
C Supplementary Material

In order to complete the proof of Theorem 4.3, we still need to show that equations (45)
– (47) are fulfilled for the terms (Dc), (DV,j) and (DB,j) and that (A) given in (44) is
asymptotically negligible. In what follows, we establish these results in a series of lemmas.

Lemma C.1. It holds that
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for j = 0, . . . , d. The functions gNWj,D and gSBFj,D are absolutely bounded. Their exact form is
given in the proof (see (54) and (57) – (59)).

Proof. We start by giving a detailed exposition of the proof for j 6= 0. By Theorem A.1, the
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the function rj,s(·) = rj(
s
T , Xs, ·) is Lipschitz continuous and absolutely bounded.

With this result, we can decompose (DV,j) as follows:
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In the following, we will give the exact arguments needed to treat (DNW
V,j ). The line of

argument for (DSBF
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In a first step, we replace the sum 1
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j
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j
v) in (50) by a term which only
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As supxj∈Ih |Bj(xj)| = Op(h
2) and supxj∈Ich |Bj(xj)| = Op(h), we can proceed similarly to

the proof of Lemma C.3 later on to show that (DNW,B
V,j ) = op(1). Next we will show that

(DNW,V
V,j ) = op(1). Let Ev[·] denote the expectation with respect to the variables indexed by
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v, then

∣
∣(DNW,V

V,j )
∣
∣ =

∣
∣
∣

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−i

×
( 1

T

T∑

v=1

(Kh(X
j
t−k, X

j
v)− Ev[Kh(X

j
t−k, X

j
v)])
)

us

]∣
∣
∣

≤
T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
( 1√

T

T∑

t=mi,k

∣
∣
∣

1

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−i

∣
∣
∣

× sup
xj∈[0,1]

∣
∣
∣
1

T

T∑

v=1

(Kh(xj , X
j
v)− Ev[Kh(xj , X

j
v)])
∣
∣
∣

× sup
xj∈[0,1]

∣
∣
∣
1

T

T∑

s=1

Kh(xj , X
j
s )us

∣
∣
∣

)

= Op

( logT

Th

) T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
( 1√

T

T∑

t=mi,k

∣
∣
∣

1

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−i

∣
∣
∣

)

︸ ︷︷ ︸

=Op(
√
T ) by Markov’s inequality

= Op

( logT

Th

√
T
)

= op(1).

Together with the fact that (DNW,B
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In the next step, we replace the inner sum over t in (52) by a term that only depends on Xj
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for some sufficiently large constant C2 > 0. Once we show that (RNWV,j ) = op(1), we are left
with
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one index is separated from the others. We say that an index, for instance t, is separated
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from the others if min{|t− t′|, |t − s|, |t − s′|} > C3 logT , i.e. if it is further away from the
other indices than C3 logT for a constant C3 to be chosen later on. We now analyse P 1

i,k

and P 2
i,k separately.

(a) First consider P 1
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index, say t′, such that |t − t′| ≤ C3 logT . Now take an index different from t and t′,
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We first consider P 2,2
i,k . Set MT = CT (logT )3h−3 and exploit the Lipschitz continuity of
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that the above bound is independent of i and k and that we can make C4 arbitrarily
large by choosing C3 large enough. This shows that |P 2,1
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Combining (a) and (b) yields that P → 0 for each fixed δ > 0. This implies that
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which completes the proof for the term (DNW
V,j ).

36



As stated at the beginning of the proof, the term (DSBF
V,j ) can be treated in exactly the

same way. Following analogous arguments as above and writing ζi,kt = (σ2
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Finally, the proofs for j = 0 are very similar but somewhat simpler and are thus omitted
here. For completeness we provide the functions gNW0,D and gSBF0,D :
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Lemma C.2. It holds that
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−1. Now let mi,k = max{k+ 1, i+ 1} and assume w.l.o.g. that φi = a.
Then

1

T

T∑

t=1

Gt

t−1∑

k=1

abk−1ε2t−k =
1

T

T∑

t=1

( t−1∑

i=1

bi−1ε2t−i

) 1

σ2
t σ

2
t

t−1∑

k=1

abk−1ε2t−k

=

C2 log T
∑

k=1

abk−1

C2 log T
∑

i=1

bi−1 1

T

T∑

t=mi,k

1

σ2
t σ

2
t

ε2t−iε
2
t−k + op(1)
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with some sufficiently large constant C2. Using Chebychev’s inequality and exploiting the
mixing properties of the variables involved, one can show that

max
i,k≤C2 log T

1

T

T∑

t=mi,k

( 1

σ2
t σ

2
t

ε2t−iε
2
t−k − E

[ 1

σ2
t σ

2
t

ε2t−iε
2
t−k

])

= op(1).

