C Supplementary Material

In order to complete the proof of Theorem 4.3, we still need to show that equations (45)
— (47) are fulfilled for the terms (D.), (Dy,;) and (Dp ;) and that (A) given in (44) is
asymptotically negligible. In what follows, we establish these results in a series of lemmas.

Lemma C.1. It holds that

1 T
(DV,j) = \/_T ;gj,D(%»XS)us +0p(1)

with s - 5
9i.0(2:X.) = 98 (X)) + 55 (3. X.)
for 3 =0,...,d. The functions gjvg/ and gjng are absolutely bounded. Their exact form is

given in the proof (see (54) and (57) — (59)).

Proof. We start by giving a detailed exposition of the proof for j # 0. By Theorem A.1, the
stochastic part m;‘ of the smooth backfitting estimate 7; has the expansion

T
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= A 5 A
mi(z;) =m;(x;) + = E 7j.s(Zj)us + 0 (—)
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uniformly in z;, where m4 is the stochastic part of the Nadaraya-Watson pilot estimate and
the function r; (-) = (5, X, -) is Lipschitz continuous and absolutely bounded.
With this result, we can decompose (Dy ;) as follows:

1 o 1 A
o t k—1_2 ~ A j
(Dv,j) = —= Z 9¢; 0202 ; ab -k (ngk)

— (DY) + (DYEF) 4 0,(1).

In the following, we will give the exact arguments needed to treat (Dﬁ}’v) The line of
argument for (D‘S/?F ) is essentially identical although some of the steps are easier due to the
properties of the r; ¢ functions.

W.lo.g. set ¢; = a and let m;, = max{k + 1,7 + 1}. Using 0v?/da = S/~ b~ 1e?_, and

i (z;) = & Sou_y Knlwj, X1/ % Y0y Kn(aj, X{), we get
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In a first step, we replace the sum %Zle Kn(X]_,,X7) in (50) by a term which only
depends on Xg; « and show that the resulting error is asymptotically negligible. Let ¢;(x;) =
fol Kp(z;,w)dw pj(z;). Furthermore define

B(;) = TZE Koy, X))~ a5()
Vita) = 3 (Ko, X2) ~ B[y, X2)).

v=1

Notice that bupz76[0 17 1Bj(x5)| = Op(h) and sup,, ¢ (0,1) [Vj ()| = Op(\/log T/Th). From the

identity + Zv L Kn(xj, X1) = q;(z;)+ Bj(z;)+ V;j(z;) and a second order Taylor expansion
of (14 x)~! we arrive at
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% ZUTZI Kh(xijij)-) a q]'(wj) (1 q]'(iEj) ) (5]‘)
= 1 Bj(xj)+‘/j(xj) 2
() (- o) o )

uniformly in z;. Plugging this decomposition into (50), we obtain
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—_
~—

with
T-1 T-1 T T
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(DYWPY = abk~! b“l{— - Kp(X7_, X7)=L2imk! 22 ,Us}

! k=1 i=1 \/TSZ:; T t:;k ' q?(Xi ,) ot}
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(Dy ") = ab®~1 pi—1 [— — Kn(X7 ,X) 2 .2 lus}
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As sup, g, |Bj(z;)] = O,(h?) and sup,, e re |Bj(x;)| = Op(h), we can proceed similarly to
the proof of Lemma C.3 later on to show that (DgJW’B) = 0p(1). Next we will show that
(DNW,V B '

v.; ) =o0p(1). Let E,[] denote the expectation with respect to the variables indexed by
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v, then
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=0, (VT) by Markov’s inequality

_ op(k;?};fﬁ) — op(1).

