\left(-\frac{\varepsilon^2}{2}\right)
$$

for T large enough. Next, let $\|\cdot\|_{\psi_0}$ denote the Orlicz norm corresponding to $\psi_0(x) =$ $\exp(x^2) - 1$. Applying a maximal inequality such as theorem 2.2.4 in van der Vaart and Wellner (1996) along with the metric entropy bound (63), we obtain that

$$
\left\| \sup_{f \in \mathcal{F}} |Z^{\gamma}_{T,k}(f)| \right\|_{\psi_0} \le \int_0^C \sqrt{K \varepsilon^{-\frac{1}{1/2 + \eta}}} d\varepsilon = \sqrt{K} \int_0^C \varepsilon^{-\frac{1}{1 + 2\eta}} d\varepsilon
$$

$$
= \sqrt{K} \frac{1}{1 - \frac{1}{1 + 2\eta}} \varepsilon^{1 - \frac{1}{1 + 2\eta}} \Big|_0^C \le r_0 < \infty
$$

with some sufficiently large C . Hence, by Markov's inequality,

$$
\mathbb{P}\left(\sup_{f\in\mathcal{F}}|Z_{T,k}(f)|>\varepsilon\right) = \mathbb{P}\left(T^{-\gamma}\sup_{f\in\mathcal{F}}|Z_{T,k}^{\gamma}(f)|>\varepsilon\right)
$$

$$
\leq \frac{\mathbb{E}\left[\psi_0\left(\sup_{f\in\mathcal{F}}|Z_{T,k}^{\gamma}(f)|/r_0\right)\right]}{\psi_0(\varepsilon T^{\gamma}/r_0)} \leq \frac{1}{\exp(\varepsilon^2 T^{2\gamma}/r_0^2)-1},
$$

which completes the proof of (64).