This allows us to infer that

1

T

T∑

t=1

Gt

t−1∑

k=1

abk−1ε2t−k =

C2 log T
∑

k=1

abk−1

C2 log T
∑

i=1

bi−1 1

T

T∑

t=mi,k

E

[ 1

σ2
t σ

2
t

ε2t−iε
2
t−k

]

+ op(1)

=
∞∑

k=1

abk−1
∞∑

i=1

bi−1
E

[ 1

σ2
0σ

2
0

ε2−iε
2
−k

]

+ op(1),

which completes the proof.

Lemma C.3. It holds that
(DB,j) = op(1)

for j = 0, . . . , d.

Proof. We start by considering the case j = 0: Define

Jh = {t ∈ {1, . . . , T } : C1h ≤ t

T
≤ 1− C1h}

Juh,c = {t ∈ {1, . . . , T } : 1− C1h <
t

T
}

J lh,c = {t ∈ {1, . . . , T } :
t

T
< C1h},

where [−C1, C1] is the support of K. Using the uniform convergence rates from Theorem
A.2 and assuming w.l.o.g. that φi = a, we get

|(DB,0)| =
∣
∣
∣
1√
T

T∑

t=1

∂v2t
∂a

1

σ2
t σ

2
t

t−1∑

k=1

abk−1ε2t−k

[

m0

( t− k

T

)

− m̃B
0

( t− k

T

)

− 1

T

T∑

s=1

m0

( s

T

)]∣
∣
∣

≤ Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(t− k ∈ J lh,c)

+Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(t− k ∈ Juh,c)

+Op(h
2)

C√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(t− k ∈ Jh)

=: (D
Jl
h,c

B,0 ) + (D
Ju
h,c

B,0 ) + (DJh

B,0).

By Markov’s inequality, (DJh

B,0) = Op(h
2
√
T ) = op(1). Recognizing that

(i) I(t− k ∈ Juh,c) ≤ I(t ∈ Juh,c) for all k ∈ {0, . . . , t− 1}
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(ii)
∑T

t=1 I(t ∈ Juh,c) ≤ C1Th,

we get (D
Ju
h,c

B,0 ) = Op(h
2
√
T ) = op(1) by another appeal to Markov’s inequality. This just

leaves (D
Jl
h,c

B,0 ), which is a bit more tedious. By a change of variable j = t− k,

(D
Jl
h,c

B,0 ) ≤ Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1ε2t−i

t−1∑

j=1

abt−j−1ε2jI(j ∈ J lh,c)

= Op(h)
1√
T

T∑
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bi−1ε2t−iI
([ t

2

]

∈ J lh,c

) t−1∑

j=1

abt−j−1ε2jI(j ∈ J lh,c)

+Op(h)
1√
T

T∑

t=1

t−1∑
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bi−1ε2t−iI
([ t

2

]

/∈ J lh,c

) t−1∑

j=1

abt−j−1ε2jI(j ∈ J lh,c)

=: (A) + (B),

where [x] denotes the smallest integer larger than x. Realizing that [t/2] ∈ J lh,c only if

t < 2C1hT , we get (A) = Op(h
2
√
T ) = op(1) once again by Markov’s inequality. In (B) we

can truncate the summation over j at [t/2]−1, as I(j ∈ J lh,c) = 0 for j ≥ [t/2] if [t/2] /∈ J lh,c.
We thus obtain

(B) ≤ Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1ε2t−i

[t/2]−1
∑

j=1

abt−j−1ε2j

= Op(h)
1√
T

T∑

t=1

b[t/2]
t−1∑

i=1

bi−1

[t/2]−1
∑

j=1

abt−j−1−[t/2]ε2t−iε
2
j .

By a final appeal to Markov’s inequality we arrive at

(B) = Op(h)Op

( 1√
T

)

= op(1),

thus completing the proof for j = 0.