Together with the fact that (Dg W-BY — 0,(1), this yields

D§W>fzabklzb~[ fz;; XEj XDt +o,(0. (52

where we use the shorthand pi* = (g (XJ Q)oiod) el et .
In the next step, we replace the inner sum over ¢ in (52) by a term that only depends on X7
and show that the resulting error can be asymptotically neglected. Define

EXT 4 X2) = GN(XT 4, XD) o= Kn(X]p, XD py® — B [Kn(XT_y, XDy,

where E_¢[] is the expectation with respect to all variables except for those depending on
the index s. With the above notation at hand, we can write

(DY :Zabk 12[;’1[\/_2 Z]E (K (X, XDy ]us]

t=m;
+ (RV.,j ) +op(1),

where
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for some sufficiently large constant Cy > 0. Once we show that (Ry}) = 0,(1), we are left
with

T-1 T-1 T T
— i— 1 1 . i,
(DY) =3 a3 = Y B KO XD s 4 0p(1)
k=1 =1 T s=1 t=m;
1 T T-1 T-1 T m
- i—12 T Mikm i i,
= > (ot T T L KX X s+ 0 (1),
s=1 k=1 =1

As the terms with i,k > CslogT are asymptotically negligible, we can expand the i and k&
sums to infinity, which yields

T fe%e) [e%s)
1 ) . -
(DY TZ(Z ab S BRI (X XD s+ op(1) (54)
s=1 k=1 =1
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with
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0o = el el

q;(X7,) otod

4(X7,) = / (X7 w)dw pj (X7,).

Thus it remains to show that (R} E’V) = 0,(1), which requires a lot of care. We will prove
that the term in square brackets in (53) is op,(1) uniformly over i, k < Cylog T, which yields
the desired result. It is easily seen that

T
1 1 ; )
- BIRY L
PimP( max |23 7 3 XD,

s=1 t=m;
CalogT CalogT 1 T 1 T )
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for a fixed § > 0. Then by Chebychev’s inequality

T T
F’i,k < TSL(SQ Z Z E|:£( t— ]g?X])ueg( kan’)uS’:|

s,s'=1t,t'=m; j

~mE L B[O e o X

(s,8",t,t" )¢

1 .
+ T352 Z E{f(Xg kvX])“sf( kng’)uS’} =: Pil.,k + PiQ,ka
(s,s",t,t") €T, 1

where T; j, is the set of tuples (s, s',¢,t') with 1 < s,s' < T and m; < t,t' < T such that
one index is separated from the others. We say that an index, for instance t, is separated
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from the others if min{|t — ¢/|, |t — s|, |t — &'|} > Cs5logT, i.e. if it is further away from the
other indices than CslogT for a constant Cs to be chosen later on. We now analyse P&k

and Pfk separately.

(a)

First consider le . If a tuple (s,s,t,t') is not an element of T'; ;, then no index can
be separated from the others. Since the index ¢ cannot be separated, there exists an
index, say ¢, such that |t — ¢| < C3logT. Now take an index different from ¢ and #',
for instance s. Then by the same argument, there exists an index, say s’, such that
|s —s'| < CslogT. As a consequence, the number of tuples (s, s,t,t") ¢ I'; , is smaller
than CT?(log T')? for some constant C. Using (A11), this suffices to infer that

Z C - C (logT)?
h? =82 Th?

(5,86, )¢l ke

Pl <

Hence, | P, | < C62(log T)~* uniformly in 7 and k.

The term P2,C is more difficult to handle. We start by taking a cover {I,,}M7, of the

compact support [0,1] of Xf »- The elements I,,, are mtervals of length 1/Mp given by

I, = ["Xhl, i) form =1,..., My — 1 and In; = [1 - ,1]. The midpoint of the

interval I, is denoted by Z.,. With this, we can write

Kn(X] ., X)) = ZI €1 (55)

[Kh(xma ) (Kh(Xf kvX ) Kh(xman))]
Using (55), we can further write

M~
exixl) = Y {IXE, € L) K (o, XD

m=1

~E_I(X] , € Im)Kh(wm,Xﬁ)ui’k]}

T
+ 3 {1 € L) (Bn (XL XE) = Ko, XD)up*

m=1

— B 1Y)y € L) (Ku(X e X3) — Ko, XD)pi "]}

=: 51(Xg—kv X))+ f?(th—kv X7)

and

1
Pi2,k = T352 Z [51( t—k> )usé( kaX )us]

(s,8",t,t")ET; i

1 . ) . .
+ T352 Z E[&(th—kvXg)us'f(Xg'—kng/)US’] =: Pf}cl + Pf}f-
(s,s",t,t") €T, 1
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We first consider Pfk2 Set M7 = CT(log T)2>h~2 and exploit the Lipschitz continuity of
the kernel K to get that |Kx(X] ,, X7) — Kp(2m, XI)| < S|X]_, — 2| This gives us

Mt

, ) C . . ;
(X7 XD < 5 3 (10X, € L)X — | (56)

m=1

<I(X)_ €ln)Mp!