Next consider the case j 6= 0. Similarly to before, we have

|(DB,j)| ≤ Op(h
2)

1√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(X

j
t−k ∈ Ih)

+Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(X

j
t−k /∈ Ih)

= Op(h
2
√
T ) +Op

( h√
T

) T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(X

j
t−k /∈ Ih)

︸ ︷︷ ︸

=:RT

with Ih = [2C1h, 1 − 2C1h] as defined in Theorem 4.1. Using (A11), it is easy to see that
RT = Op(h), which yields the result for j 6= 0.
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Lemma C.4. It holds that

(A) = − 1√
T

T∑

t=1

(

1− ε2t
σ2
t

︸ ︷︷ ︸

=(1−η2t )

) 1

σ2
t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)

+ op(1) = op(1).

Proof. W.l.o.g. let φi = a. With the help of (G1) and a simple Taylor expansion, we get
that

∂ṽ2t
∂φi

− ∂v2t
∂φi

=
t−1∑

k=1

bk−1
(
ε̃2t−k − ε2t−k

)

=

t−1∑

k=1

bk−1ε2t−k

[

τ2
(
t−k
T , Xt−k

)
− τ̃2

(
t−k
T , Xt−k

)

τ2
(
t−k
T , Xt−k

) +Rε

( t− k

T
,Xt−k

)
]

=

t−1∑

k=1

bk−1ε2t−k

[

exp(ξt−k)
(
m
(
t−k
T , Xt−k

)
− m̃

(
t−k
T , Xt−k

))

exp
(
m
(
t−k
T , Xt−k

))

]

+Op(h
2)

=

t−1∑

k=1

bk−1ε2t−k

[

m
( t− k

T
,Xt−k

)

− m̃
( t− k

T
,Xt−k

)]

+Op(h
2)

=

t−1∑

k=1

bk−1ε2t−k

{

(mc − m̃c)− m̃A
0

( t− k

T

)

− . . .− m̃A
d

(
Xd
t−k
)

+

(

m0

( t− k

T

)

− m̃B
0

( t− k

T

))

+ . . .+
(
md

(
Xd
t−k
)
− m̃B

d

(
Xd
t−k
))
}

+Op(h
2),

where ξt−k is an intermediate point between m( t−kT , Xt−k) and m̃( t−kT , Xt−k). Using this
together with arguments similar to those for Lemma C.3 yields that

(A) = −
T−1∑

k=1

bk−1

(

1√
T

T∑

t=k+1

(
1− η2t

) ε2t−k
σ2
t

×
{

(mc − m̃c)− m̃A
0

( t− k

T

)

− . . .− m̃A
d

(
Xd
t−k
)
})

+ op(1)

=: (Ac)− (A0)− (A1)− . . .− (Ad) + op(1).

It is straightforward to see that (Ac) = op(1). In what follows, we further prove that
(Aj) = op(1) for j = 0, . . . , d as well, which completes the proof.
Consider a fixed j ∈ {0, . . . , d} and let δ > 0 be an arbitrarily small but fixed constant.
Write

(Aj) =

T−1∑

k=1

bk−1

(

1√
T

T∑

t=k+1

(
1− η2t

) ε2t−k
σ2
t

m̃A
j (X

j
t−k)

)

=: (A≤
j ) + (A>j ),
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where

(A≤
j ) =

T−1∑

k=1

bk−1

(

1√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t
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)

(A>j ) =
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1√
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t

ε2t−k
σ2
t
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j
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)

with

W≤
t =

(
1− η2t

)
I(|ηt| ≤ T 1/48+δ)− E[(1− η2t )I(|ηt| ≤ T 1/48+δ)]

W>
t =

(
1− η2t

)
I(|ηt| > T 1/48+δ)− E[(1− η2t )I(|ηt| > T 1/48+δ)].

We now consider the two terms (A≤
j ) and (A>j ) separately. We start with (A>j ). Standard

arguments for kernel estimators show that supxj∈[0,1]

∣
∣m̂A

j (xj)
∣
∣ = Op(

√

logT/Th). This

together with Theorem A.1 implies that supxj∈[0,1]

∣
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j (xj)
∣
∣ = Op(

√

logT/Th) as well. As
√

logT/Th ≤ T−3/8+δ, we can infer that

∣
∣
(
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)∣
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·
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bk−1 1√
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t

︸ ︷︷ ︸

:=(∗)

.

Moreover, since

E

[∣
∣1− η2t

∣
∣ I(|ηt| > T 1/48+δ)

]

≤ E

[
∣
∣1− η2t

∣
∣

η6t
T 6(1/48+δ)

I(|ηt| > T 1/48+δ)

]

≤ C

T 1/8+6δ
,

we get that E|W>
t | ≤ C/T 1/8+6δ. From this and Markov’s inequality, it follows that (∗) =

op(1) and thus (A>j ) = op(1).

We next turn to the term (A≤
j ). Splitting (A≤

j ) into two parts with the help of the indicators

I(ε2t−k ≤ T 1/48+δ) and I(ε2t−k > T 1/48+δ) and applying a similar truncation argument as
above, we can show that

(
A≤
j

)
=
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T
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W≤
t

ε2t−k
σ2
t
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j

(
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Since the weights bk−1 decay exponentially fast to zero, we further obtain that

(
A≤
j

)
=

C2 log T
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( 1√

T
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t

ε2t−k
σ2
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j

(
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with some sufficiently large constant C2. By Theorem A.1, it holds that uniformly in xj ,

m̃A
j (xj) =

1

T

T∑

s=1

(

Kh(xj , X
j
s )

1
T

∑T
v=1Kh(xj , X

j
v)

+ rj,s(xj)

)

us + op

(
1√
T

)

.
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By the same arguments as used in the proof of Lemma C.1, we can replace the term
1
T

∑T
v=1Kh(xj , X

j
v) by qj(xj) =

∫ 1

0
Kh(xj , w)dw pj(xj), which yields that

(
A≤
j

)
=

C2 log T
∑

k=1

bk−1
( 1√

T
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I(|εt−k| ≤ T 1/48+δ) m̌A
j

(
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+ op(1)

with

m̌A
j (xj) =

1

T

T∑

s=1

(
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(
xj , X

j
s

)

qj(xj)
+ rj,s(xj)

)

us.

We can thus write (A≤
j ) =

∑C2 log T
k=1 bk−1 · (A≤

j,k) + op(1) with

(A≤
j,k) =

1√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) m̌A
j (X

j
t−k).

In what follows, we prove that for any fixed ε > 0,

max
1≤k≤C2 log T

P

(∣
∣(A≤

j,k)
∣
∣ > ε

)

≤ T−κ (60)

with some κ > 0. This implies that P(max1≤k≤C2 log T |(A≤
j,k)| > ε) ≤∑C2 log T

k=1 P(|(A≤
j,k)| >

ε) = o(1), that is, max1≤k≤C2 log T |(A≤
j,k)| = op(1). Since (A≤

j ) =
∑C2 log T

k=1 bk−1 · (A≤
j,k) +

op(1) ≤ Cmax1≤k≤C2 log T |(A≤
j,k)|+ op(1), we can conclude that (A≤

j ) = op(1).

It remains to prove (60). To do so, we embed the stochastic function m̌A
j into a class of

Hölder functions: For any η > 0 and xj 6= x′j ,

∣
∣m̌A

j (xj)− m̌A
j (x

′
j)
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/ ∣
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∣
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∣
∣
∣
∣
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∣
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+

∣
∣
∣
∣
∣

1

T
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j
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∣
∣
∣
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∣
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+

∣
∣
∣
∣
∣

1

T
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(
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′
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)
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∣
∣
∣
∣
∣

/ ∣
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∣
∣
1/2+η

=: β1(xj , x
′
j) + β2(xj , x

′
j) + β3(xj , x

′
j).

By standard arguments to derive uniform convergence rates for kernel estimators which can
be found for example in Bosq (1998), Masry (1996) or Hansen (2008), we can show that

P

(

sup
xj ,x′

j∈[0,1],xj 6=x′

j

∣
∣βk(xj , x

′
j)
∣
∣ >

MaT
6

)

= O(T−κ)

for all k = 1, 2, 3 and some κ > 0, where aT =
√

logT/Th2+ς for some small ς > 0 and M
is a sufficiently large constant. From this, it immediately follows that

P



 sup
xj ,x′

j∈[0,1],xj 6=x′

j

∣
∣m̌A

j (xj)− m̌A
j (x

′
j)
∣
∣

∣
∣xj − x′j

∣
∣
1/2+η

>
MaT
2



 = O(T−κ). (61)