. . ) C ) ,
ik ik ik
+E[I(X]_ € In)|X{_y — @m| 11y ]) < e e+ Bl ).

<I(X)_, eln) Mz

Plugging (56) into the expression for Pf}f, we arrive at

1 . . . .
|Pi2,}c2 < T352 Z E{’£2(ngk>Xg)’|“8£(Xg’—k7Xg’)u5/ }
(s,8",t,t") €D
SmEine o Bl B e Xiuel] £ 5o

st el k
(s,8",t,t") & <Ch-t

We next turn to Pi%}cl. Write
1 Mr,
21
Pilmgmm 2 (X sn)
(s,8",t,t")€l; ), m=1
with
S = JE{{I(XL,C € L) Kn(@m, XD uy* — E_[I(X]_,, € L) Kn(xm, X2y}
X us&(XI o, X2 Yuy

and assume that an index, w.l.o.g. t, can be separated from the others. Choosing C3 >
Cs, we get,

S, — COV(I(th_k € L)ul* —E[I(X]_, € Im)ui’k],K;L(xm,Xg)usg(Xg,_k,XSj,)us,)

< %(Q([Cg; o 02] logT))l—% < %(a(cngz)logT)l—% < T*C4

h2
with some Cy > 0 by Davydov’s inequality, where p is chosen slightly larger than 2. Note
that the above bound is independent of ¢ and k£ and that we can make Cj arbitrarily
large by choosing Cs large enough. This shows that |P12k1| < C52(log T)~? uniformly
in ¢ and k with some constant C'.

Combining (a) and (b) yields that P — 0 for each fixed ¢ > 0. This implies that

(Ry;") = 0p(1),

which completes the proof for the term (D{Y}V).
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As stated at the beginning of the proof, the term (Dy5F) can be treated in exactly the

. . ik
same way. Following analogous arguments as above and writing ;" = (c707) e 7,
one obtains

T—1 T—1 . T T )
(DV5F) = Z ab* ! Z bl_l[ Z Z sl (X6 Us} + op(1) (57)
k=1 =1 s=1 t=m,;
T
SR D ORD S SEREERER) AT
s=1 k=1

=: 77 ZgﬁgF<%,Xs)us +0,(1).
s=1

Finally, the proofs for j = 0 are very similar but somewhat simpler and are thus omitted
here. For completeness we provide the functions gé\f and gSBF :

(%) = (Z ab*~ 1267 'E[- 25 2] / o Kh Ty (59)
g5 (5 %) = (kZ:l ab*~ 121;1 'E[ 2135 ke_z})/o ro,s (w)duw. (59)

O
Lemma C.2. It holds that

T
1
(Dc = = E 9e,DUs
) Ts:l

with

gc,D_Z bk lzbz 1]E|:

Proof. Using the fact that

zzﬂ_mﬁ zmo( )+ LS zus,

j=1 s=1

]

we arrive at .
( ;Gtz abk— 1€t k)(%;m)

with Gy = dvf “(0707) " Now let m; ), = max{k +1,i+ 1} and assume w.lo.g. that ¢; = a.
Then

1 T t—1 1 T -1
1 G, abb1e2 :_Z(sz 1 2 ) Z abb1e2
TZ t—k — 1 _ 2 tz t—k
t=1 k=1 t=1 i=1
CalogT CalogT

T
1 1
k—1 1 2 2
= ab E b T, > @Q%Q%‘F%(l)
=Mi k
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with some sufficiently large constant C5. Using Chebychev’s inequality and exploiting the
mixing properties of the variables involved, one can show that

1 2 2 1 2 2 o
’Lk<C210gTT Z (0' O' 53€t—i€t—k E[G?U?Et_ift_k}) —Op(l)

This allows us to infer that

T t—1 CylogT CylogT 1 T 1
T Z abk 1Et [ Z Cl,bk_l Z bl_li Z E{m&?ii&'?ik} +Op(1)
t=1 k=1 k=1 i=1 t=m; K trt
o0 o0
:Zabk 1251 1IEI[ 2.c _k] +o,(1),
which completes the proof. O

Lemma C.3. It holds that
(Dp,j) = 0p(1)

forj=0,...,d.
Proof. We start by considering the case j = 0: Define
t
:{ﬁe {1,,T}Clh§ T < 1—01]7,}
. t
Jye={te{l,....,T}:1-C1h < T}

Jhe={te{l,....T}: —<Clh}

where [—Cq, C1] is the support of K. Using the uniform convergence rates from Theorem
A.2 and assuming w.l.o.g. that ¢; = a, we get

T
S ZZ Z 12 bk lgt LEt kl(t_ke‘]h(,)

T t—1
1
+0p(h)—=> > b 1Zabk Le? el I(t—keJy,)
t=1 1=1
T t—1

+Op(h2)ﬁ > v 12 ab*te? &2 I(t—k e Jy)
t=1 =1

1 u
Jhr ']hr

= (Dg'y) + (Dg'y) + (D}{;;to)-

Q’ﬂ

By Markov’s inequality, (D'jgjo) = 0, (h*VT) = 0,(1). Recognizing that
() It-kelJy,)<I(teJy,)forallke{0,...,t -1}
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(i) S, I(t e Jp,) < C1Th,

we get (D]J;;(’)" = 0,(h*VT) = 0,(1) by another appeal to Markov’s inequality. This just

1
leaves (DE]; 0 7), which is a bit more tedious. By a change of variable j =t — k,

T t—1 t—1
(DJ) < 0, (h) \/_ZZb tei Y ab IS € Ty )
t=1i=1 =1
T t—1 ’ t—1 ]
vhggywaidﬁeﬁagwa%we%a
T t—1 " =1 .
o) oS e ([g] € Jh) S G e )

t=1 i=1 j=1

where [2] denotes the smallest integer larger than z. Realizing that [t/2] € J; , only if
t < 2C,hT, we get (A) = O,(h*VT) = 0,(1) once again by Markov’s inequality. In (B) we
can truncate the summation over j at [t/2]—1,as I(j € Jh,c) =0forj > [t/2]if [t/2] ¢ Jh,c
We thus obtain

1 T t—1 [t/2]—1
(B) < Op(h)—= bR, Y abt el
ﬁt:l i=1 j=1
T [t/2]-1 _
= 0,(h) WZ WlZw YT apt R el
=1 j=1

By a final appeal to Markov’s inequality we arrive at

(B) = 0,110, (=) = 0y(1).

thus completing the proof for j = 0.

Next consider the case j # 0. Similarly to before, we have

T t-1 t—1
1
[(Dgj)| < Op(h?) ﬁZZbZ 1Zabk el et W I(X]_ e )
t=11i1=1 k=1
1 T t—1 t—1
NS S S e K o )
t=1 i=1 k=1

t—

h T 1 .
= 0y + 0y (=) 330 1Zab’“ et (XD ¢ 1)
t=1 i=1

=:Rp

with I = [2C1h,1 — 2C4h] as defined in Theorem 4.1. Using (A1l), it is easy to see that
Ry = Op(h), which yields the result for j # 0. O
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Lemma C.4. It holds that

<A>——iTi(1—5—t) (2;;3 gj;;)w ) = 0,(1).

Proof. W.lo.g. let ¢; = a. With the help of (G1) and a simple Taylor expansion, we get
that

902 00 T g e
37;1 - 37; = ;bk Y(EL — e
S [PEEXL) PR | ik
_ ph—1c2 ™ (F, Xk T’tk—l—RE—,X,
]; t—k _ 72 (ZE X, 1) ( T t k)
— § bkil&‘?,k exp(é.t*k) ( ( Xt k) (Tk’thk)) 4 Op(h2)
k=1 L exp (m (75, Xi—x))
t—1 -
t—k t—k
=S tedy (MR x) (5 ) |+ o)
k=1 L
t—1 fk
— ; ph1e2 {(mu — 1he) — T (T) — =y (X))
t—k _g/t—k -
s (mo(SE) =B (SE) )+ ma () - (x0) |
+ 0p(h?),
where &_j is an intermediate point between m(=E, X, 4) and m(ZE, X;_x). Using this
together with arguments similar to those for Lemma C.3 yields that
T-1 2
bk: 1 < €
; \/_t;i-l f
t—k .
X { — M) — My (T) — . —m} (Xtd_k)}> +o0p(1)
=: (Ae) = (Ao) = (A1) — ... = (Aa) + 0p(1).