42



Similarly, it can be verified that

P

(

sup
xj∈[0,1]

∣
∣m̌A

j (xj)
∣
∣ >

MaT
2

)

= O(T−κ). (62)

From (61) and (62), we can conclude that with probability 1−O(T−κ), the random function
1

MaT
m̌A
j is contained in the Hölder space F := C

1/2+η
1 ([0, 1]) which is defined as follows: For

any α ∈ (0, 1],

Cα1 ([0, 1]) = {f : [0, 1] → R : f is continuous with ‖f‖α ≤ 1}

with

‖f‖α = sup
x∈(0,1)

|f(x)|+ sup
x,y∈(0,1),x 6=y

|f(x)− f(y)|
|x− y|α .

LetN (δ, Cα1 ([0, 1]), ‖·‖∞) be the δ-covering number of Cα1 ([0, 1]) endowed with the supremum
norm ‖ · ‖∞. By Theorem 2.7.1 in van der Vaart and Wellner (1996), we have the bound

logN (δ, Cα1 ([0, 1]), ‖ · ‖∞) ≤ Kδ−1/α (63)

for any δ > 0 with some fixed constant K > 0. We next define

ZT,k(f) :=
MaT√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) f
(
Xj
t−k
)

and note that (A≤
j,k) = ZT,k(

1
MaT

m̌A
j ). Since 1

MaT
m̌A
j is contained in the Hölder space

F = C
1/2+η
1 ([0, 1]) with probability 1−O(T−κ), it follows that

P

(∣
∣(A≤

j,k)
∣
∣ > ε

)

≤ P

(

sup
f∈F

|ZT,k(f)| > ε

)

+ O(T−κ)

and it remains to show that

P

(

sup
f∈F

|ZT,k(f)| > ε

)

≤ CT−κ. (64)

To do so, define ZγT,k := T γZT,k with γ > 0 small and write

P

( ∣
∣
∣Z

γ
T,k(f)− ZγT,k(g)

∣
∣
∣ > ε ||f − g||∞

)

= P

(

T γ
∣
∣
∣
∣

MaT√
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I(|εt−k| ≤ T 1/48+δ)
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f
(
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− g
(
Xj
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))

︸ ︷︷ ︸

=:ψt,j,k

∣
∣
∣
∣
> ε ||f − g||∞

)

.

Using the trivial bound |ψt,j,k| ≤ CT 1/12+4δ||f − g||∞ and noting that {ψt,j,k : t ∈ Z}
is a martingale difference sequence for any k ≥ 1, we can show that the process ZγT,k =
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(ZγT,k(f))f∈F has subgaussian increments. More specifically, we can apply an exponential
inequality for martingale differences such as theorem 15.20 in Davidson (1994) to obtain that

P

(∣
∣
∣Z

γ
T,k(f)− ZγT,k(g)

∣
∣
∣ > ε ||f − g||∞

)

≤ 2 exp
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T
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≤ 2 exp

(

− ε2

2(CM)2 (T γaT )
2 T 1/6+8δ

)

≤ 2 exp

(

−ε
2

2

)

for T large enough. Next, let ‖ · ‖ψ0
denote the Orlicz norm corresponding to ψ0(x) =

exp(x2)−1. Applying a maximal inequality such as theorem 2.2.4 in van der Vaart and Wellner
(1996) along with the metric entropy bound (63), we obtain that

∥
∥
∥ sup
f∈F

|ZγT,k(f)|
∥
∥
∥
ψ0

≤
∫ C

0

√

Kε−
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1/2+η dε =
√
K
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0
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1+2η dε

=
√
K

1

1− 1
1+2η

ε1−
1

1+2η

∣
∣
∣

C

0
≤ r0 <∞

with some sufficiently large C. Hence, by Markov’s inequality,

P

(

sup
f∈F

|ZT,k(f)| > ε

)

= P

(

T−γ sup
f∈F

|ZγT,k(f)| > ε

)

≤
E

[

ψ0

(

supf∈F |ZγT,k(f)|/r0
)]

ψ0(εT γ/r0)
≤ 1

exp(ε2T 2γ/r20)− 1
,

which completes the proof of (64).
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