It is straightforward to see that (A.) = o0,(1). In what follows, we further prove that
(Aj) = o0p(1) for j =0,...,d as well, which completes the proof.

Consider a fixed j € {0,...,d} and let 6 > 0 be an arbitrarily small but fixed constant.
Write

(4= 30+ (iT >0 (1) k>) = (A7) + (47),

k=1
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where

T-1 1 T 2 ‘
(A5) = p? (— > owE m;‘(xgk)>
T 0%
k=1 t=k+1
T-1 T 2
(A7) = pr—1 (L Z w7 et;k mA(Xg k))
J j _
k=1 \/thk+1 T

with

W = (L= ) Il < TV450) — BI(1 = nf)I (] < TH440)]

W = (L =) I(ne > TYV*+°) = E[(1 = 0L (|Jne| > TV45+0)).
We now consider the two terms (A]S) and (A7) separately. We start with (A7). Standard
arguments for kernel estimators show that sup, cp 1 | (z;)| = Op(y/logT/Th). This
together with Theorem A.1 implies that sup, ¢ 1 | (z5)| = Op(y/log T/Th) as well. As
V1og T/Th < T—3/3+% we can infer that

mﬁﬂsa(Jﬁf)ifklf-zn

t=k+1

T—1 . 1 Etg .
SENUD DU

k=1 t=k-+1 t

=)
Moreover, since
1/484-6 77t 1/48+6 c
[\1—7%![ el >T )} <E ‘1 ’T6(1/48+5)I(‘77t|>T )| < T1/8+65

we get that E[W;”| < C/T/8+%_ From this and Markov’s inequality, it follows that () =
op(1) and thus (A7) = o,(1).

We next turn to the term (AJS) Splitting (AJS) into two parts with the help of the indicators
I(e2 , < TY%+%) and I(e2_, > TY/*8+9) and applying a similar truncation argument as
above, we can show that

T-1
_ Z bk—l( Z ws Sk Et i I(\et B < TVA8+0) 5y (XJ )) +0,(1).
= t k+1

Since the weights b*~1 decay exponentially fast to zero, we further obtain that

CologT T 62 .
= 3 07 (g B WEGE el STV (L)) + o)
t=k+1

with some sufficiently large constant C3. By Theorem A.1, it holds that uniformly in z;,
Kh L, X ) ( 1 >
(z;) = +7is(T5) |us+op | —= |-
o= 13 (s e oo (7

41




By the same arguments as used in the proof of Lemma C.1, we can replace the term
% ZUT:1 Kp(zj, X7) by gj(x;) = fol Kp(xj, w)dw p;(z;), which yields that

CalogT T
1 g2 .
AS — bk71 W< t— k e < T1/48+5 Xj + 1
( J) ; (ﬁt;ﬂ t at | t— k| ) J( tfk)) 0;0( )

with

7 A(l‘j) -7 Z (Kh ik ) +7”j,s(xj)> Usg.

qj(z;)

We can thus write (A )= 02 logTblc L(A ‘_,k) + 0, (1) with

1
\/,

In what follows, we prove that for any fixed £ > 0,

P(|(45)] > ) <7 (60)

k
(A50) = Z Wi (t;t I(ler—r| < TS0y mt(X] ).

t=k+1

max
1<k<CsylogT

with some x > 0. This implies that P(maxi<k<c, 107 (45 S >e) < Zcz log T p (|(A )| >
£) = of1), that i, maxsicc, g1 [(A5)] = 0y(1). Since (AF) = X205 B0 - (A7) +
0p(1) < Cmaxi<p<cyiogT |(A]Sk)| + 0,(1), we can conclude that (AS) = 0,(1).

It remains to prove (60). To do so, we embed the stochastic function m Vj‘
Holder functions: For any n > 0 and z; # 7,

) — >|/Ixj [

into a class of

T
— X ) Kh l‘ Xj /|$j ;’1/2+TI
1 ET: q]( —q;(x;) /| 1/2+n
T= ) qJ(x 4; x]) o
1
TZ ris(x;) — rjs( /|x3 1/2+”
s=1

= ﬁl(xj,l'j) + 52(Ijaxj) + ﬂg(d)j,il?;).

By standard arguments to derive uniform convergence rates for kernel estimators which can
be found for example in Bosq (1998), Masry (1996) or Hansen (2008), we can show that

M
P sup J x’)‘ e i o)
;.2 €[0,1),2;a) 6

for all k = 1,2,3 and some x > 0, where ap = /logT/Th?t< for some small ¢ > 0 and M
is a sufficiently large constant. From this, it immediately follows that

it () —mit @) Mar

1/2+
mj,azg.e[(),l],xjyém; ‘xj _ ;| /2+n 2

P

= O(T™"). (61)
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Similarly, it can be verified that

M

Pl sup )| > L) =oT). (62)
z;€[0,1] 2

From (61) and (62), we can conclude that with probability 1 —O(T~"), the random function

M{z mj‘ is contained in the Holder space F := C’1/2+77([07 1]) which is defined as follows: For

any «a € (0,1],
Cy(10,1]) ={f :]0,1] = R: f is continuous with ||f||o < 1}
with
x —
”f”a = Ssup If(x)| + sup M
x€(0,1) wwe(0),aty 1T =Yl

Let N(8, C¢([0,1]), ||| o) be the d-covering number of C{*([0, 1]) endowed with the supremum
norm || - ||oc. By Theorem 2.7.1 in van der Vaart and Wellner (1996), we have the bound

log N (8, CF ([0, 1], I| - [loo) < K6/ (63)

for any 6 > 0 with some fixed constant K > 0. We next define

T
Ma 2
ZT]C T Z W< t— k ‘Et k| <T1/48+5)f( )
t=k+1
and note that (Ajgk) Zr k(MaT mlA). Since ﬁmj‘ is contained in the Holder space

F = C/*™([0,1)) with probability 1 — O(T~*), it follows that
P (‘(A]Sk)| > 5) <P (sup | Z7k(f)] > 8) +0(T™")
ferF
and it remains to show that
P (sup | Zr i (f)] > 6) <CT™". (64)
feEF

To do so, define Z% i = T7Zp ) with v > 0 small and write
P(|234(0) = Z34(9)] > € 1If = gll)

Ma - g2

T < ] i

= P(TV So WE R (o] < TV (F(XE) - 9(x1) ) | >ellf - gllm)-

VT t=k+1 t
Using the trivial bound [t ;x| < CTY?+9||f — g||o and noting that {1 : t € Z}
is a martingale difference sequence for any k£ > 1, we can show that the process Z%’k =

=1y ik
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(Z%} «(f)) fer has subgaussian increments. More specifically, we can apply an exponential
inequality for martingale differences such as theorem 15.20 in Davidson (1994) to obtain that

P (|27 = Z20(9)] > € 11 = gll=)

62

2
T YMa
ZZt i (T M TCT1/12+46)

g2 g2
<2exp | — <2exp|——
2(CM)? (TVar)® T1/6+88 < 2 )

for T large enough. Next, let || - ||y, denote the Orlicz norm corresponding to tg(x) =
exp(r?)—1. Applying a maximal inequality such as theorem 2.2.4 in van der Vaart and Wellner
(1996) along with the metric entropy bound (63), we obtain that

C C
|sw iz, < [ Vi dode =VE [ tmas
ferF o 0 0

1 C
— \/Kilglf 1+12n
1- 1% 0
+2n

<2exp | —

<rg <o

with some sufficiently large C. Hence, by Markov’s inequality,

P (sup | Z7.1 ()] > 5) =P (T” sup | Z7,,.(f)| > 5)
feF feF

_B[vo (swpser 123,001m0) | |
- o (eT /o) = exp(e2T?V/r3) - 1’

which completes the proof of (64). O
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